//===- builder-api-test.cpp - Tests for Declarative Builder APIs ----------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // RUN: mlir-edsc-builder-api-test | FileCheck %s #include "mlir/Dialect/AffineOps/AffineOps.h" #include "mlir/Dialect/Linalg/EDSC/Builders.h" #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/StandardOps/Ops.h" #include "mlir/EDSC/Builders.h" #include "mlir/EDSC/Helpers.h" #include "mlir/EDSC/Intrinsics.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/IR/IntegerSet.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Module.h" #include "mlir/IR/StandardTypes.h" #include "mlir/IR/Types.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/Functional.h" #include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/Passes.h" #include "APITest.h" #include "llvm/Support/raw_ostream.h" using namespace mlir; static MLIRContext &globalContext() { static thread_local MLIRContext context; return context; } static FuncOp makeFunction(StringRef name, ArrayRef results = {}, ArrayRef args = {}) { auto &ctx = globalContext(); auto function = FuncOp::create(UnknownLoc::get(&ctx), name, FunctionType::get(args, results, &ctx)); function.addEntryBlock(); return function; } TEST_FUNC(builder_dynamic_for_func_args) { using namespace edsc; using namespace edsc::op; using namespace edsc::intrinsics; auto indexType = IndexType::get(&globalContext()); auto f32Type = FloatType::getF32(&globalContext()); auto f = makeFunction("builder_dynamic_for_func_args", {}, {indexType, indexType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle i(indexType), j(indexType), lb(f.getArgument(0)), ub(f.getArgument(1)); ValueHandle f7(constant_float(llvm::APFloat(7.0f), f32Type)); ValueHandle f13(constant_float(llvm::APFloat(13.0f), f32Type)); ValueHandle i7(constant_int(7, 32)); ValueHandle i13(constant_int(13, 32)); AffineLoopNestBuilder(&i, lb, ub, 3)([&] { lb *index_type(3) + ub; lb + index_type(3); AffineLoopNestBuilder(&j, lb, ub, 2)([&] { ceilDiv(index_type(31) * floorDiv(i + j * index_type(3), index_type(32)), index_type(32)); ((f7 + f13) / f7) % f13 - f7 *f13; ((i7 + i13) / i7) % i13 - i7 *i13; }); }); // clang-format off // CHECK-LABEL: func @builder_dynamic_for_func_args(%{{.*}}: index, %{{.*}}: index) { // CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) step 3 { // CHECK: {{.*}} = affine.apply affine_map<()[s0] -> (s0 * 3)>()[%{{.*}}] // CHECK: {{.*}} = affine.apply affine_map<()[s0, s1] -> (s1 + s0 * 3)>()[%{{.*}}, %{{.*}}] // CHECK: {{.*}} = affine.apply affine_map<()[s0] -> (s0 + 3)>()[%{{.*}}] // CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) step 2 { // CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> ((d0 + d1 * 3) floordiv 32)>(%{{.*}}, %{{.*}}) // CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> (((d0 + d1 * 3) floordiv 32) * 31)>(%{{.*}}, %{{.*}}) // CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> ((((d0 + d1 * 3) floordiv 32) * 31) ceildiv 32)>(%{{.*}}, %{{.*}}) // CHECK-DAG: [[rf1:%[0-9]+]] = addf {{.*}}, {{.*}} : f32 // CHECK-DAG: [[rf2:%[0-9]+]] = divf [[rf1]], {{.*}} : f32 // CHECK-DAG: [[rf3:%[0-9]+]] = remf [[rf2]], {{.*}} : f32 // CHECK-DAG: [[rf4:%[0-9]+]] = mulf {{.*}}, {{.*}} : f32 // CHECK: {{.*}} = subf [[rf3]], [[rf4]] : f32 // CHECK-DAG: [[ri1:%[0-9]+]] = addi {{.*}}, {{.*}} : i32 // CHECK-DAG: [[ri2:%[0-9]+]] = divi_signed [[ri1]], {{.*}} : i32 // CHECK-DAG: [[ri3:%[0-9]+]] = remi_signed [[ri2]], {{.*}} : i32 // CHECK-DAG: [[ri4:%[0-9]+]] = muli {{.*}}, {{.*}} : i32 // CHECK: {{.