//===- PipelineDataTransfer.cpp --- Pass for pipelining data movement ---*-===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements a pass to pipeline data transfers. // //===----------------------------------------------------------------------===// #include "mlir/Transforms/Passes.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Analysis/Utils.h" #include "mlir/IR/Builders.h" #include "mlir/IR/StmtVisitor.h" #include "mlir/Pass.h" #include "mlir/StandardOps/StandardOps.h" #include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/Utils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "pipeline-data-transfer" using namespace mlir; namespace { struct PipelineDataTransfer : public FunctionPass, StmtWalker { PipelineDataTransfer() : FunctionPass(&PipelineDataTransfer::passID) {} PassResult runOnMLFunction(Function *f) override; PassResult runOnForStmt(ForStmt *forStmt); // Collect all 'for' statements. void visitForStmt(ForStmt *forStmt) { forStmts.push_back(forStmt); } std::vector forStmts; static char passID; }; } // end anonymous namespace char PipelineDataTransfer::passID = 0; /// Creates a pass to pipeline explicit movement of data across levels of the /// memory hierarchy. FunctionPass *mlir::createPipelineDataTransferPass() { return new PipelineDataTransfer(); } // Returns the position of the tag memref operand given a DMA statement. // Temporary utility: will be replaced when DmaStart/DmaFinish abstract op's are // added. TODO(b/117228571) static unsigned getTagMemRefPos(const OperationInst &dmaStmt) { assert(dmaStmt.isa() || dmaStmt.isa()); if (dmaStmt.isa()) { // Second to last operand. return dmaStmt.getNumOperands() - 2; } // First operand for a dma finish statement. return 0; } /// Doubles the buffer of the supplied memref on the specified 'for' statement /// by adding a leading dimension of size two to the memref. Replaces all uses /// of the old memref by the new one while indexing the newly added dimension by /// the loop IV of the specified 'for' statement modulo 2. Returns false if such /// a replacement cannot be performed. static bool doubleBuffer(Value *oldMemRef, ForStmt *forStmt) { auto *forBody = forStmt->getBody(); FuncBuilder bInner(forBody, forBody->begin()); bInner.setInsertionPoint(forBody, forBody->begin()); // Doubles the shape with a leading dimension extent of 2. auto doubleShape = [&](MemRefType oldMemRefType) -> MemRefType { // Add the leading dimension in the shape for the double buffer. ArrayRef shape = oldMemRefType.getShape(); SmallVector shapeSizes(shape.begin(), shape.end()); shapeSizes.insert(shapeSizes.begin(), 2); auto newMemRefType = bInner.getMemRefType(shapeSizes, oldMemRefType.getElementType(), {}, oldMemRefType.getMemorySpace()); return newMemRefType; }; auto oldMemRefType = oldMemRef->getType().cast(); auto newMemRefType = doubleShape(oldMemRefType); // Put together alloc operands for the dynamic dimensions of the memref. FuncBuilder bOuter(forStmt); SmallVector allocOperands; unsigned dynamicDimCount = 0; for (auto dimSize : oldMemRefType.getShape()) { if (dimSize == -1) allocOperands.push_back(bOuter.create(forStmt->getLoc(), oldMemRef, dynamicDimCount++)); } // Create and place the alloc right before the 'for' statement. // TODO(mlir-team): we are assuming scoped allocation here, and aren't // inserting a dealloc -- this isn't the right thing. Value *newMemRef = bOuter.create(forStmt->getLoc(), newMemRefType, allocOperands); // Create 'iv mod 2' value to index the leading dimension. auto d0 = bInner.getAffineDimExpr(0); auto modTwoMap = bInner.getAffineMap(/*dimCount=*/1, /*symbolCount=*/0, {d0 % 2}, {}); auto ivModTwoOp = bInner.create(forStmt->getLoc(), modTwoMap, forStmt); // replaceAllMemRefUsesWith will always succeed unless the forStmt body has // non-deferencing uses of the memref. if (!replaceAllMemRefUsesWith(oldMemRef, newMemRef, ivModTwoOp->getResult(0), AffineMap::Null(), {}, &*forStmt->getBody()->begin())) { LLVM_DEBUG(llvm::dbgs() << "memref replacement for double buffering failed\n";); ivModTwoOp->getInstruction()->erase(); return