//===- Parser.cpp - MLIR Parser Implementation ----------------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements the parser for the MLIR textual form. // //===----------------------------------------------------------------------===// #include "mlir/Parser.h" #include "Lexer.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/IntegerSet.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLFunction.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Module.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/StmtVisitor.h" #include "mlir/IR/Types.h" #include "mlir/Support/STLExtras.h" #include "mlir/Transforms/Utils.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/SourceMgr.h" #include using namespace mlir; using llvm::MemoryBuffer; using llvm::SMLoc; using llvm::SourceMgr; /// Simple enum to make code read better in cases that would otherwise return a /// bool value. Failure is "true" in a boolean context. enum ParseResult { ParseSuccess, ParseFailure }; namespace { class Parser; /// This class refers to all of the state maintained globally by the parser, /// such as the current lexer position etc. The Parser base class provides /// methods to access this. class ParserState { public: ParserState(const llvm::SourceMgr &sourceMgr, Module *module) : context(module->getContext()), module(module), lex(sourceMgr, context), curToken(lex.lexToken()) {} ~ParserState() { // Destroy the forward references upon error. for (auto forwardRef : functionForwardRefs) forwardRef.second->destroy(); functionForwardRefs.clear(); } // A map from affine map identifier to AffineMap. llvm::StringMap affineMapDefinitions; // A map from integer set identifier to IntegerSet. llvm::StringMap integerSetDefinitions; // This keeps track of all forward references to functions along with the // temporary function used to represent them. llvm::DenseMap functionForwardRefs; private: ParserState(const ParserState &) = delete; void operator=(const ParserState &) = delete; friend class Parser; // The context we're parsing into. MLIRContext *const context; // This is the module we are parsing into. Module *const module; // The lexer for the source file we're parsing. Lexer lex; // This is the next token that hasn't been consumed yet. Token curToken; }; } // end anonymous namespace namespace { using CreateOperationFunction = std::function; /// This class implement support for parsing global entities like types and /// shared entities like SSA names. It is intended to be subclassed by /// specialized subparsers that include state, e.g. when a local symbol table. class Parser { public: Builder builder; Parser(ParserState &state) : builder(state.context), state(state) {} // Helper methods to get stuff from the parser-global state. ParserState &getState() const { return state; } MLIRContext *getContext() const { return state.context; } Module *getModule() { return state.module; } const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } /// Return the current token the parser is inspecting. const Token &getToken() const { return state.curToken; } StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } /// Encode the specified source location information into an attribute for /// attachment to the IR. Location getEncodedSourceLocation(llvm::SMLoc loc) { return state.lex.getEncodedSourceLocation(loc); } /// Emit an error and return failure. ParseResult emitError(const Twine &message) { return emitError(state.curToken.getLoc(), message); } ParseResult emitError(SMLoc loc, const Twine &message); /// Advance the current lexer onto the next token. void consumeToken() { assert(state.curToken.isNot(Token::eof, Token::error) && "shouldn't advance past EOF or errors"); state.curToken = state.lex.lexToken(); } /// Advance the current lexer onto the next token, asserting what the expected /// current token is. This is preferred to the above method because it leads /// to more self-documenting code with better checking. void consumeToken(Token::Kind kind) { assert(state.curToken.is(kind) && "consumed an unexpected token"); consumeToken(); } /// If the current token has the specified kind, consume it and return true. /// If not, return false. bool consumeIf(Token::Kind kind) { if (state.curToken.isNot(kind)) return false; consumeToken(kind); return true; } /// Consume the specified token if present and return success. On failure, /// output a diagnostic and return failure. ParseResult parseToken(Token::Kind expectedToken, const Twine &message); /// Parse a comma-separated list of elements up until the specified end token. ParseResult parseCommaSeparatedListUntil(Token::Kind rightToken, const std::function &parseElement, bool allowEmptyList = true); /// Parse a comma separated list of elements that must have at least one entry /// in it. ParseResult parseCommaSeparatedList(const std::function &parseElement); // We have two forms of parsing methods - those that return a non-null // pointer on success, and those that return a ParseResult to indicate whether // they returned a failure. The second class fills in by-reference arguments // as the results of their action. // Type parsing. VectorType parseVectorType(); ParseResult parseXInDimensionList(); ParseResult parseDimensionListRanked(SmallVectorImpl &dimensions); Type parseTensorType(); Type parseMemRefType(); Type parseFunctionType(); Type parseType(); ParseResult parseTypeListNoParens(SmallVectorImpl &elements); ParseResult parseTypeList(SmallVectorImpl &elements); // Attribute parsing. Function *resolveFunctionReference(StringRef nameStr, SMLoc nameLoc, FunctionType type); Attribute parseAttribute(Type type = {}); ParseResult parseAttributeDict(SmallVectorImpl &attributes); // Polyhedral structures. void parseAffineStructureInline(AffineMap *map, IntegerSet *set); void parseAffineStructureReference(AffineMap *map, IntegerSet *set); AffineMap parseAffineMapInline(); AffineMap parseAffineMapReference(); IntegerSet parseIntegerSetInline(); IntegerSet parseIntegerSetReference(); DenseElementsAttr parseDenseElementsAttr(VectorOrTensorType type); DenseElementsAttr parseDenseElementsAttr(Type eltType, bool isVector); VectorOrTensorType parseVectorOrTensorType(); private: // The Parser is subclassed and reinstantiated. Do not add additional // non-trivial state here, add it to the ParserState class. ParserState &state; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Helper methods. //===----------------------------------------------------------------------===// ParseResult Parser::emitError(SMLoc loc, const Twine &message) { // If we hit a parse error in response to a lexer error, then the lexer // already reported the error. if (getToken().is(Token::error)) return ParseFailure; getContext()->emitError(getEncodedSourceLocation(loc), message); return ParseFailure; } /// Consume the specified token if present and return success. On failure, /// output a diagnostic and return failure. ParseResult Parser::parseToken(Token::Kind expectedToken, const Twine &message) { if (consumeIf(expectedToken)) return ParseSuccess; return emitError(message); } /// Parse a comma separated list of elements that must have at least one entry /// in it. ParseResult Parser::parseCommaSeparatedList( const std::function &parseElement) { // Non-empty case starts with an element. if (parseElement()) return ParseFailure; // Otherwise we have a list of comma separated elements. while (consumeIf(Token::comma)) { if (parseElement()) return ParseFailure; } return ParseSuccess; } /// Parse a comma-separated list of elements, terminated with an arbitrary /// token. This allows empty lists if allowEmptyList is true. /// /// abstract-list ::= rightToken // if allowEmptyList == true /// abstract-list ::= element (',' element)* rightToken /// ParseResult Parser::parseCommaSeparatedListUntil( Token::Kind rightToken, const std::function &parseElement, bool allowEmptyList) { // Handle the empty case. if (getToken().is(rightToken)) { if (!allowEmptyList) return emitError("expected list element"); consumeToken(rightToken); return ParseSuccess; } if (parseCommaSeparatedList(parseElement) || parseToken(rightToken, "expected ',' or '" + Token::getTokenSpelling(rightToken) + "'")) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Type Parsing //===----------------------------------------------------------------------===// /// Parse an arbitrary type. /// /// type ::= integer-type /// | index-type /// | float-type /// | other-type /// | vector-type /// | tensor-type /// | memref-type /// | function-type /// /// index-type ::= `index` /// float-type ::= `f16` | `bf16` | `f32` | `f64` /// other-type ::= `tf_control` /// Type Parser::parseType() { switch (getToken().getKind()) { default: return (emitError("expected type"), nullptr); case Token::kw_memref: return parseMemRefType(); case Token::kw_tensor: return parseTensorType(); case Token::kw_vector: return parseVectorType(); case Token::l_paren: return parseFunctionType(); // integer-type case Token::inttype: { auto width = getToken().getIntTypeBitwidth(); if (!width.hasValue()) return (emitError("invalid integer width"), nullptr); auto loc = getEncodedSourceLocation(getToken().getLoc()); consumeToken(Token::inttype); return IntegerType::getChecked(width.getValue(), builder.getContext(), loc); } // float-type case Token::kw_bf16: consumeToken(Token::kw_bf16); return builder.getBF16Type(); case Token::kw_f16: consumeToken(Token::kw_f16); return builder.getF16Type(); case Token::kw_f32: consumeToken(Token::kw_f32); return builder.getF32Type(); case Token::kw_f64: consumeToken(Token::kw_f64); return builder.getF64Type(); // index-type case Token::kw_index: consumeToken(Token::kw_index); return builder.getIndexType(); // other-type case Token::kw_tf_control: consumeToken(Token::kw_tf_control); return builder.getTFControlType(); case Token::kw_tf_resource: consumeToken(Token::kw_tf_resource); return builder.getTFResourceType(); case Token::kw_tf_variant: consumeToken(Token::kw_tf_variant); return builder.getTFVariantType(); case Token::kw_tf_complex64: consumeToken(Token::kw_tf_complex64); return builder.getTFComplex64Type(); case Token::kw_tf_complex128: consumeToken(Token::kw_tf_complex128); return builder.getTFComplex128Type(); case Token::kw_tf_string: consumeToken(Token::kw_tf_string); return builder.getTFStringType(); } } /// Parse a vector type. /// /// vector-type ::= `vector` `<` const-dimension-list primitive-type `>` /// const-dimension-list ::= (integer-literal `x`)+ /// VectorType Parser::parseVectorType() { consumeToken(Token::kw_vector); if (parseToken(Token::less, "expected '<' in vector type")) return nullptr; if (getToken().isNot(Token::integer)) return (emitError("expected dimension size in vector type"), nullptr); SmallVector dimensions; while (getToken().is(Token::integer)) { // Make sure this integer value is in bound and valid. auto dimension = getToken().getUnsignedIntegerValue(); if (!dimension.hasValue()) return (emitError("invalid dimension in vector type"), nullptr); dimensions.push_back((int)dimension.getValue()); consumeToken(Token::integer); // Make sure we have an 'x' or something like 'xbf32'. if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') return (emitError("expected 'x' in vector dimension list"), nullptr); // If we had a prefix of 'x', lex the next token immediately after the 'x'. if (getTokenSpelling().size() != 1) state.lex.resetPointer(getTokenSpelling().data() + 1); // Consume the 'x'. consumeToken(Token::bare_identifier); } // Parse the element type. auto typeLoc = getToken().getLoc(); auto elementType = parseType(); if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) return nullptr; return VectorType::getChecked(dimensions, elementType, getEncodedSourceLocation(typeLoc)); } /// Parse an 'x' token in a dimension list, handling the case where the x is /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next /// token. ParseResult Parser::parseXInDimensionList() { if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') return emitError("expected 'x' in dimension list"); // If we had a prefix of 'x', lex the next token immediately after the 'x'. if (getTokenSpelling().size() != 1) state.lex.resetPointer(getTokenSpelling().data() + 1); // Consume the 'x'. consumeToken(Token::bare_identifier); return ParseSuccess; } /// Parse a dimension list of a tensor or memref type. This populates the /// dimension list, returning -1 for the '?' dimensions. /// /// dimension-list-ranked ::= (dimension `x`)* /// dimension ::= `?` | integer-literal /// ParseResult Parser::parseDimensionListRanked(SmallVectorImpl &dimensions) { while (getToken().isAny(Token::integer, Token::question)) { if (consumeIf(Token::question)) { dimensions.push_back(-1); } else { // Make sure this integer value is in bound and valid. auto dimension = getToken().getUnsignedIntegerValue(); if (!dimension.hasValue() || (int)dimension.getValue() < 0) return emitError("invalid dimension"); dimensions.push_back((int)dimension.getValue()); consumeToken(Token::integer); } // Make sure we have an 'x' or something like 'xbf32'. if (parseXInDimensionList()) return ParseFailure; } return ParseSuccess; } /// Parse a tensor type. /// /// tensor-type ::= `tensor` `<` dimension-list element-type `>` /// dimension-list ::= dimension-list-ranked | `*x` /// Type Parser::parseTensorType() { consumeToken(Token::kw_tensor); if (parseToken(Token::less, "expected '<' in tensor type")) return nullptr; bool isUnranked; SmallVector dimensions; if (consumeIf(Token::star)) { // This is an unranked tensor type. isUnranked = true; if (parseXInDimensionList()) return nullptr; } else { isUnranked = false; if (parseDimensionListRanked(dimensions)) return nullptr; } // Parse the element type. auto typeLocation = getEncodedSourceLocation(getToken().getLoc()); auto elementType = parseType(); if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) return nullptr; if (isUnranked) return UnrankedTensorType::getChecked(elementType, typeLocation); return RankedTensorType::getChecked(dimensions, elementType, typeLocation); } /// Parse a memref type. /// /// memref-type ::= `memref` `<` dimension-list-ranked element-type /// (`,` semi-affine-map-composition)? (`,` memory-space)? `>` /// /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map /// memory-space ::= integer-literal /* | TODO: address-space-id */ /// Type Parser::parseMemRefType() { consumeToken(Token::kw_memref); if (parseToken(Token::less, "expected '<' in memref type")) return nullptr; SmallVector dimensions; if (parseDimensionListRanked(dimensions)) return nullptr; // Parse the element type. auto typeLoc = getToken().getLoc(); auto elementType = parseType(); if (!elementType) return nullptr; // Parse semi-affine-map-composition. SmallVector affineMapComposition; unsigned memorySpace = 0; bool parsedMemorySpace = false; auto parseElt = [&]() -> ParseResult { if (getToken().is(Token::integer)) { // Parse memory space. if (parsedMemorySpace) return emitError("multiple memory spaces specified in memref type"); auto v = getToken().getUnsignedIntegerValue(); if (!v.hasValue()) return emitError("invalid memory space in memref type"); memorySpace = v.getValue(); consumeToken(Token::integer); parsedMemorySpace = true; } else { // Parse affine map. if (parsedMemorySpace) return emitError("affine map after memory space in memref type"); auto affineMap = parseAffineMapReference(); if (!affineMap) return ParseFailure; affineMapComposition.push_back(affineMap); } return ParseSuccess; }; // Parse a list of mappings and address space if present. if (consumeIf(Token::comma)) { // Parse comma separated list of affine maps, followed by memory space. if (parseCommaSeparatedListUntil(Token::greater, parseElt, /*allowEmptyList=*/false)) { return nullptr; } } else { if (parseToken(Token::greater, "expected ',' or '>' in memref type")) return nullptr; } return MemRefType::getChecked(dimensions, elementType, affineMapComposition, memorySpace, getEncodedSourceLocation(typeLoc)); } /// Parse a function type. /// /// function-type ::= type-list-parens `->` type-list /// Type Parser::parseFunctionType() { assert(getToken().is(Token::l_paren)); SmallVector arguments, results; if (parseTypeList(arguments) || parseToken(Token::arrow, "expected '->' in function type") || parseTypeList(results)) return nullptr; return builder.getFunctionType(arguments, results); } /// Parse a list of types without an enclosing parenthesis. The list must have /// at least one member. /// /// type-list-no-parens ::= type (`,` type)* /// ParseResult Parser::parseTypeListNoParens(SmallVectorImpl &elements) { auto parseElt = [&]() -> ParseResult { auto elt = parseType(); elements.push_back(elt); return elt ? ParseSuccess : ParseFailure; }; return parseCommaSeparatedList(parseElt); } /// Parse a "type list", which is a singular type, or a parenthesized list of /// types. /// /// type-list ::= type-list-parens | type /// type-list-parens ::= `(` `)` /// | `(` type-list-no-parens `)` /// ParseResult Parser::parseTypeList(SmallVectorImpl &elements) { auto parseElt = [&]() -> ParseResult { auto elt = parseType(); elements.push_back(elt); return elt ? ParseSuccess : ParseFailure; }; // If there is no parens, then it must be a singular type. if (!consumeIf(Token::l_paren)) return parseElt(); if (parseCommaSeparatedListUntil(Token::r_paren, parseElt)) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Attribute parsing. //===----------------------------------------------------------------------===// namespace { class TensorLiteralParser { public: TensorLiteralParser(Parser &p, Type eltTy) : p(p), eltTy(eltTy), currBitPos(0) {} ParseResult parse() { return parseList(shape); } ArrayRef getValues() const { return {reinterpret_cast(storage.data()), storage.size() * 8}; } ArrayRef getShape() const { return shape; } private: /// Parse either a single element or a list of elements. Return the dimensions /// of the parsed sub-tensor in dims. ParseResult parseElementOrList(llvm::SmallVectorImpl &dims); /// Parse a list of either lists or elements, returning the dimensions of the /// parsed sub-tensors in dims. For example: /// parseList([1, 2, 3]) -> Success, [3] /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] /// parseList([[1, 2], 3]) -> Failure /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure ParseResult parseList(llvm::SmallVectorImpl &dims); void addToStorage(uint64_t value) { // Only tensors of integers or floats are supported. // FIXME: use full word to store BF16 as double because APFloat, which we // use to work with floats, does not have support for BF16 yet. size_t bitWidth = eltTy.isBF16() ? 64 : eltTy.getIntOrFloatBitWidth(); if (bitWidth == 64) storage.push_back(value); if (currBitPos + bitWidth > storage.size() * 64) storage.push_back(0L); auto *rawData = reinterpret_cast(storage.data()); DenseElementsAttr::writeBits(rawData, currBitPos, bitWidth, value); currBitPos += bitWidth; } Parser &p; Type eltTy; size_t currBitPos; SmallVector shape; std::vector storage; }; } // namespace /// Parse either a single element or a list of elements. Return the dimensions /// of the parsed sub-tensor in dims. ParseResult TensorLiteralParser::parseElementOrList(llvm::SmallVectorImpl &dims) { switch (p.getToken().getKind()) { case Token::l_square: return parseList(dims); case Token::floatliteral: case Token::integer: case Token::minus: { auto result = p.parseAttribute(eltTy); if (!result) return ParseResult::ParseFailure; // check result matches the element type. switch (eltTy.getKind()) { case Type::Kind::BF16: case Type::Kind::F16: case Type::Kind::F32: case Type::Kind::F64: { // Bitcast the APFloat value to APInt and store the bit representation. auto fpAttrResult = result.dyn_cast(); if (!fpAttrResult) return p.emitError( "expected tensor literal element with floating point type"); auto apInt = fpAttrResult.getValue().bitcastToAPInt(); // FIXME: using 64 bits and double semantics for BF16 because APFloat does // not support BF16 directly. size_t bitWidth = eltTy.isBF16() ? 