*}} = subi [[ri3]], [[ri4]] : i32 // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_dynamic_for) { using namespace edsc; using namespace edsc::op; using namespace edsc::intrinsics; auto indexType = IndexType::get(&globalContext()); auto f = makeFunction("builder_dynamic_for", {}, {indexType, indexType, indexType, indexType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle i(indexType), a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)), d(f.getArgument(3)); AffineLoopNestBuilder(&i, a - b, c + d, 2)(); // clang-format off // CHECK-LABEL: func @builder_dynamic_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) { // CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}] // CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}] // CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>([[r0]]) to affine_map<(d0) -> (d0)>([[r1]]) step 2 { // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_loop_for) { using namespace edsc; using namespace edsc::op; using namespace edsc::intrinsics; auto indexType = IndexType::get(&globalContext()); auto f = makeFunction("builder_loop_for", {}, {indexType, indexType, indexType, indexType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle i(indexType), a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)), d(f.getArgument(3)); LoopNestBuilder(&i, a - b, c + d, a)(); // clang-format off // CHECK-LABEL: func @builder_loop_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) { // CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}] // CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}] // CHECK-NEXT: loop.for %{{.*}} = [[r0]] to [[r1]] step {{.*}} { // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_max_min_for) { using namespace edsc; using namespace edsc::op; using namespace edsc::intrinsics; auto indexType = IndexType::get(&globalContext()); auto f = makeFunction("builder_max_min_for", {}, {indexType, indexType, indexType, indexType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle i(indexType), lb1(f.getArgument(0)), lb2(f.getArgument(1)), ub1(f.getArgument(2)), ub2(f.getArgument(3)); AffineLoopNestBuilder(&i, {lb1, lb2}, {ub1, ub2}, 1)(); ret(); // clang-format off // CHECK-LABEL: func @builder_max_min_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) { // CHECK: affine.for %{{.*}} = max affine_map<(d0, d1) -> (d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1) -> (d0, d1)>(%{{.*}}, %{{.*}}) { // CHECK: return // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_blocks) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto f = makeFunction("builder_blocks"); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle c1(ValueHandle::create(42, 32)), c2(ValueHandle::create(1234, 32)); ValueHandle arg1(c1.getType()), arg2(c1.getType()), arg3(c1.getType()), arg4(c1.getType()), r(c1.getType()); BlockHandle b1, b2, functionBlock(&f.front()); BlockBuilder(&b1, {&arg1, &arg2})( // b2 has not yet been constructed, need to come back later. // This is a byproduct of non-structured control-flow. ); BlockBuilder(&b2, {&arg3, &arg4})([&] { br(b1, {arg3, arg4}); }); // The insertion point within the toplevel function is now past b2, we will // need to get back the entry block. // This is what happens with unstructured control-flow.. BlockBuilder(b1, Append())([&] { r = arg1 + arg2; br(b2, {arg1, r}); }); // Get back to entry block and add a branch into b1 BlockBuilder(functionBlock, Append())([&] { br(b1, {c1, c2}); }); // clang-format off // CHECK-LABEL: @builder_blocks // CHECK: %{{.*}} = constant 42 : i32 // CHECK-NEXT: %{{.*}} = constant 1234 : i32 // CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32) // CHECK-NEXT: ^bb1(%{{.*}}: i32, %{{.*}}: i32): // 2 preds: ^bb0, ^bb2 // CHECK-NEXT: %{{.*}} = addi %{{.*}}, %{{.*}} : i32 // CHECK-NEXT: br ^bb2(%{{.*}}, %{{.*}} : i32, i32) // CHECK-NEXT: ^bb2(%{{.*}}: i32, %{{.*}}: i32): // pred: ^bb1 // CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32) // CHECK-NEXT: } // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_blocks_eager) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto f = makeFunction("builder_blocks_eager"); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle c1(ValueHandle::create(42, 32)), c2(ValueHandle::create(1234, 32)); ValueHandle arg1(c1.getType()), arg2(c1.getType()), arg3(c1.getType()), arg4(c1.getType()), r(c1.getType()); // clang-format off BlockHandle b1, b2; { // Toplevel function scope. // Build a new block for b1 eagerly. br(&b1, {&arg1, &arg2}, {c1, c2}); // Construct a new block b2 explicitly with a branch into b1. BlockBuilder(&b2, {&arg3, &arg4})([&]{ br(b1, {arg3, arg4}); }); /// And come back to append into b1 once b2 exists. BlockBuilder(b1, Append())([&]{ r = arg1 + arg2; br(b2, {arg1, r}); }); } // CHECK-LABEL: @builder_blocks_eager // CHECK: %{{.