// RUN: mlir-opt %s -affine-vectorize -virtual-vector-size 32 -virtual-vector-size 256 --test-fastest-varying=2 --test-fastest-varying=0 | FileCheck %s // Permutation maps used in vectorization. // CHECK: #[[map_proj_d0d1d2_d0d2:map[0-9]+]] = affine_map<(d0, d1, d2) -> (d0, d2)> func @vec2d(%A : memref) { %M = dim %A, 0 : memref %N = dim %A, 1 : memref %P = dim %A, 2 : memref // CHECK: affine.for %{{.*}} = 0 to %{{.*}} step 32 // CHECK: affine.for %{{.*}} = 0 to %{{.*}} { // CHECK: affine.for %{{.*}} = 0 to %{{.*}} step 256 // CHECK: {{.*}} = vector.transfer_read %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}], %{{.*}} {permutation_map = #[[map_proj_d0d1d2_d0d2]]} : memref, vector<32x256xf32> affine.for %i0 = 0 to %M { affine.for %i1 = 0 to %N { affine.for %i2 = 0 to %P { %a2 = affine.load %A[%i0, %i1, %i2] : memref } } } // CHECK: for {{.*}} = 0 to %{{.*}} { // CHECK: for {{.*}} = 0 to %{{.*}} { // CHECK: for {{.*}} = 0 to %{{.*}} { // For the case: --test-fastest-varying=2 --test-fastest-varying=0 no // vectorization happens because of loop nesting order affine.for %i3 = 0 to %M { affine.for %i4 = 0 to %N { affine.for %i5 = 0 to %P { %a5 = affine.load %A[%i4, %i5, %i3] : memref } } } return }