64 : eltTy.getIntOrFloatBitWidth(); assert(apInt.getBitWidth() == bitWidth); (void)bitWidth; addToStorage(apInt.getRawData()[0]); break; } case Type::Kind::Integer: { if (!result.isa()) return p.emitError("expected tensor literal element has integer type"); auto value = result.cast().getValue(); auto bitWidth = eltTy.getIntOrFloatBitWidth(); if (value.getMinSignedBits() > bitWidth) return p.emitError("tensor literal element has more bits than that " "specified in the type"); addToStorage(value.getSExtValue()); break; } default: return p.emitError("expected integer or float tensor element"); } break; } default: return p.emitError("expected '[' or scalar constant inside tensor literal"); } return ParseSuccess; } /// Parse a list of either lists or elements, returning the dimensions of the /// parsed sub-tensors in dims. For example: /// parseList([1, 2, 3]) -> Success, [3] /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] /// parseList([[1, 2], 3]) -> Failure /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure ParseResult TensorLiteralParser::parseList(llvm::SmallVectorImpl &dims) { p.consumeToken(Token::l_square); auto checkDims = [&](const llvm::SmallVectorImpl &prevDims, const llvm::SmallVectorImpl &newDims) { if (prevDims == newDims) return ParseSuccess; return p.emitError("tensor literal is invalid; ranks are not consistent " "between elements"); }; bool first = true; llvm::SmallVector newDims; unsigned size = 0; auto parseCommaSeparatedList = [&]() { llvm::SmallVector thisDims; if (parseElementOrList(thisDims)) return ParseFailure; ++size; if (!first) return checkDims(newDims, thisDims); newDims = thisDims; first = false; return ParseSuccess; }; if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) return ParseFailure; // Return the sublists' dimensions with 'size' prepended. dims.clear(); dims.push_back(size); dims.insert(dims.end(), newDims.begin(), newDims.end()); return ParseSuccess; } /// Given a parsed reference to a function name like @foo and a type that it /// corresponds to, resolve it to a concrete function object (possibly /// synthesizing a forward reference) or emit an error and return null on /// failure. Function *Parser::resolveFunctionReference(StringRef nameStr, SMLoc nameLoc, FunctionType type) { Identifier name = builder.getIdentifier(nameStr.drop_front()); // See if the function has already been defined in the module. Function *function = getModule()->getNamedFunction(name); // If not, get or create a forward reference to one. if (!function) { auto &entry = state.functionForwardRefs[name]; if (!entry) entry = new ExtFunction(getEncodedSourceLocation(nameLoc), name, type, /*attrs=*/{}); function = entry; } if (function->getType() != type) return (emitError(nameLoc, "reference to function with mismatched type"), nullptr); return function; } /// Attribute parsing. /// /// attribute-value ::= bool-literal /// | integer-literal (`:` integer-type) /// | float-literal (`:` float-type) /// | string-literal /// | type /// | `[` (attribute-value (`,` attribute-value)*)? `]` /// | function-id `:` function-type /// | (`splat<` | `dense<`) (tensor-type | vector-type)`,` /// attribute-value `>` /// | `sparse<` (tensor-type | vector-type)`,` /// attribute-value`, ` attribute-value `>` /// Attribute Parser::parseAttribute(Type type) { switch (getToken().getKind()) { case Token::kw_true: consumeToken(Token::kw_true); return builder.getBoolAttr(true); case Token::kw_false: consumeToken(Token::kw_false); return builder.getBoolAttr(false); case Token::floatliteral: { auto val = getToken().getFloatingPointValue(); if (!val.hasValue()) return (emitError("floating point value too large for attribute"), nullptr); consumeToken(Token::floatliteral); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to F64 when no type is specified. type = builder.getF64Type(); } } if (!type.isa()) return (emitError("floating point value not valid for specified type"), nullptr); return builder.getFloatAttr(type, val.getValue()); } case Token::integer: { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)val.getValue() < 0) return (emitError("integer constant out of range for attribute"), nullptr); consumeToken(Token::integer); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to i64 if not type is specified. type = builder.getIntegerType(64); } } if (!type.isIntOrIndex()) return (emitError("integer value not valid for specified type"), nullptr); int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); APInt apInt(width, val.getValue()); if (apInt != *val) return emitError("integer constant out of range for attribute"), nullptr; return builder.getIntegerAttr(type, apInt); } case Token::minus: { consumeToken(Token::minus); if (getToken().is(Token::integer)) { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)-val.getValue() >= 0) return (emitError("integer constant out of range for attribute"), nullptr); consumeToken(Token::integer); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to i64 if not type is specified. type = builder.getIntegerType(64); } } if (!type.isIntOrIndex()) return (emitError("integer value not valid for type"), nullptr); int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); APInt apInt(width, *val, /*isSigned=*/true); if (apInt != *val) return (emitError("integer constant out of range for attribute"), nullptr); return builder.getIntegerAttr(type, -apInt); } if (getToken().is(Token::floatliteral)) { auto val = getToken().getFloatingPointValue(); if (!val.hasValue()) return (emitError("floating point value too large for attribute"), nullptr); consumeToken(Token::floatliteral); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to F32 when no type is specified. type = builder.getF32Type(); } } if (!type.isa()) return (emitError("floating point value not valid for type"), nullptr); return builder.getFloatAttr(type, -val.getValue()); } return (emitError("expected constant integer or floating point value"), nullptr); } case Token::string: { auto val = getToken().getStringValue(); consumeToken(Token::string); return builder.getStringAttr(val); } case Token::l_square: { consumeToken(Token::l_square); SmallVector elements; auto parseElt = [&]() -> ParseResult { elements.push_back(parseAttribute()); return elements.back() ? ParseSuccess : ParseFailure; }; if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) return nullptr; return builder.getArrayAttr(elements); } case Token::hash_identifier: case Token::l_paren: { // Try to parse an affine map or an integer set reference. AffineMap map; IntegerSet set; parseAffineStructureReference(&map, &set); if (map) return builder.getAffineMapAttr(map); if (set) return builder.getIntegerSetAttr(set); return (emitError("expected affine map or integer set attribute value"), nullptr); } case Token::at_identifier: { auto nameLoc = getToken().getLoc(); auto nameStr = getTokenSpelling(); consumeToken(Token::at_identifier); if (parseToken(Token::colon, "expected ':' and function type")) return nullptr; auto typeLoc = getToken().getLoc(); Type type = parseType(); if (!type) return nullptr; auto fnType = type.dyn_cast(); if (!fnType) return (emitError(typeLoc, "expected function type"), nullptr); auto *function = resolveFunctionReference(nameStr, nameLoc, fnType); return function ? builder.getFunctionAttr(function) : nullptr; } case Token::kw_opaque: { consumeToken(Token::kw_opaque); if (parseToken(Token::less, "expected '<' after 'opaque'")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; auto val = getToken().getStringValue(); if (val.size() < 2 || val[0] != '0' || val[1] != 'x') return (emitError("opaque string should start with '0x'"), nullptr); val = val.substr(2); if (!std::all_of(val.begin(), val.end(), [](char c) { return llvm::isHexDigit(c); })) { return (emitError("opaque string only contains hex digits"), nullptr); } consumeToken(Token::string); if (parseToken(Token::greater, "expected '>'")) return nullptr; return builder.getOpaqueElementsAttr(type, llvm::fromHex(val)); } case Token::kw_splat: { consumeToken(Token::kw_splat); if (parseToken(Token::less, "expected '<' after 'splat'")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; switch (getToken().getKind()) { case Token::floatliteral: case Token::integer: case Token::minus: { auto scalar = parseAttribute(type.getElementType()); if (parseToken(Token::greater, "expected '>'")) return nullptr; return builder.getSplatElementsAttr(type, scalar); } default: return (emitError("expected scalar constant inside tensor literal"), nullptr); } } case Token::kw_dense: { consumeToken(Token::kw_dense); if (parseToken(Token::less, "expected '<' after 'dense'")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; switch (getToken().getKind()) { case Token::l_square: { auto attr = parseDenseElementsAttr(type); if (!attr) return nullptr; if (parseToken(Token::greater, "expected '>'")) return nullptr; return attr; } default: return (emitError("expected '[' to start dense tensor literal"), nullptr); } } case Token::kw_sparse: { consumeToken(Token::kw_sparse); if (parseToken(Token::less, "Expected '<' after 'sparse'")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; switch (getToken().getKind()) { case Token::l_square: { /// Parse indices auto indicesEltType = builder.getIntegerType(32); auto indices = parseDenseElementsAttr(indicesEltType, type.isa()); if (parseToken(Token::comma, "expected ','")) return nullptr; /// Parse values. auto valuesEltType = type.getElementType(); auto values = parseDenseElementsAttr(valuesEltType, type.isa()); /// Sanity check. auto indicesType = indices.getType(); auto valuesType = values.getType(); auto sameShape = (indicesType.getRank() == 1) || (type.getRank() == indicesType.getDimSize(1)); auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); if (!sameShape || !sameElementNum) { std::string str; llvm::raw_string_ostream s(str); s << "expected shape (["; interleaveComma(type.getShape(), s); s << "]); inferred shape of indices literal (["; interleaveComma(indicesType.getShape(), s); s << "]); inferred shape of values literal (["; interleaveComma(valuesType.getShape(), s); s << "])"; return (emitError(s.str()), nullptr); } if (parseToken(Token::greater, "expected '>'")) return nullptr; // Build the sparse elements attribute by the indices and values. return builder.getSparseElementsAttr( type, indices.cast(), values); } default: return (emitError("expected '[' to start sparse tensor literal"), nullptr); } return (emitError("expected elements literal has a tensor or vector type"), nullptr); } default: { if (Type type = parseType()) return builder.getTypeAttr(type); return nullptr; } } } /// Dense elements attribute. /// /// dense-attr-list ::= `[` attribute-value `]` /// attribute-value ::= integer-literal /// | float-literal /// | `[` (attribute-value (`,` attribute-value)*)? `]` /// /// This method returns a constructed dense elements attribute with the shape /// from the parsing result. DenseElementsAttr Parser::parseDenseElementsAttr(Type eltType, bool isVector) { TensorLiteralParser literalParser(*this, eltType); if (literalParser.parse()) return nullptr; VectorOrTensorType type; if (isVector) { type = builder.getVectorType(literalParser.getShape(), eltType); } else { type = builder.getTensorType(literalParser.getShape(), eltType); } return builder.getDenseElementsAttr(type, literalParser.getValues()) .cast(); } /// Dense elements attribute. /// /// dense-attr-list ::= `[` attribute-value `]` /// attribute-value ::= integer-literal /// | float-literal /// | `[` (attribute-value (`,` attribute-value)*)? `]` /// /// This method compares the shapes from the parsing