*}} = constant 42 : i32 // CHECK-NEXT: %{{.*}} = constant 1234 : i32 // CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32) // CHECK-NEXT: ^bb1(%{{.*}}: i32, %{{.*}}: i32): // 2 preds: ^bb0, ^bb2 // CHECK-NEXT: %{{.*}} = addi %{{.*}}, %{{.*}} : i32 // CHECK-NEXT: br ^bb2(%{{.*}}, %{{.*}} : i32, i32) // CHECK-NEXT: ^bb2(%{{.*}}: i32, %{{.*}}: i32): // pred: ^bb1 // CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32) // CHECK-NEXT: } // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_cond_branch) { using namespace edsc; using namespace edsc::intrinsics; auto f = makeFunction("builder_cond_branch", {}, {IntegerType::get(1, &globalContext())}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle funcArg(f.getArgument(0)); ValueHandle c32(ValueHandle::create(32, 32)), c64(ValueHandle::create(64, 64)), c42(ValueHandle::create(42, 32)); ValueHandle arg1(c32.getType()), arg2(c64.getType()), arg3(c32.getType()); BlockHandle b1, b2, functionBlock(&f.front()); BlockBuilder(&b1, {&arg1})([&] { ret(); }); BlockBuilder(&b2, {&arg2, &arg3})([&] { ret(); }); // Get back to entry block and add a conditional branch BlockBuilder(functionBlock, Append())([&] { cond_br(funcArg, b1, {c32}, b2, {c64, c42}); }); // clang-format off // CHECK-LABEL: @builder_cond_branch // CHECK: %{{.*}} = constant 32 : i32 // CHECK-NEXT: %{{.*}} = constant 64 : i64 // CHECK-NEXT: %{{.*}} = constant 42 : i32 // CHECK-NEXT: cond_br %{{.*}}, ^bb1(%{{.*}} : i32), ^bb2(%{{.*}}, %{{.*}} : i64, i32) // CHECK-NEXT: ^bb1(%{{.*}}: i32): // pred: ^bb0 // CHECK-NEXT: return // CHECK-NEXT: ^bb2(%{{.*}}: i64, %{{.*}}: i32): // pred: ^bb0 // CHECK-NEXT: return // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_cond_branch_eager) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto f = makeFunction("builder_cond_branch_eager", {}, {IntegerType::get(1, &globalContext())}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle funcArg(f.getArgument(0)); ValueHandle c32(ValueHandle::create(32, 32)), c64(ValueHandle::create(64, 64)), c42(ValueHandle::create(42, 32)); ValueHandle arg1(c32.getType()), arg2(c64.getType()), arg3(c32.getType()); // clang-format off BlockHandle b1, b2; cond_br(funcArg, &b1, {&arg1}, {c32}, &b2, {&arg2, &arg3}, {c64, c42}); BlockBuilder(b1, Append())([]{ ret(); }); BlockBuilder(b2, Append())([]{ ret(); }); // CHECK-LABEL: @builder_cond_branch_eager // CHECK: %{{.*}} = constant 32 : i32 // CHECK-NEXT: %{{.*}} = constant 64 : i64 // CHECK-NEXT: %{{.*}} = constant 42 : i32 // CHECK-NEXT: cond_br %{{.*}}, ^bb1(%{{.*}} : i32), ^bb2(%{{.*}}, %{{.*}} : i64, i32) // CHECK-NEXT: ^bb1(%{{.*}}: i32): // pred: ^bb0 // CHECK-NEXT: return // CHECK-NEXT: ^bb2(%{{.*}}: i64, %{{.*}}: i32): // pred: ^bb0 // CHECK-NEXT: return // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(builder_helpers) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1, -1}, f32Type, {}, 0); auto f = makeFunction("builder_helpers", {}, {memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); // clang-format off ValueHandle f7( ValueHandle::create(llvm::APFloat(7.0f), f32Type)); MemRefView vA(f.getArgument(0)), vB(f.getArgument(1)), vC(f.getArgument(2)); IndexedValue A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2)); IndexHandle i, j, k1, k2, lb0, lb1, lb2, ub0, ub1, ub2; int64_t step0, step1, step2; std::tie(lb0, ub0, step0) = vA.range(0); std::tie(lb1, ub1, step1) = vA.range(1); lb2 = vA.lb(2); ub2 = vA.ub(2); step2 = vA.step(2); AffineLoopNestBuilder({&i, &j}, {lb0, lb1}, {ub0, ub1}, {step0, step1})([&]{ AffineLoopNestBuilder(&k1, lb2, ub2, step2)([&]{ C(i, j, k1) = f7 + A(i, j, k1) + B(i, j, k1); }); AffineLoopNestBuilder(&k2, lb2, ub2, step2)([&]{ C(i, j, k2) += A(i, j, k2) + B(i, j, k2); }); }); // CHECK-LABEL: @builder_helpers // CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) { // CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) { // CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) { // CHECK-DAG: [[a:%.