false; } return true; } /// Returns success if the IR is in a valid state. PassResult PipelineDataTransfer::runOnMLFunction(Function *f) { // Do a post order walk so that inner loop DMAs are processed first. This is // necessary since 'for' statements nested within would otherwise become // invalid (erased) when the outer loop is pipelined (the pipelined one gets // deleted and replaced by a prologue, a new steady-state loop and an // epilogue). forStmts.clear(); walkPostOrder(f); bool ret = false; for (auto *forStmt : forStmts) { ret = ret | runOnForStmt(forStmt); } return ret ? failure() : success(); } // Check if tags of the dma start op and dma wait op match. static bool checkTagMatch(OpPointer startOp, OpPointer waitOp) { if (startOp->getTagMemRef() != waitOp->getTagMemRef()) return false; auto startIndices = startOp->getTagIndices(); auto waitIndices = waitOp->getTagIndices(); // Both of these have the same number of indices since they correspond to the // same tag memref. for (auto it = startIndices.begin(), wIt = waitIndices.begin(), e = startIndices.end(); it != e; ++it, ++wIt) { // Keep it simple for now, just checking if indices match. // TODO(mlir-team): this would in general need to check if there is no // intervening write writing to the same tag location, i.e., memory last // write/data flow analysis. This is however sufficient/powerful enough for // now since the DMA generation pass or the input for it will always have // start/wait with matching tags (same SSA operand indices). if (*it != *wIt) return false; } return true; } // Identify matching DMA start/finish statements to overlap computation with. static void findMatchingStartFinishStmts( ForStmt *forStmt, SmallVectorImpl> &startWaitPairs) { // Collect outgoing DMA statements - needed to check for dependences below. SmallVector, 4> outgoingDmaOps; for (auto &stmt : *forStmt->getBody()) { auto *opStmt = dyn_cast(&stmt); if (!opStmt) continue; OpPointer dmaStartOp; if ((dmaStartOp = opStmt->dyn_cast()) && dmaStartOp->isSrcMemorySpaceFaster()) outgoingDmaOps.push_back(dmaStartOp); } SmallVector dmaStartStmts, dmaFinishStmts; for (auto &stmt : *forStmt->getBody()) { auto *opStmt = dyn_cast(&stmt); if (!opStmt) continue; // Collect DMA finish statements. if (opStmt->isa()) { dmaFinishStmts.push_back(opStmt); continue; } OpPointer dmaStartOp; if (!(dmaStartOp = opStmt->dyn_cast())) continue; // Only DMAs incoming into higher memory spaces are pipelined for now. // TODO(bondhugula): handle outgoing DMA pipelining. if (!dmaStartOp->isDestMemorySpaceFaster()) continue; // Check for dependence with outgoing DMAs. Doing this conservatively. // TODO(andydavis,bondhugula): use the dependence analysis to check for // dependences between an incoming and outgoing DMA in the same iteration. auto it = outgoingDmaOps.begin(); for (; it != outgoingDmaOps.end(); ++it) { if ((*it)->getDstMemRef() == dmaStartOp->getSrcMemRef()) break; } if (it != outgoingDmaOps.end()) continue; // We only double buffer if the buffer is not live out of loop. auto *memref = dmaStartOp->getOperand(dmaStartOp->getFasterMemPos()); bool escapingUses = false; for (const auto &use : memref->getUses()) { if (!dominates(*forStmt->getBody()->begin(), *use.getOwner())) { LLVM_DEBUG(llvm::dbgs() << "can't pipeline: buffer is live out of loop\n";); escapingUses = true; break; } } if (!escapingUses) dmaStartStmts.push_back(opStmt); } // For each start statement, we look for a matching finish statement. for (auto *dmaStartStmt : dmaStartStmts) { for (auto *dmaFinishStmt : dmaFinishStmts) { if (checkTagMatch(dmaStartStmt->cast(), dmaFinishStmt->cast())) { startWaitPairs.push_back({dmaStartStmt, dmaFinishStmt}); break; } } } } /// Overlap DMA transfers with computation in this loop. If successful, /// 'forStmt' is deleted, and a prologue, a new pipelined loop, and epilogue are /// inserted right before where it was. PassResult PipelineDataTransfer::runOnForStmt(ForStmt *forStmt) { auto mayBeConstTripCount = getConstantTripCount(*forStmt); if (!mayBeConstTripCount.hasValue()) { LLVM_DEBUG(llvm::dbgs() << "unknown