result and that from the /// input argument. It returns a constructed dense elements attribute if both /// match. DenseElementsAttr Parser::parseDenseElementsAttr(VectorOrTensorType type) { auto eltTy = type.getElementType(); TensorLiteralParser literalParser(*this, eltTy); if (literalParser.parse()) return nullptr; if (literalParser.getShape() != type.getShape()) { std::string str; llvm::raw_string_ostream s(str); s << "inferred shape of elements literal (["; interleaveComma(literalParser.getShape(), s); s << "]) does not match type (["; interleaveComma(type.getShape(), s); s << "])"; return (emitError(s.str()), nullptr); } return builder.getDenseElementsAttr(type, literalParser.getValues()) .cast(); } /// Vector or tensor type for elements attribute. /// /// vector-or-tensor-type ::= vector-type | tensor-type /// /// This method also checks the type has static shape and ranked. VectorOrTensorType Parser::parseVectorOrTensorType() { auto elementType = parseType(); if (!elementType) return nullptr; auto type = elementType.dyn_cast(); if (!type) { return (emitError("expected elements literal has a tensor or vector type"), nullptr); } if (parseToken(Token::comma, "expected ','")) return nullptr; if (!type.hasStaticShape() || type.getRank() == -1) { return (emitError("tensor literals must be ranked and have static shape"), nullptr); } return type; } /// Attribute dictionary. /// /// attribute-dict ::= `{` `}` /// | `{` attribute-entry (`,` attribute-entry)* `}` /// attribute-entry ::= bare-id `:` attribute-value /// ParseResult Parser::parseAttributeDict(SmallVectorImpl &attributes) { if (!consumeIf(Token::l_brace)) return ParseFailure; auto parseElt = [&]() -> ParseResult { // We allow keywords as attribute names. if (getToken().isNot(Token::bare_identifier, Token::inttype) && !getToken().isKeyword()) return emitError("expected attribute name"); auto nameId = builder.getIdentifier(getTokenSpelling()); consumeToken(); if (parseToken(Token::colon, "expected ':' in attribute list")) return ParseFailure; auto attr = parseAttribute(); if (!attr) return ParseFailure; attributes.push_back({nameId, attr}); return ParseSuccess; }; if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Polyhedral structures. //===----------------------------------------------------------------------===// /// Lower precedence ops (all at the same precedence level). LNoOp is false in /// the boolean sense. enum AffineLowPrecOp { /// Null value. LNoOp, Add, Sub }; /// Higher precedence ops - all at the same precedence level. HNoOp is false /// in the boolean sense. enum AffineHighPrecOp { /// Null value. HNoOp, Mul, FloorDiv, CeilDiv, Mod }; namespace { /// This is a specialized parser for affine structures (affine maps, affine /// expressions, and integer sets), maintaining the state transient to their /// bodies. class AffineParser : public Parser { public: explicit AffineParser(ParserState &state) : Parser(state) {} void parseAffineStructureInline(AffineMap *map, IntegerSet *set); AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); private: // Binary affine op parsing. AffineLowPrecOp consumeIfLowPrecOp(); AffineHighPrecOp consumeIfHighPrecOp(); // Identifier lists for polyhedral structures. ParseResult parseDimIdList(unsigned &numDims); ParseResult parseSymbolIdList(unsigned &numSymbols); ParseResult parseIdentifierDefinition(AffineExpr idExpr); AffineExpr parseAffineExpr(); AffineExpr parseParentheticalExpr(); AffineExpr parseNegateExpression(AffineExpr lhs); AffineExpr parseIntegerExpr(); AffineExpr parseBareIdExpr(); AffineExpr getBinaryAffineOpExpr(AffineHighPrecOp op, AffineExpr lhs, AffineExpr rhs, SMLoc opLoc); AffineExpr getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExpr lhs, AffineExpr rhs); AffineExpr parseAffineOperandExpr(AffineExpr lhs); AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, SMLoc llhsOpLoc); AffineExpr parseAffineConstraint(bool *isEq); private: SmallVector, 4> dimsAndSymbols; }; } // end anonymous namespace /// Create an affine binary high precedence op expression (mul's, div's, mod). /// opLoc is the location of the op token to be used to report errors /// for non-conforming expressions. AffineExpr AffineParser::getBinaryAffineOpExpr(AffineHighPrecOp op, AffineExpr lhs, AffineExpr rhs, SMLoc opLoc) { // TODO: make the error location info accurate. switch (op) { case Mul: if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: at least one of the multiply " "operands has to be either a constant or symbolic"); return nullptr; } return lhs * rhs; case FloorDiv: if (!rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: right operand of floordiv " "has to be either a constant or symbolic"); return nullptr; } return lhs.floorDiv(rhs); case CeilDiv: if (!rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: right operand of ceildiv " "has to be either a constant or symbolic"); return nullptr; } return lhs.ceilDiv(rhs); case Mod: if (!rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: right operand of mod " "has to be either a constant or symbolic"); return nullptr; } return lhs % rhs; case HNoOp: llvm_unreachable("can't create affine expression for null high prec op"); return nullptr; } } /// Create an affine binary low precedence op expression (add, sub). AffineExpr AffineParser::getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExpr lhs, AffineExpr rhs) { switch (op) { case AffineLowPrecOp::Add: return lhs + rhs; case AffineLowPrecOp::Sub: return lhs - rhs; case AffineLowPrecOp::LNoOp: llvm_unreachable("can't create affine expression for null low prec op"); return nullptr; } } /// Consume this token if it is a lower precedence affine op (there are only /// two precedence levels). AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { switch (getToken().getKind()) { case Token::plus: consumeToken(Token::plus); return AffineLowPrecOp::Add; case Token::minus: consumeToken(Token::minus); return AffineLowPrecOp::Sub; default: return AffineLowPrecOp::LNoOp; } } /// Consume this token if it is a higher precedence affine op (there are only /// two precedence levels) AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { switch (getToken().getKind()) { case Token::star: consumeToken(Token::star); return Mul; case Token::kw_floordiv: consumeToken(Token::kw_floordiv); return FloorDiv; case Token::kw_ceildiv: consumeToken(Token::kw_ceildiv); return CeilDiv; case Token::kw_mod: consumeToken(Token::kw_mod); return Mod; default: return HNoOp; } } /// Parse a high precedence op expression list: mul, div, and mod are high /// precedence binary ops, i.e., parse a /// expr_1 op_1 expr_2 op_2 ... expr_n /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). /// All affine binary ops are left associative. /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is /// null. llhsOpLoc is the location of the llhsOp token that will be used to /// report an error for non-conforming expressions. AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, SMLoc llhsOpLoc) { AffineExpr lhs = parseAffineOperandExpr(llhs); if (!lhs) return nullptr; // Found an LHS. Parse the remaining expression. auto opLoc = getToken().getLoc(); if (AffineHighPrecOp op = consumeIfHighPrecOp()) { if (llhs) { AffineExpr expr = getBinaryAffineOpExpr(llhsOp, llhs, lhs, opLoc); if (!expr) return nullptr; return parseAffineHighPrecOpExpr(expr, op, opLoc); } // No LLHS, get RHS return parseAffineHighPrecOpExpr(lhs, op, opLoc); } // This is the last operand in this expression. if (llhs) return getBinaryAffineOpExpr(llhsOp, llhs, lhs, llhsOpLoc); // No llhs, 'lhs' itself is the expression. return lhs; } /// Parse an affine expression inside parentheses. /// /// affine-expr ::= `(` affine-expr `)` AffineExpr AffineParser::parseParentheticalExpr() { if (parseToken(Token::l_paren, "expected '('")) return nullptr; if (getToken().is(Token::r_paren)) return (emitError("no expression inside parentheses"), nullptr); auto expr = parseAffineExpr(); if (!expr) return nullptr; if (parseToken(Token::r_paren, "expected ')'")) return nullptr; return expr; } /// Parse the negation expression. /// /// affine-expr ::= `-` affine-expr AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { if (parseToken(Token::minus, "expected '-'")) return nullptr; AffineExpr operand = parseAffineOperandExpr(lhs); // Since negation has the highest precedence of all ops (including high // precedence ops) but lower than parentheses, we are only going to use // parseAffineOperandExpr instead of parseAffineExpr here. if (!operand) // Extra error message although parseAffineOperandExpr would have // complained. Leads to a better diagnostic. return (emitError("missing operand of negation"), nullptr); return (-1) * operand; } /// Parse a bare id that may appear in an affine expression. /// /// affine-expr ::= bare-id AffineExpr AffineParser::parseBareIdExpr() { if (getToken().isNot(Token::bare_identifier)) return (emitError("expected bare identifier"), nullptr); StringRef sRef = getTokenSpelling(); for (auto entry : dimsAndSymbols) { if (entry.first == sRef) { consumeToken(Token::bare_identifier); return entry.second; } } return (emitError("use of undeclared identifier"), nullptr); } /// Parse a positive integral constant appearing in an affine expression. /// /// affine-expr ::= integer-literal AffineExpr AffineParser::parseIntegerExpr() { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)val.getValue() < 0) return (emitError("constant too large for index"), nullptr); consumeToken(Token::integer); return builder.getAffineConstantExpr((int64_t)val.getValue()); } /// Parses an expression that can be a valid operand of an affine expression. /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary /// operator, the rhs of which is being parsed. This is used to determine /// whether an error should be emitted for a missing right operand. // Eg: for an expression without parentheses (like i + j + k + l), each // of the four identifiers is an operand. For i + j*k + l, j*k is not an // operand expression, it's an op expression and will be parsed via // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and // -l are valid operands that will be parsed by this function. AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { switch (getToken().getKind()) { case Token::bare_identifier: return parseBareIdExpr(); case Token::integer: return parseIntegerExpr(); case Token::l_paren: return parseParentheticalExpr(); case Token::minus: return parseNegateExpression(lhs); case Token::kw_ceildiv: case Token::kw_floordiv: case Token::kw_mod: case Token::plus: case Token::star: if (lhs) emitError("missing right operand of binary operator"); else emitError("missing left operand of binary operator"); return nullptr; default: if (lhs) emitError("missing right operand of binary operator"); else emitError("expected affine expression"); return nullptr; } } /// Parse affine expressions that are bare-id's, integer constants, /// parenthetical affine expressions, and affine op expressions that are a /// composition of those. /// /// All binary op's associate from left to right. /// /// {add, sub} have lower precedence than {mul, div, and mod}. /// /// Add, sub'are themselves at the same precedence level. Mul, floordiv, /// ceildiv, and mod are at the same higher precedence level. Negation has /// higher precedence than any binary op. /// /// llhs: the affine expression appearing on the left of the one being parsed. /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned /// if llhs is non-null; otherwise lhs is returned. This is to deal with left /// associativity. /// /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp) { AffineExpr lhs; if (!