*]] = affine.load %arg0[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-DAG: [[b:%.*]] = addf {{.*}}, [[a]] : f32 // CHECK-DAG: [[c:%.*]] = affine.load %arg1[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-DAG: [[d:%.*]] = addf [[b]], [[c]] : f32 // CHECK-NEXT: affine.store [[d]], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) { // CHECK-DAG: [[a:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-DAG: [[b:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-DAG: [[c:%.*]] = addf [[b]], [[a]] : f32 // CHECK-DAG: [[d:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-DAG: [[e:%.*]] = addf [[d]], [[c]] : f32 // CHECK-NEXT: affine.store [[e]], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(custom_ops) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto indexType = IndexType::get(&globalContext()); auto f = makeFunction("custom_ops", {}, {indexType, indexType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); CustomOperation MY_CUSTOM_OP("my_custom_op"); CustomOperation MY_CUSTOM_OP_0("my_custom_op_0"); CustomOperation MY_CUSTOM_OP_2("my_custom_op_2"); // clang-format off ValueHandle vh(indexType), vh20(indexType), vh21(indexType); OperationHandle ih0, ih2; IndexHandle m, n, M(f.getArgument(0)), N(f.getArgument(1)); IndexHandle ten(index_type(10)), twenty(index_type(20)); AffineLoopNestBuilder({&m, &n}, {M, N}, {M + ten, N + twenty}, {1, 1})([&]{ vh = MY_CUSTOM_OP({m, m + n}, {indexType}, {}); ih0 = MY_CUSTOM_OP_0({m, m + n}, {}); ih2 = MY_CUSTOM_OP_2({m, m + n}, {indexType, indexType}); // These captures are verbose for now, can improve when used in practice. vh20 = ValueHandle(ih2.getOperation()->getResult(0)); vh21 = ValueHandle(ih2.getOperation()->getResult(1)); MY_CUSTOM_OP({vh20, vh21}, {indexType}, {}); }); // CHECK-LABEL: @custom_ops // CHECK: affine.for %{{.*}} {{.*}} // CHECK: affine.for %{{.*}} {{.*}} // CHECK: {{.*}} = "my_custom_op"{{.*}} : (index, index) -> index // CHECK: "my_custom_op_0"{{.*}} : (index, index) -> () // CHECK: [[TWO:%[a-z0-9]+]]:2 = "my_custom_op_2"{{.*}} : (index, index) -> (index, index) // CHECK: {{.*}} = "my_custom_op"([[TWO]]#0, [[TWO]]#1) : (index, index) -> index // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(insertion_in_block) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto indexType = IndexType::get(&globalContext()); auto f = makeFunction("insertion_in_block", {}, {indexType, indexType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); BlockHandle b1; // clang-format off ValueHandle::create(0, 32); BlockBuilder(&b1, {})([]{ ValueHandle::create(1, 32); }); ValueHandle::create(2, 32); // CHECK-LABEL: @insertion_in_block // CHECK: {{.*}} = constant 0 : i32 // CHECK: {{.*}} = constant 2 : i32 // CHECK: ^bb1: // no predecessors // CHECK: {{.*}} = constant 1 : i32 // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(zero_and_sign_extendi_op_i1_to_i8) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto i1Type = IntegerType::get(1, &globalContext()); auto i8Type = IntegerType::get(8, &globalContext()); auto memrefType = MemRefType::get({}, i1Type, {}, 0); auto f = makeFunction("zero_and_sign_extendi_op", {}, {memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); IndexedValue A(f.getArgument(0)); IndexedValue B(f.getArgument(1)); // clang-format off edsc::intrinsics::zero_extendi(*A, i8Type); edsc::intrinsics::sign_extendi(*B, i8Type); // CHECK-LABEL: @zero_and_sign_extendi_op // CHECK: %[[SRC1:.*]] = affine.load // CHECK: zexti %[[SRC1]] : i1 to i8 // CHECK: %[[SRC2:.