trip count loop\n"); return success(); } SmallVector, 4> startWaitPairs; findMatchingStartFinishStmts(forStmt, startWaitPairs); if (startWaitPairs.empty()) { LLVM_DEBUG(llvm::dbgs() << "No dma start/finish pairs\n";); return success(); } // Double the buffers for the higher memory space memref's. // Identify memref's to replace by scanning through all DMA start statements. // A DMA start statement has two memref's - the one from the higher level of // memory hierarchy is the one to double buffer. // TODO(bondhugula): check whether double-buffering is even necessary. // TODO(bondhugula): make this work with different layouts: assuming here that // the dimension we are adding here for the double buffering is the outermost // dimension. for (auto &pair : startWaitPairs) { auto *dmaStartStmt = pair.first; Value *oldMemRef = dmaStartStmt->getOperand( dmaStartStmt->cast()->getFasterMemPos()); if (!doubleBuffer(oldMemRef, forStmt)) { // Normally, double buffering should not fail because we already checked // that there are no uses outside. LLVM_DEBUG(llvm::dbgs() << "double buffering failed for: \n";); LLVM_DEBUG(dmaStartStmt->dump()); // IR still in a valid state. return success(); } // If the old memref has no more uses, remove its 'dead' alloc if it was // alloc'ed. (note: DMA buffers are rarely function live-in; but a 'dim' // operation could have been used on it if it was dynamically shaped in // order to create the double buffer above) if (oldMemRef->use_empty()) if (auto *allocStmt = oldMemRef->getDefiningInst()) allocStmt->erase(); } // Double the buffers for tag memrefs. for (auto &pair : startWaitPairs) { auto *dmaFinishStmt = pair.second; Value *oldTagMemRef = dmaFinishStmt->getOperand(getTagMemRefPos(*dmaFinishStmt)); if (!doubleBuffer(oldTagMemRef, forStmt)) { LLVM_DEBUG(llvm::dbgs() << "tag double buffering failed\n";); return success(); } // If the old tag has no more uses, remove its 'dead' alloc if it was // alloc'ed. if (oldTagMemRef->use_empty()) if (auto *allocStmt = oldTagMemRef->getDefiningInst()) allocStmt->erase(); } // Double buffering would have invalidated all the old DMA start/wait stmts. startWaitPairs.clear(); findMatchingStartFinishStmts(forStmt, startWaitPairs); // Store shift for statement for later lookup for AffineApplyOp's. DenseMap stmtShiftMap; for (auto &pair : startWaitPairs) { auto *dmaStartStmt = pair.first; assert(dmaStartStmt->isa()); stmtShiftMap[dmaStartStmt] = 0; // Set shifts for DMA start stmt's affine operand computation slices to 0. if (auto *slice = mlir::createAffineComputationSlice(dmaStartStmt)) { stmtShiftMap[slice] = 0; } else { // If a slice wasn't created, the reachable affine_apply op's from its // operands are the ones that go with it. SmallVector affineApplyStmts; SmallVector operands(dmaStartStmt->getOperands()); getReachableAffineApplyOps(operands, affineApplyStmts); for (const auto *stmt : affineApplyStmts) { stmtShiftMap[stmt] = 0; } } } // Everything else (including compute ops and dma finish) are shifted by one. for (const auto &stmt : *forStmt->getBody()) { if (stmtShiftMap.find(&stmt) == stmtShiftMap.end()) { stmtShiftMap[&stmt] = 1; } } // Get shifts stored in map. std::vector shifts(forStmt->getBody()->getInstructions().size()); unsigned s = 0; for (auto &stmt : *forStmt->getBody()) { assert(stmtShiftMap.find(&stmt) != stmtShiftMap.end()); shifts[s++] = stmtShiftMap[&stmt]; LLVM_DEBUG( // Tagging statements with shifts for debugging purposes. if (auto *opStmt = dyn_cast(&stmt)) { FuncBuilder b(opStmt); opStmt->setAttr(b.getIdentifier("shift"), b.getI64IntegerAttr(shifts[s - 1])); }); } if (!isStmtwiseShiftValid(*forStmt, shifts)) { // Violates dependences. LLVM_DEBUG(llvm::dbgs() << "Shifts invalid - unexpected\n";); return success(); } if (stmtBodySkew(forStmt, shifts)) { LLVM_DEBUG(llvm::dbgs() << "stmt body skewing failed - unexpected\n";); return success(); } return success(); } static PassRegistration pass( "pipeline-data-transfer", "Pipeline non-blocking data transfers between explicitly managed levels of " "the memory hierarchy");