(lhs = parseAffineOperandExpr(llhs))) return nullptr; // Found an LHS. Deal with the ops. if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { if (llhs) { AffineExpr sum = getBinaryAffineOpExpr(llhsOp, llhs, lhs); return parseAffineLowPrecOpExpr(sum, lOp); } // No LLHS, get RHS and form the expression. return parseAffineLowPrecOpExpr(lhs, lOp); } auto opLoc = getToken().getLoc(); if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { // We have a higher precedence op here. Get the rhs operand for the llhs // through parseAffineHighPrecOpExpr. AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); if (!highRes) return nullptr; // If llhs is null, the product forms the first operand of the yet to be // found expression. If non-null, the op to associate with llhs is llhsOp. AffineExpr expr = llhs ? getBinaryAffineOpExpr(llhsOp, llhs, highRes) : highRes; // Recurse for subsequent low prec op's after the affine high prec op // expression. if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) return parseAffineLowPrecOpExpr(expr, nextOp); return expr; } // Last operand in the expression list. if (llhs) return getBinaryAffineOpExpr(llhsOp, llhs, lhs); // No llhs, 'lhs' itself is the expression. return lhs; } /// Parse an affine expression. /// affine-expr ::= `(` affine-expr `)` /// | `-` affine-expr /// | affine-expr `+` affine-expr /// | affine-expr `-` affine-expr /// | affine-expr `*` affine-expr /// | affine-expr `floordiv` affine-expr /// | affine-expr `ceildiv` affine-expr /// | affine-expr `mod` affine-expr /// | bare-id /// | integer-literal /// /// Additional conditions are checked depending on the production. For eg., /// one of the operands for `*` has to be either constant/symbolic; the second /// operand for floordiv, ceildiv, and mod has to be a positive integer. AffineExpr AffineParser::parseAffineExpr() { return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); } /// Parse a dim or symbol from the lists appearing before the actual /// expressions of the affine map. Update our state to store the /// dimensional/symbolic identifier. ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { if (getToken().isNot(Token::bare_identifier)) return emitError("expected bare identifier"); auto name = getTokenSpelling(); for (auto entry : dimsAndSymbols) { if (entry.first == name) return emitError("redefinition of identifier '" + Twine(name) + "'"); } consumeToken(Token::bare_identifier); dimsAndSymbols.push_back({name, idExpr}); return ParseSuccess; } /// Parse the list of symbolic identifiers to an affine map. ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { consumeToken(Token::l_square); auto parseElt = [&]() -> ParseResult { auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); return parseIdentifierDefinition(symbol); }; return parseCommaSeparatedListUntil(Token::r_square, parseElt); } /// Parse the list of dimensional identifiers to an affine map. ParseResult AffineParser::parseDimIdList(unsigned &numDims) { if (parseToken(Token::l_paren, "expected '(' at start of dimensional identifiers list")) return ParseFailure; auto parseElt = [&]() -> ParseResult { auto dimension = getAffineDimExpr(numDims++, getContext()); return parseIdentifierDefinition(dimension); }; return parseCommaSeparatedListUntil(Token::r_paren, parseElt); } /// Parses either an affine map or an integer set definition inline. If both /// 'map' and 'set' are non-null, parses either an affine map or an integer set. /// If 'map' is set to nullptr, parses an integer set. If 'set' is set to /// nullptr, parses an affine map. 'map'/'set' are set to the parsed structure. /// /// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr /// (`size` `(` dim-size (`,` dim-size)* `)`)? /// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)` /// /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) /// /// /// integer-set-inline /// ::= dim-and-symbol-id-lists `:` /// affine-constraint-conjunction /// affine-constraint-conjunction ::= /*empty*/ /// | affine-constraint (`,` /// affine-constraint)* /// void AffineParser::parseAffineStructureInline(AffineMap *map, IntegerSet *set) { assert((map || set) && "one of map or set expected to be non-null"); unsigned numDims = 0, numSymbols = 0; // List of dimensional identifiers. if (parseDimIdList(numDims)) { if (map) *map = AffineMap::Null(); if (set) *set = IntegerSet::Null(); return; } // Symbols are optional. if (getToken().is(Token::l_square)) { if (parseSymbolIdList(numSymbols)) { if (map) *map = AffineMap::Null(); if (set) *set = IntegerSet::Null(); return; } } // This is needed for parsing attributes as we wouldn't know whether we would // be parsing an integer set attribute or an affine map attribute. if (map && set && getToken().isNot(Token::arrow) && getToken().isNot(Token::colon)) { emitError("expected '->' or ':' or '['"); *map = AffineMap::Null(); *set = IntegerSet::Null(); return; } if (map && (!set || getToken().is(Token::arrow))) { // Parse an affine map. if (parseToken(Token::arrow, "expected '->' or '['")) { *map = AffineMap::Null(); if (set) *set = IntegerSet::Null(); return; } *map = parseAffineMapRange(numDims, numSymbols); if (set) *set = IntegerSet::Null(); return; } if (set && (!map || getToken().is(Token::colon))) { // Parse an integer set. if (parseToken(Token::colon, "expected ':' or '['")) { *set = IntegerSet::Null(); if (map) *map = AffineMap::Null(); return; } *set = parseIntegerSetConstraints(numDims, numSymbols); if (map) *map = AffineMap::Null(); return; } } /// Parse the range and sizes affine map definition inline. /// /// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr /// (`size` `(` dim-size (`,` dim-size)* `)`)? /// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)` /// /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) AffineMap AffineParser::parseAffineMapRange(unsigned numDims, unsigned numSymbols) { parseToken(Token::l_paren, "expected '(' at start of affine map range"); SmallVector exprs; auto parseElt = [&]() -> ParseResult { auto elt = parseAffineExpr(); ParseResult res = elt ? ParseSuccess : ParseFailure; exprs.push_back(elt); return res; }; // Parse a multi-dimensional affine expression (a comma-separated list of // 1-d affine expressions); the list cannot be empty. Grammar: // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, false)) return AffineMap::Null(); // Parse optional range sizes. // range-sizes ::= (`size` `(` dim-size (`,` dim-size)* `)`)? // dim-size ::= affine-expr | `min` `(` affine-expr (`,` affine-expr)+ `)` // TODO(bondhugula): support for min of several affine expressions. // TODO: check if sizes are non-negative whenever they are constant. SmallVector rangeSizes; if (consumeIf(Token::kw_size)) { // Location of the l_paren token (if it exists) for error reporting later. auto loc = getToken().getLoc(); if (parseToken(Token::l_paren, "expected '(' at start of affine map range")) return AffineMap::Null(); auto parseRangeSize = [&]() -> ParseResult { auto loc = getToken().getLoc(); auto elt = parseAffineExpr(); if (!elt) return ParseFailure; if (!elt.isSymbolicOrConstant()) return emitError(loc, "size expressions cannot refer to dimension values"); rangeSizes.push_back(elt); return ParseSuccess; }; if (parseCommaSeparatedListUntil(Token::r_paren, parseRangeSize, false)) return AffineMap::Null(); if (exprs.size() > rangeSizes.size()) return (emitError(loc, "fewer range sizes than range expressions"), AffineMap::Null()); if (exprs.size() < rangeSizes.size()) return (emitError(loc, "more range sizes than range expressions"), AffineMap::Null()); } // Parsed a valid affine map. return builder.getAffineMap(numDims, numSymbols, exprs, rangeSizes); } void Parser::parseAffineStructureInline(AffineMap *map, IntegerSet *set) { AffineParser(state).parseAffineStructureInline(map, set); } AffineMap Parser::parseAffineMapInline() { AffineMap map; AffineParser(state).parseAffineStructureInline(&map, nullptr); return map; } /// Parse either an affine map reference or integer set reference. /// /// affine-structure ::= affine-structure-id | affine-structure-inline /// affine-structure-id ::= `#` suffix-id /// /// affine-structure ::= affine-map | integer-set /// void Parser::parseAffineStructureReference(AffineMap *map, IntegerSet *set) { assert((map || set) && "both map and set are non-null"); if (getToken().isNot(Token::hash_identifier)) { // Try to parse inline affine map or integer set. return parseAffineStructureInline(map, set); } // Parse affine map / integer set identifier and verify that it exists. // Note that an id can't be in both affineMapDefinitions and // integerSetDefinitions since they use the same sigil '#'. StringRef affineStructId = getTokenSpelling().drop_front(); if (getState().affineMapDefinitions.count(affineStructId) > 0) { consumeToken(Token::hash_identifier); if (map) *map = getState().affineMapDefinitions[affineStructId]; if (set) *set = IntegerSet::Null(); return; } if (getState().integerSetDefinitions.count(affineStructId) > 0) { consumeToken(Token::hash_identifier); if (set) *set = getState().integerSetDefinitions[affineStructId]; if (map) *map = AffineMap::Null(); return; } // The id isn't among any of the recorded definitions. // Emit the right message depending on what the caller expected. if (map && !set) emitError("undefined affine map id '" + affineStructId + "'"); else if (set && !map) emitError("undefined integer set id '" + affineStructId + "'"); else if (set && map) emitError("undefined affine map or integer set id '" + affineStructId + "'"); if (map) *map = AffineMap::Null(); if (set) *set = IntegerSet::Null(); } /// Parse a reference to an integer set. /// affine-map ::= affine-map-id | affine-map-inline /// affine-map-id ::= `#` suffix-id /// AffineMap Parser::parseAffineMapReference() { AffineMap map; parseAffineStructureReference(&map, nullptr); return map; } /// Parse a reference to an integer set. /// integer-set ::= integer-set-id | integer-set-inline /// integer-set-id ::= `#` suffix-id /// IntegerSet Parser::parseIntegerSetReference() { IntegerSet set; parseAffineStructureReference(nullptr, &set); return set; } //===----------------------------------------------------------------------===// // FunctionParser //===----------------------------------------------------------------------===// namespace { /// This class contains parser state that is common across CFG and ML /// functions, notably for dealing with operations and SSA values. class FunctionParser : public Parser { public: enum class Kind { CFGFunc, MLFunc }; Kind getKind() const { return kind; } /// After the function is finished parsing, this function checks to see if /// there are any remaining issues. ParseResult finalizeFunction(Function *func, SMLoc loc); /// This represents a use of an SSA value in the program. The first two /// entries in the tuple are the name and result number of a reference. The /// third is the location of the reference, which is used in case this ends /// up being a use of an undefined value. struct SSAUseInfo { StringRef name; // Value name, e.g. %42 or %abc unsigned number; // Number, specified with #12 SMLoc loc; // Location of first definition or use. }; /// Given a reference to an SSA value and its type, return a reference. This /// returns null on failure. SSAValue *resolveSSAUse(SSAUseInfo useInfo, Type type); /// Register a definition of a value with the symbol table. ParseResult addDefinition(SSAUseInfo useInfo, SSAValue *value); // SSA parsing productions. ParseResult parseSSAUse(SSAUseInfo &result); ParseResult parseOptionalSSAUseList(SmallVectorImpl &results); template ResultType parseSSADefOrUseAndType( const std::function &action); SSAValue *parseSSAUseAndType() { return parseSSADefOrUseAndType( [&](SSAUseInfo useInfo, Type type) -> SSAValue * { return resolveSSAUse(useInfo, type); }); } template ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl &results); // Operations ParseResult parseOperation(const CreateOperationFunction &createOpFunc); Operation *parseVerboseOperation(const CreateOperationFunction &createOpFunc); Operation *parseCustomOperation(const CreateOperationFunction &createOpFunc); /// Parse a single operation successor and it's operand list. virtual bool parseSuccessorAndUseList(BasicBlock *&dest, SmallVectorImpl &operands) = 0; protected: FunctionParser(ParserState &state, Kind kind) : Parser(state), kind(kind) {} virtual ~FunctionParser(); private: /// Kind indicates if this is CFG or ML function parser. Kind kind; /// This keeps track of all of the SSA values we are tracking, indexed by /// their name. This has one entry per result number. llvm::StringMap, 1>> values; /// These are all of the placeholders we've made along with the location of /// their first reference, to allow checking for use of undefined values. DenseMap forwardReferencePlaceholders; SSAValue *createForwardReferencePlaceholder(SMLoc loc, Type type); /// Return true if this is a forward reference. bool isForwardReferencePlaceholder(SSAValue *value) { return forwardReferencePlaceholders.count(value); } }; } // end anonymous namespace /// Create and remember a new placeholder for a forward reference. SSAValue *FunctionParser::createForwardReferencePlaceholder(SMLoc loc, Type type) { // Forward references are always created as instructions, even in ML // functions, because we just need something with a def/use chain. // // We create these placeholders as having an empty name, which we know // cannot be created through normal user input, allowing us to distinguish // them. auto name = OperationName("placeholder", getContext()); auto *inst = Instruction::create(getEncodedSourceLocation(loc), name, /*operands=*/{}, type, /*attributes=*/{}, /*successors=*/{}, getContext()); forwardReferencePlaceholders[inst->getResult(0)] = loc; return inst->getResult(0); } /// Given an unbound reference to an SSA value and its type, return the value /// it specifies. This returns null on failure. SSAValue *FunctionParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { auto &entries = values[useInfo.name]; // If we have already seen a value of this name, return it. if (useInfo.number < entries.size() && entries[useInfo.number].first) { auto *result = entries[useInfo.number].first; // Check that the type matches the other uses. if (result->getType() == type) return result; emitError(useInfo.loc, "use of value '" + useInfo.name.str() + "' expects different type than prior uses"); emitError(entries[useInfo.number].second, "prior use here"); return nullptr; } // Make sure we have enough slots for this. if (entries.size() <= useInfo.number) entries.resize(useInfo.number + 1); // If the value has already been defined and this is an overly large result // number, diagnose that. if (entries[0].first && !isForwardReferencePlaceholder(entries[0].first)) return (emitError(useInfo.loc, "reference to invalid result number"), nullptr); // Otherwise, this is a forward reference. If we are in ML function return // an error. In CFG function, create a placeholder and remember // that we did so. if (getKind() == Kind::MLFunc) return ( emitError(useInfo.loc, "use of undefined SSA value " + useInfo.name), nullptr); auto *result = createForwardReferencePlaceholder(useInfo.loc, type); entries[useInfo.number].first = result; entries[useInfo.number].second = useInfo.loc; return result; } /// Register a definition of a value with the symbol table. ParseResult FunctionParser::addDefinition(SSAUseInfo useInfo, SSAValue *value) { auto &entries = values[useInfo.name]; // Make sure there is a slot for this value. if (entries.size() <= useInfo.number) entries.resize(useInfo.number + 1); // If we already have an entry for this, check to see if it was a definition // or a forward reference. if (auto *existing = entries[useInfo.number].first) { if (!isForwardReferencePlaceholder(existing)) { emitError(useInfo.loc, "redefinition of SSA value '" + useInfo.name + "'"); return emitError(entries[useInfo.number].second, "previously defined here"); } // If it was a forward reference, update everything that used it to use // the actual definition instead, delete the forward ref, and remove it // from our set of forward references we track. existing->replaceAllUsesWith(value); existing->getDefiningInst()->destroy(); forwardReferencePlaceholders.erase(existing); } entries[useInfo.number].first = value; entries[useInfo.number].second = useInfo.loc; return ParseSuccess; } /// After the function is finished parsing, this function checks to see if /// there are any remaining issues. ParseResult FunctionParser::finalizeFunction(Function *func, SMLoc loc) { // Check for any forward references that are left. If we find any, error // out. if (!forwardReferencePlaceholders.empty()) { SmallVector, 4> errors; // Iteration over the map isn't deterministic, so sort by source location. for (auto entry : forwardReferencePlaceholders) errors.push_back({entry.second.getPointer(), entry.first}); llvm::array_pod_sort(errors.begin(), errors.end()); for (auto entry : errors) { auto loc = SMLoc::getFromPointer(entry.first); emitError(loc, "use of undeclared SSA value name"); } return ParseFailure; } return ParseSuccess; } FunctionParser::~FunctionParser() { for (auto &fwd : forwardReferencePlaceholders) { // Drop all uses of undefined forward declared reference and destroy // defining instruction. for (auto &use : fwd.first->getUses()) use.drop(); fwd.first->getDefiningInst()->destroy(); } } /// Parse a SSA operand for an instruction or statement. /// /// ssa-use ::= ssa-id /// ParseResult FunctionParser::parseSSAUse(SSAUseInfo &result) { result.name = getTokenSpelling(); result.number = 0; result.loc = getToken().getLoc(); if (parseToken(Token::percent_identifier, "expected SSA operand")) return ParseFailure; // If we have an affine map ID, it is a result number. if (getToken().is(Token::hash_identifier)) { if (auto value = getToken().getHashIdentifierNumber()) result.number = value.getValue(); else return emitError("invalid SSA value result number"); consumeToken(Token::hash_identifier); } return ParseSuccess; } /// Parse a (possibly empty) list of SSA operands. /// /// ssa-use-list ::= ssa-use (`,` ssa-use)* /// ssa-use-list-opt ::= ssa-use-list? /// ParseResult FunctionParser::parseOptionalSSAUseList(SmallVectorImpl &results) { if (getToken().isNot(Token::percent_identifier)) return ParseSuccess; return parseCommaSeparatedList([&]() -> ParseResult { SSAUseInfo result; if (parseSSAUse(result)) return ParseFailure; results.push_back(result); return ParseSuccess; }); } /// Parse an SSA use with an associated type. /// /// ssa-use-and-type ::= ssa-use `:` type template ResultType FunctionParser::parseSSADefOrUseAndType( const std::function &action) { SSAUseInfo useInfo; if (parseSSAUse(useInfo) || parseToken(Token::colon, "expected ':' and type for SSA operand")) return nullptr; auto type = parseType(); if (!type) return nullptr; return action(useInfo, type); } /// Parse a (possibly empty) list of SSA operands, followed by a colon, then /// followed by a type list. /// /// ssa-use-and-type-list /// ::= ssa-use-list ':' type-list-no-parens /// template ParseResult FunctionParser::parseOptionalSSAUseAndTypeList( SmallVectorImpl &results) { SmallVector valueIDs; if (parseOptionalSSAUseList(valueIDs)) return ParseFailure; // If there were no operands, then there is no colon or type lists. if (valueIDs.empty()) return ParseSuccess; SmallVector types; if (parseToken(Token::colon, "expected ':' in operand list") || parseTypeListNoParens(types)) return ParseFailure; if (valueIDs.size() != types.size()) return emitError("expected " + Twine(valueIDs.size()) + " types to match operand list"); results.reserve(valueIDs.size()); for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { if (auto *value = resolveSSAUse(valueIDs[i], types[i])) results.push_back(cast(value)); else return ParseFailure; } return ParseSuccess; } /// Parse the CFG or MLFunc operation. /// /// operation ::= /// (ssa-id `=`)? string '(' ssa-use-list? ')' attribute-dict? /// `:` function-type /// ParseResult FunctionParser::parseOperation(const CreateOperationFunction &createOpFunc) { auto loc = getToken().getLoc(); StringRef resultID; if (getToken().is(Token::percent_identifier)) { resultID = getTokenSpelling(); consumeToken(Token::percent_identifier); if (parseToken(Token::equal, "expected '=' after SSA name")) return ParseFailure; } Operation *op; if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) op = parseCustomOperation(createOpFunc); else if (getToken().is(Token::string)) op = parseVerboseOperation(createOpFunc); else return emitError("expected operation name in quotes"); // If parsing of the basic operation failed, then this whole thing fails. if (!op) return ParseFailure; // We just parsed an operation. If it is a recognized one, verify that it // is structurally as we expect. If not, produce an error with a reasonable // source location. if (auto *opInfo = op->getAbstractOperation()) { // We don't wan't to verify branching terminators at this time because // the successors may not have been fully parsed yet. if (!