*]] = affine.load // CHECK: sexti %[[SRC2]] : i1 to i8 // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(select_op_i32) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1}, f32Type, {}, 0); auto f = makeFunction("select_op", {}, {memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); // clang-format off ValueHandle zero = constant_index(0), one = constant_index(1); MemRefView vA(f.getArgument(0)); IndexedValue A(f.getArgument(0)); IndexHandle i, j; AffineLoopNestBuilder({&i, &j}, {zero, zero}, {one, one}, {1, 1})([&]{ // This test exercises IndexedValue::operator Value. // Without it, one must force conversion to ValueHandle as such: // edsc::intrinsics::select( // i == zero, ValueHandle(A(zero, zero)), ValueHandle(ValueA(i, j))) edsc::intrinsics::select(i == zero, *A(zero, zero), *A(i, j)); }); // CHECK-LABEL: @select_op // CHECK: affine.for %{{.*}} = 0 to 1 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 1 { // CHECK-DAG: {{.*}} = cmpi "eq" // CHECK-DAG: {{.*}} = affine.load // CHECK-DAG: {{.*}} = affine.load // CHECK-NEXT: {{.*}} = select // clang-format on f.print(llvm::outs()); f.erase(); } TEST_FUNC(select_op_f32) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1}, f32Type, {}, 0); auto f = makeFunction("select_op", {}, {memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); // clang-format off ValueHandle zero = constant_index(0), one = constant_index(1); MemRefView vA(f.getArgument(0)), vB(f.getArgument(1)); IndexedValue A(f.getArgument(0)), B(f.getArgument(1)); IndexHandle i, j; AffineLoopNestBuilder({&i, &j}, {zero, zero}, {one, one}, {1, 1})([&]{ edsc::intrinsics::select(B(i, j) == B(i+one, j), *A(zero, zero), *A(i, j)); edsc::intrinsics::select(B(i, j) != B(i+one, j), *A(zero, zero), *A(i, j)); edsc::intrinsics::select(B(i, j) >= B(i+one, j), *A(zero, zero), *A(i, j)); edsc::intrinsics::select(B(i, j) <= B(i+one, j), *A(zero, zero), *A(i, j)); edsc::intrinsics::select(B(i, j) < B(i+one, j), *A(zero, zero), *A(i, j)); edsc::intrinsics::select(B(i, j) > B(i+one, j), *A(zero, zero), *A(i, j)); }); // CHECK-LABEL: @select_op // CHECK: affine.for %{{.*}} = 0 to 1 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 1 { // CHECK-DAG: cmpf "oeq" // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.apply // CHECK-NEXT: select // CHECK-DAG: cmpf "one" // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.apply // CHECK-NEXT: select // CHECK-DAG: cmpf "oge" // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.apply // CHECK-NEXT: select // CHECK-DAG: cmpf "ole" // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.apply // CHECK-NEXT: select // CHECK-DAG: cmpf "olt" // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.apply // CHECK-NEXT: select // CHECK-DAG: cmpf "ogt" // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.load // CHECK-DAG: affine.apply // CHECK-NEXT: select // clang-format on f.print(llvm::outs()); f.erase(); } // Inject an EDSC-constructed computation to exercise imperfectly nested 2-d // tiling. TEST_FUNC(tile_2d) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto memrefType = MemRefType::get({-1, -1, -1}, FloatType::getF32(&globalContext()), {}, 0); auto f = makeFunction("tile_2d", {}, {memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle zero = constant_index(0); MemRefView vA(f.getArgument(0)), vB(f.getArgument(1)), vC(f.getArgument(2)); IndexedValue A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2)); IndexHandle i, j, k1, k2, M(vC.ub(0)), N(vC.ub(1)), O(vC.ub(2)); // clang-format off AffineLoopNestBuilder({&i, &j}, {zero, zero}, {M, N}, {1, 1})([&]{ AffineLoopNestBuilder(&k1, zero, O, 1)([&]{ C(i, j, k1) = A(i, j, k1) + B(i, j, k1); }); AffineLoopNestBuilder(&k2, zero, O, 1)([&]{ C(i, j, k2) = A(i, j, k2) + B(i, j, k2); }); }); // clang-format on auto li = getForInductionVarOwner(i.getValue()), lj = getForInductionVarOwner(j.getValue()), lk1 = getForInductionVarOwner(k1.getValue()), lk2 = getForInductionVarOwner(k2.getValue()); auto indicesL1 = mlir::tile({li, lj}, {512, 1024}, {lk1, lk2}); auto lii1 = indicesL1[0][0], ljj1 = indicesL1[1][0]; mlir::tile({ljj1, lii1}, {32, 16}, ljj1); // clang-format off // CHECK-LABEL: func @tile_2d // CHECK: %[[ZERO:.*]] = constant 0 : index // CHECK: %[[M:[0-9]+]] = dim %arg2, 0 : memref // CHECK-NEXT: %[[N:[0-9]+]] = dim %arg2, 1 : memref // CHECK-NEXT: %[[P:[0-9]+]] = dim %arg2, 2 : memref // CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[M]]) step 512 { // CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[N]]) step 1024 { // CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[P]]) { // CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 512)>(%{{.*}})[%[[M]]] step 16 { // CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 1024)>(%{{.*}})[%[[N]]] step 32 { // CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0, d1) -> (0, d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1)[s0] -> (s0, d0 + 1024, d1 + 32)>(%{{.*}}, %{{.*}})[%[[N]]] { // CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0, d1) -> (0, d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1)[s0] -> (s0, d0 + 512, d1 + 16)>(%{{.*}}, %{{.*}})[%[[M]]] { // CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-NEXT: {{.*}} = addf {{.*}}, {{.*}} : f32 // CHECK-NEXT: affine.store {{.*}}, {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[P]]) { // CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 512)>(%{{.*}})[%[[M]]] { // CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 1024)>(%{{.*}})[%[[N]]] { // CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // CHECK-NEXT: {{.*}}= addf {{.*}}, {{.*}} : f32 // CHECK-NEXT: affine.store {{.*}}, {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref // clang-format on f.print(llvm::outs()); f.erase(); } // Inject an EDSC-constructed computation to exercise 2-d vectorization. // TODO(ntv,andydavis) Convert EDSC to use AffineLoad/Store. /* TEST_FUNC(vectorize_2d) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto memrefType = MemRefType::get({-1, -1, -1}, FloatType::getF32(&globalContext()), {}, 0); auto owningF = makeFunction("vectorize_2d", {}, {memrefType, memrefType, memrefType}); mlir::FuncOp f = owningF; mlir::OwningModuleRef module = ModuleOp::create(&globalContext()); module->push_back(f); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle zero = constant_index(0); MemRefView vA(f.getArgument(0)), vB(f.getArgument(1)), vC(f.getArgument(2)); IndexedValue A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2)); IndexHandle M(vA.ub(0)), N(vA.ub(1)), P(vA.ub(2)); // clang-format off IndexHandle i, j, k; AffineLoopNestBuilder({&i, &j, &k}, {zero, zero, zero}, {M, N, P}, {1, 1, 1})([&]{ C(i, j, k) = A(i, j, k) + B(i, j, k); }); ret(); // xCHECK-LABEL: func @vectorize_2d // xCHECK-NEXT: %[[M:.*]] = dim %{{.*}}, 0 : memref // xCHECK-NEXT: %[[N:.*]] = dim %{{.*}}, 1 : memref // xCHECK-NEXT: %[[P:.*]] = dim %{{.*}}, 2 : memref // xCHECK-NEXT: affine.for %{{.*}} = 0 to (d0) -> (d0)(%[[M]]) { // xCHECK-NEXT: affine.for %{{.*}} = 0 to (d0) -> (d0)(%[[N]]) step 4 { // xCHECK-NEXT: affine.for %{{.*}} = 0 to (d0) -> (d0)(%[[P]]) step 4 { // xCHECK-NEXT: %[[vA:.*]] = "vector.transfer_read"(%{{.*}}, %{{.*}}, %{{.*}}, %i2) {permutation_map = affine_map<(d0, d1, d2) -> (d1, d2)>} : (memref, index, index, index) -> vector<4x4xf32> // xCHECK-NEXT: %[[vB:.*]] = "vector.transfer_read"(%{{.*}}, %{{.*}}, %{{.*}}, %i2) {permutation_map = affine_map<(d0, d1, d2) -> (d1, d2)>} : (memref, index, index, index) -> vector<4x4xf32> // xCHECK-NEXT: %[[vRES:.*]] = addf %[[vB]], %[[vA]] : vector<4x4xf32> // xCHECK-NEXT: "vector.transfer_write"(%[[vRES:.*]], %{{.*}}, %{{.*}}, %{{.*}}, %i2) {permutation_map = affine_map<(d0, d1, d2) -> (d1, d2)>} : (vector<4x4xf32>, memref, index, index, index) -> () // clang-format on mlir::PassManager pm; pm.addPass(mlir::createCanonicalizerPass()); SmallVector vectorSizes{4, 4}; pm.addPass(mlir::createVectorizePass(vectorSizes)); auto result = pm.run(f.getModule()); if (succeeded(result)) f.print(llvm::outs()); f.erase(); } */ // Exercise StdIndexedValue for loads and stores. TEST_FUNC(indirect_access) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto memrefType = MemRefType::get({-1}, FloatType::getF32(&globalContext()), {}, 0); auto f = makeFunction("indirect_access", {}, {memrefType, memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle zero = constant_index(0); MemRefView vC(f.getArgument(2)); IndexedValue B(f.getArgument(1)), D(f.getArgument(3)); StdIndexedValue A(f.getArgument(0)), C(f.getArgument(2)); IndexHandle i, N(vC.ub(0)); // clang-format off AffineLoopNestBuilder(&i, zero, N, 1)([&]{ C((ValueHandle)D(i)) = A((ValueHandle)B(i)); }); // clang-format on // clang-format off // CHECK-LABEL: func @indirect_access // CHECK-SAME: (%[[ARG0:.