(op->isTerminator() && op->getNumSuccessors() != 0) && opInfo->verifyInvariants(op)) return ParseFailure; } // If the instruction had a name, register it. if (!resultID.empty()) { if (op->getNumResults() == 0) return emitError(loc, "cannot name an operation with no results"); for (unsigned i = 0, e = op->getNumResults(); i != e; ++i) if (addDefinition({resultID, i, loc}, op->getResult(i))) return ParseFailure; } return ParseSuccess; } Operation *FunctionParser::parseVerboseOperation( const CreateOperationFunction &createOpFunc) { // Get location information for the operation. auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); auto name = getToken().getStringValue(); if (name.empty()) return (emitError("empty operation name is invalid"), nullptr); if (name.find('\0') != StringRef::npos) return (emitError("null character not allowed in operation name"), nullptr); consumeToken(Token::string); OperationState result(builder.getContext(), srcLocation, name); // Parse the operand list. SmallVector operandInfos; if (parseToken(Token::l_paren, "expected '(' to start operand list") || parseOptionalSSAUseList(operandInfos) || parseToken(Token::r_paren, "expected ')' to end operand list")) { return nullptr; } if (getToken().is(Token::l_brace)) { if (parseAttributeDict(result.attributes)) return nullptr; } if (parseToken(Token::colon, "expected ':' followed by instruction type")) return nullptr; auto typeLoc = getToken().getLoc(); auto type = parseType(); if (!type) return nullptr; auto fnType = type.dyn_cast(); if (!fnType) return (emitError(typeLoc, "expected function type"), nullptr); result.addTypes(fnType.getResults()); // Check that we have the right number of types for the operands. auto operandTypes = fnType.getInputs(); if (operandTypes.size() != operandInfos.size()) { auto plural = "s"[operandInfos.size() == 1]; return (emitError(typeLoc, "expected " + llvm::utostr(operandInfos.size()) + " operand type" + plural + " but had " + llvm::utostr(operandTypes.size())), nullptr); } // Resolve all of the operands. for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); if (!result.operands.back()) return nullptr; } return createOpFunc(result); } namespace { class CustomOpAsmParser : public OpAsmParser { public: CustomOpAsmParser(SMLoc nameLoc, StringRef opName, FunctionParser &parser) : nameLoc(nameLoc), opName(opName), parser(parser) {} //===--------------------------------------------------------------------===// // High level parsing methods. //===--------------------------------------------------------------------===// bool getCurrentLocation(llvm::SMLoc *loc) override { *loc = parser.getToken().getLoc(); return false; } bool parseComma() override { return parser.parseToken(Token::comma, "expected ','"); } bool parseType(Type &result) override { return !(result = parser.parseType()); } bool parseColonType(Type &result) override { return parser.parseToken(Token::colon, "expected ':'") || !(result = parser.parseType()); } bool parseColonTypeList(SmallVectorImpl &result) override { if (parser.parseToken(Token::colon, "expected ':'")) return true; do { if (auto type = parser.parseType()) result.push_back(type); else return true; } while (parser.consumeIf(Token::comma)); return false; } bool parseTrailingOperandList(SmallVectorImpl &result, int requiredOperandCount, Delimiter delimiter) override { if (parser.getToken().is(Token::comma)) { parseComma(); return parseOperandList(result, requiredOperandCount, delimiter); } if (requiredOperandCount != -1) return emitError(parser.getToken().getLoc(), "expected " + Twine(requiredOperandCount) + " operands"); return false; } /// Parse a keyword followed by a type. bool parseKeywordType(const char *keyword, Type &result) override { if (parser.getTokenSpelling() != keyword) return parser.emitError("expected '" + Twine(keyword) + "'"); parser.consumeToken(); return !(result = parser.parseType()); } /// Parse an arbitrary attribute of a given type and return it in result. This /// also adds the attribute to the specified attribute list with the specified /// name. bool parseAttribute(Attribute &result, Type type, const char *attrName, SmallVectorImpl &attrs) override { result = parser.parseAttribute(type); if (!result) return true; attrs.push_back( NamedAttribute(parser.builder.getIdentifier(attrName), result)); return false; } /// Parse an arbitrary attribute and return it in result. This also adds /// the attribute to the specified attribute list with the specified name. bool parseAttribute(Attribute &result, const char *attrName, SmallVectorImpl &attrs) override { return parseAttribute(result, Type(), attrName, attrs); } /// If a named attribute list is present, parse is into result. bool parseOptionalAttributeDict(SmallVectorImpl &result) override { if (parser.getToken().isNot(Token::l_brace)) return false; return parser.parseAttributeDict(result) == ParseFailure; } /// Parse a function name like '@foo' and return the name in a form that can /// be passed to resolveFunctionName when a function type is available. virtual bool parseFunctionName(StringRef &result, llvm::SMLoc &loc) { loc = parser.getToken().getLoc(); if (parser.getToken().isNot(Token::at_identifier)) return emitError(loc, "expected function name"); result = parser.getTokenSpelling(); parser.consumeToken(Token::at_identifier); return false; } bool parseOperand(OperandType &result) override { FunctionParser::SSAUseInfo useInfo; if (parser.parseSSAUse(useInfo)) return true; result = {useInfo.loc, useInfo.name, useInfo.number}; return false; } bool parseSuccessorAndUseList(BasicBlock *&dest, SmallVectorImpl &operands) override { // Defer successor parsing to the function parsers. return parser.parseSuccessorAndUseList(dest, operands); } bool parseOperandList(SmallVectorImpl &result, int requiredOperandCount = -1, Delimiter delimiter = Delimiter::None) override { auto startLoc = parser.getToken().getLoc(); // Handle delimiters. switch (delimiter) { case Delimiter::None: // Don't check for the absence of a delimiter if the number of operands // is unknown (and hence the operand list could be empty). if (requiredOperandCount == -1) break; // Token already matches an identifier and so can't be a delimiter. if (parser.getToken().is(Token::percent_identifier)) break; // Test against known delimiters. if (parser.getToken().is(Token::l_paren) || parser.getToken().is(Token::l_square)) return emitError(startLoc, "unexpected delimiter"); return emitError(startLoc, "invalid operand"); case Delimiter::OptionalParen: if (parser.getToken().isNot(Token::l_paren)) return false; LLVM_FALLTHROUGH; case Delimiter::Paren: if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) return true; break; case Delimiter::OptionalSquare: if (parser.getToken().isNot(Token::l_square)) return false; LLVM_FALLTHROUGH; case Delimiter::Square: if (parser.parseToken(Token::l_square, "expected '[' in operand list")) return true; break; } // Check for zero operands. if (parser.getToken().is(Token::percent_identifier)) { do { OperandType operand; if (parseOperand(operand)) return true; result.push_back(operand); } while (parser.consumeIf(Token::comma)); } // Handle delimiters. If we reach here, the optional delimiters were // present, so we need to parse their closing one. switch (delimiter) { case Delimiter::None: break; case Delimiter::OptionalParen: case Delimiter::Paren: if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) return true; break; case Delimiter::OptionalSquare: case Delimiter::Square: if (parser.parseToken(Token::r_square, "expected ']' in operand list")) return true; break; } if (requiredOperandCount != -1 && result.size() != requiredOperandCount) return emitError(startLoc, "expected " + Twine(requiredOperandCount) + " operands"); return false; } /// Resolve a parse function name and a type into a function reference. virtual bool resolveFunctionName(StringRef name, FunctionType type, llvm::SMLoc loc, Function *&result) { result = parser.resolveFunctionReference(name, loc, type); return result == nullptr; } //===--------------------------------------------------------------------===// // Methods for interacting with the parser //===--------------------------------------------------------------------===// Builder &getBuilder() const override { return parser.builder; } llvm::SMLoc getNameLoc() const override { return nameLoc; } bool resolveOperand(const OperandType &operand, Type type, SmallVectorImpl &result) override { FunctionParser::SSAUseInfo operandInfo = {operand.name, operand.number, operand.location}; if (auto *value = parser.resolveSSAUse(operandInfo, type)) { result.push_back(value); return false; } return true; } /// Emit a diagnostic at the specified location and return true. bool emitError(llvm::SMLoc loc, const Twine &message) override { parser.emitError(loc, "custom op '" + Twine(opName) + "' " + message); emittedError = true; return true; } bool didEmitError() const { return emittedError; } private: SMLoc nameLoc; StringRef opName; FunctionParser &parser; bool emittedError = false; }; } // end anonymous namespace. Operation *FunctionParser::parseCustomOperation( const CreateOperationFunction &createOpFunc) { auto opLoc = getToken().getLoc(); auto opName = getTokenSpelling(); CustomOpAsmParser opAsmParser(opLoc, opName, *this); auto *opDefinition = AbstractOperation::lookup(opName, getContext()); if (!opDefinition) { opAsmParser.emitError(opLoc, "is