*]]: memref, %[[ARG1:.*]]: memref, %[[ARG2:.*]]: memref, %[[ARG3:.*]]: memref) // CHECK-DAG: [[B:%.*]] = affine.load %[[ARG1]] // CHECK-DAG: [[D:%.*]] = affine.load %[[ARG3]] // CHECK: load %{{.*}}{{\[}}[[B]]{{\]}} // CHECK: store %{{.*}}, %{{.*}}{{\[}}[[D]]{{\]}} // clang-format on f.print(llvm::outs()); f.erase(); } // Exercise affine loads and stores build with empty maps. TEST_FUNC(empty_map_load_store) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto memrefType = MemRefType::get({}, FloatType::getF32(&globalContext()), {}, 0); auto f = makeFunction("empty_map_load_store", {}, {memrefType, memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle zero = constant_index(0); ValueHandle one = constant_index(1); IndexedValue input(f.getArgument(0)), res(f.getArgument(1)); IndexHandle iv; // clang-format off AffineLoopNestBuilder(&iv, zero, one, 1)([&]{ res() = input(); }); // clang-format on // clang-format off // CHECK-LABEL: func @empty_map_load_store( // CHECK: [[A:%.*]] = affine.load %{{.*}}[] // CHECK: affine.store [[A]], %{{.*}}[] // clang-format on f.print(llvm::outs()); f.erase(); } // CHECK-LABEL: func @affine_if_op // CHECK: affine.if affine_set<([[d0:.*]], [[d1:.*]]){{\[}}[[s0:.*]], [[s1:.*]]{{\]}} // CHECK-NOT: else // CHECK: affine.if affine_set<([[d0:.*]], [[d1:.*]]){{\[}}[[s0:.*]], [[s1:.*]]{{\]}} // CHECK-NEXT: } else { TEST_FUNC(affine_if_op) { using namespace edsc; using namespace edsc::intrinsics; using namespace edsc::op; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1}, f32Type, {}, 0); auto f = makeFunction("affine_if_op", {}, {memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle zero = constant_index(0), ten = constant_index(10); SmallVector isEq = {false, false, false, false}; SmallVector affineExprs = { builder.getAffineDimExpr(0), // d0 >= 0 builder.getAffineDimExpr(1), // d1 >= 0 builder.getAffineSymbolExpr(0), // s0 >= 0 builder.getAffineSymbolExpr(1) // s1 >= 0 }; auto intSet = IntegerSet::get(2, 2, affineExprs, isEq); SmallVector affineIfArgs = {zero, zero, ten, ten}; intrinsics::affine_if(intSet, affineIfArgs, /*withElseRegion=*/false); intrinsics::affine_if(intSet, affineIfArgs, /*withElseRegion=*/true); f.print(llvm::outs()); f.erase(); } // clang-format off // CHECK-LABEL: func @linalg_pointwise // CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64, // CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], // CHECK-SAME: iterator_types = ["parallel", "parallel"]} // CHECK: addf // CHECK: }: memref, memref, memref // CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64, // CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], // CHECK-SAME: iterator_types = ["parallel", "parallel"]} // CHECK: cmpf "ogt" // CHECK: select // CHECK: }: memref, memref, memref // CHECK: linalg.generic {args_in = 1 : i64, args_out = 1 : i64, // CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], // CHECK-SAME: iterator_types = ["parallel", "parallel"]} // CHECK: tanh // CHECK: }: memref, memref // clang-format on TEST_FUNC(linalg_pointwise_test) { using namespace edsc; using namespace edsc::ops; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1}, f32Type, {}, 0); auto f = makeFunction("linalg_pointwise", {}, {memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); ValueHandle A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2)); AffineExpr i, j; bindDims(&globalContext(), i, j); StructuredIndexed SA(A), SB(B), SC(C); linalg_pointwise_add(SA({i, j}), SB({i, j}), SC({i, j})); linalg_pointwise_max(SA({i, j}), SB({i, j}), SC({i, j})); linalg_pointwise_tanh(SA({i, j}), SC({i, j})); f.print(llvm::outs()); f.erase(); } // clang-format off // CHECK-LABEL: func @linalg_matmul // CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64, // CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]} /// CHECK: ^bb1(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32): // CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32 // CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32 // CHECK: linalg.yield %[[a4]] : f32 // CHECK: }: memref, memref, memref // clang-format on TEST_FUNC(linalg_matmul_test) { using namespace edsc; using namespace edsc::ops; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1}, f32Type, {}, 0); auto f = makeFunction("linalg_matmul", {}, {memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); linalg_matmul(makeValueHandles(llvm::to_vector<3>(f.getArguments()))); f.print(llvm::outs()); f.erase(); } // clang-format off // CHECK-LABEL: func @linalg_conv_nhwc // CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64, // CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d2 * 3 + d4 * 5, d3 * 4 + d5 * 6, d6)>, // CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d1)>, // CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d2, d3, d1)>], // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} /// CHECK: ^bb1(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32): // CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32 // CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32 // CHECK: linalg.yield %[[a4]] : f32 // CHECK: }: memref, memref, memref // clang-format on TEST_FUNC(linalg_conv_nhwc) { using namespace edsc; using namespace edsc::ops; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1, -1, -1}, f32Type, {}, 0); auto f = makeFunction("linalg_conv_nhwc", {}, {memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); linalg_conv_nhwc(makeValueHandles(llvm::to_vector<3>(f.getArguments())), /*strides=*/{3, 4}, /*dilations=*/{5, 6}); f.print(llvm::outs()); f.erase(); } // clang-format off // CHECK-LABEL: func @linalg_dilated_conv_nhwc // CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64, // CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d3 * 3 + d5 * 5, d4 * 4 + d6 * 6, d2)>, // CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d5, d6, d2, d1)>, // CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d3, d4, d1 + d2 * 7)>], // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction"]} // CHECK: ^bb1(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32): // CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32 // CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32 // CHECK: linalg.yield %[[a4]] : f32 // CHECK: }: memref, memref, memref // clang-format on TEST_FUNC(linalg_dilated_conv_nhwc) { using namespace edsc; using namespace edsc::ops; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({-1, -1, -1, -1}, f32Type, {}, 0); auto f = makeFunction("linalg_dilated_conv_nhwc", {}, {memrefType, memrefType, memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); linalg_dilated_conv_nhwc( makeValueHandles(llvm::to_vector<3>(f.getArguments())), /*depth_multiplier=*/7, /*strides=*/{3, 4}, /*dilations=*/{5, 6}); f.print(llvm::outs()); f.erase(); } // clang-format off // CHECK-LABEL: func @linalg_metadata_ops // CHECK: linalg.reshape {{.*}} [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d2)>] : memref<4x8x16xf32> into memref<32x16xf32> // CHECK: linalg.reshape {{.*}} [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d2)>] : memref<32x16xf32> into memref<4x8x16xf32> // clang-format on TEST_FUNC(linalg_metadata_ops) { using namespace edsc; using namespace edsc::intrinsics; auto f32Type = FloatType::getF32(&globalContext()); auto memrefType = MemRefType::get({4, 8, 16}, f32Type, {}, 0); auto f = makeFunction("linalg_metadata_ops", {}, {memrefType}); OpBuilder builder(f.getBody()); ScopedContext scope(builder, f.getLoc()); AffineExpr i, j, k; bindDims(&globalContext(), i, j, k); ValueHandle v(f.getArgument(0)); auto reshaped = linalg_reshape(v, ArrayRef>{{i, j}, k}); linalg_reshape(memrefType, reshaped, ArrayRef>{{i, j}, k}); f.print(llvm::outs()); f.erase(); } int main() { RUN_TESTS(); return 0; }