unknown"); return nullptr; } consumeToken(); // If the custom op parser crashes, produce some indication to help // debugging. std::string opNameStr = opName.str(); llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", opNameStr.c_str()); // Get location information for the operation. auto srcLocation = getEncodedSourceLocation(opLoc); // Have the op implementation take a crack and parsing this. OperationState opState(builder.getContext(), srcLocation, opName); if (opDefinition->parseAssembly(&opAsmParser, &opState)) return nullptr; // If it emitted an error, we failed. if (opAsmParser.didEmitError()) return nullptr; // Otherwise, we succeeded. Use the state it parsed as our op information. return createOpFunc(opState); } //===----------------------------------------------------------------------===// // CFG Functions //===----------------------------------------------------------------------===// namespace { /// This is a specialized parser for CFGFunction's, maintaining the state /// transient to their bodies. class CFGFunctionParser : public FunctionParser { public: CFGFunctionParser(ParserState &state, CFGFunction *function) : FunctionParser(state, Kind::CFGFunc), function(function), builder(function) {} ParseResult parseFunctionBody(); bool parseSuccessorAndUseList(BasicBlock *&dest, SmallVectorImpl &operands); private: CFGFunction *function; llvm::StringMap> blocksByName; DenseMap forwardRef; /// This builder intentionally shadows the builder in the base class, with a /// more specific builder type. CFGFuncBuilder builder; /// Get the basic block with the specified name, creating it if it doesn't /// already exist. The location specified is the point of use, which allows /// us to diagnose references to blocks that are not defined precisely. BasicBlock *getBlockNamed(StringRef name, SMLoc loc) { auto &blockAndLoc = blocksByName[name]; if (!blockAndLoc.first) { blockAndLoc.first = new BasicBlock(); forwardRef[blockAndLoc.first] = loc; function->push_back(blockAndLoc.first); blockAndLoc.second = loc; } return blockAndLoc.first; } // Define the basic block with the specified name. Returns the BasicBlock* or // nullptr in the case of redefinition. BasicBlock *defineBlockNamed(StringRef name, SMLoc loc) { auto &blockAndLoc = blocksByName[name]; if (!blockAndLoc.first) { blockAndLoc.first = builder.createBlock(); blockAndLoc.second = loc; return blockAndLoc.first; } // Forward declarations are removed once defined, so if we are defining a // existing block and it is not a forward declaration, then it is a // redeclaration. if (!forwardRef.erase(blockAndLoc.first)) return nullptr; // Move the block to the end of the function. Forward ref'd blocks are // inserted wherever they happen to be referenced. function->getBlocks().splice(function->end(), function->getBlocks(), blockAndLoc.first); return blockAndLoc.first; } ParseResult parseOptionalBasicBlockArgList(SmallVectorImpl &results, BasicBlock *owner); ParseResult parseBasicBlock(); }; } // end anonymous namespace /// Parse a single operation successor and it's operand list. /// /// successor ::= bb-id branch-use-list? /// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)` /// bool CFGFunctionParser::parseSuccessorAndUseList( BasicBlock *&dest, SmallVectorImpl &operands) { // Verify branch is identifier and get the matching block. if (!getToken().is(Token::bare_identifier)) return emitError("expected basic block name"); dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); consumeToken(); // Handle optional arguments. if (consumeIf(Token::l_paren) && (parseOptionalSSAUseAndTypeList(operands) || parseToken(Token::r_paren, "expected ')' to close argument list"))) { return true; } return false; } /// Parse a (possibly empty) list of SSA operands with types as basic block /// arguments. /// /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* /// ParseResult CFGFunctionParser::parseOptionalBasicBlockArgList( SmallVectorImpl &results, BasicBlock *owner) { if (getToken().is(Token::r_brace)) return ParseSuccess; return parseCommaSeparatedList([&]() -> ParseResult { auto type = parseSSADefOrUseAndType( [&](SSAUseInfo useInfo, Type type) -> Type { BBArgument *arg = owner->addArgument(type); if (addDefinition(useInfo, arg)) return {}; return type; }); return type ? ParseSuccess : ParseFailure; }); } ParseResult CFGFunctionParser::parseFunctionBody() { auto braceLoc = getToken().getLoc(); if (parseToken(Token::l_brace, "expected '{' in CFG function")) return ParseFailure; // Make sure we have at least one block. if (getToken().is(Token::r_brace)) return emitError("CFG functions must have at least one basic block"); // Parse the list of blocks. while (!consumeIf(Token::r_brace)) if (parseBasicBlock()) return ParseFailure; // Verify that all referenced blocks were defined. if (!forwardRef.empty()) { SmallVector, 4> errors; // Iteration over the map isn't deterministic, so sort by source location. for (auto entry : forwardRef) errors.push_back({entry.second.getPointer(), entry.first}); llvm::array_pod_sort(errors.begin(), errors.end()); for (auto entry : errors) { auto loc = SMLoc::getFromPointer(entry.first); emitError(loc, "reference to an undefined basic block"); } return ParseFailure; } // Now that the function body has been fully parsed we check the invariants // of any branching terminators. for (auto &block : *function) { auto *term = block.getTerminator(); auto *abstractOp = term->getAbstractOperation(); if (term->getNumSuccessors() != 0 && abstractOp) abstractOp->verifyInvariants(term); } return finalizeFunction(function, braceLoc); } /// Basic block declaration. /// /// basic-block ::= bb-label instruction* terminator-stmt /// bb-label ::= bb-id bb-arg-list? `:` /// bb-id ::= bare-id /// bb-arg-list ::= `(` ssa-id-and-type-list? `)` /// ParseResult CFGFunctionParser::parseBasicBlock() { SMLoc nameLoc = getToken().getLoc(); auto name = getTokenSpelling(); if (parseToken(Token::bare_identifier, "expected basic block name")) return ParseFailure; auto *block = defineBlockNamed(name, nameLoc); // Fail if redefinition. if (!block) return emitError(nameLoc, "redefinition of block '" + name.str() + "'"); // If an argument list is present, parse it. if (consumeIf(Token::l_paren)) { SmallVector bbArgs; if (parseOptionalBasicBlockArgList(bbArgs, block) || parseToken(Token::r_paren, "expected ')' to end argument list")) return ParseFailure; } if (parseToken(Token::colon, "expected ':' after basic block name")) return ParseFailure; // Set the insertion point to the block we want to insert new operations // into. builder.setInsertionPoint(block); auto createOpFunc = [&](const OperationState &result) -> Operation * { return builder.createOperation(result); }; // Parse the list of operations that make up the body of the block. while (getToken().isNot(Token::kw_return, Token::kw_br, Token::kw_cond_br)) { if (parseOperation(createOpFunc)) return ParseFailure; } // Parse the terminator operation. if (parseOperation(createOpFunc)) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // ML Functions //===----------------------------------------------------------------------===// namespace { /// Refined parser for MLFunction bodies. class MLFunctionParser : public FunctionParser { public: MLFunctionParser(ParserState &state, MLFunction *function) : FunctionParser(state, Kind::MLFunc), function(function), builder(function->getBody()) {} ParseResult parseFunctionBody(); private: MLFunction *function; /// This builder intentionally shadows the builder in the base class, with a /// more specific builder type. MLFuncBuilder builder; ParseResult parseForStmt(); ParseResult parseIntConstant(int64_t &val); ParseResult parseDimAndSymbolList(SmallVectorImpl &operands, unsigned numDims, unsigned numOperands, const char *affineStructName); ParseResult parseBound(SmallVectorImpl &operands, AffineMap &map, bool isLower); ParseResult parseIfStmt(); ParseResult parseElseClause(StmtBlock *elseClause); ParseResult parseStatements(StmtBlock *block); ParseResult parseStmtBlock(StmtBlock *block); bool parseSuccessorAndUseList(BasicBlock *&dest, SmallVectorImpl &operands) { assert(false && "MLFunctions do not have terminators with successors."); return true; } }; } // end anonymous namespace ParseResult MLFunctionParser::parseFunctionBody() { auto braceLoc = getToken().getLoc(); // Parse statements in this function. if (parseStmtBlock(function->getBody())) return ParseFailure; return finalizeFunction(function, braceLoc); } /// For statement. /// /// ml-for-stmt ::= `for` ssa-id `=` lower-bound `to` upper-bound /// (`step` integer-literal)? `{` ml-stmt* `}` /// ParseResult MLFunctionParser::parseForStmt() { consumeToken(Token::kw_for); // Parse induction variable. if (getToken().isNot(Token::percent_identifier)) return emitError("expected SSA identifier for the loop variable"); auto loc = getToken().getLoc(); StringRef inductionVariableName = getTokenSpelling(); consumeToken(Token::percent_identifier); if (parseToken(Token::equal, "expected '='")) return ParseFailure; // Parse lower bound. SmallVector lbOperands; AffineMap lbMap; if (parseBound(lbOperands, lbMap, /*isLower*/ true)) return ParseFailure; if (parseToken(Token::kw_to, "expected 'to' between bounds")) return ParseFailure; // Parse upper bound. SmallVector ubOperands; AffineMap ubMap; if (parseBound(ubOperands, ubMap, /*isLower*/ false)) return ParseFailure; // Parse step. int64_t step = 1; if (consumeIf(Token::kw_step) && parseIntConstant(step)) return ParseFailure; // The loop step is a positive integer constant. Since index is stored as an // int64_t type, we restrict step to be in the set of positive integers that // int64_t can represent. if (step < 1) { return emitError("step has to be a positive integer"); } // Create for statement. ForStmt *forStmt = builder.createFor(getEncodedSourceLocation(loc), lbOperands, lbMap, ubOperands, ubMap, step); // Create SSA value definition for the induction variable. if (addDefinition({inductionVariableName, 0, loc}, forStmt)) return ParseFailure; // If parsing of the for statement body fails, // MLIR contains for statement with those nested statements that have been // successfully parsed. if (parseStmtBlock(forStmt->getBody())) return ParseFailure; // Reset insertion point to the current block. builder.setInsertionPointToEnd(forStmt->getBlock()); return ParseSuccess; } /// Parse integer constant as affine constant expression. ParseResult MLFunctionParser::parseIntConstant(int64_t &val) { bool negate = consumeIf(Token::minus); if (getToken().isNot(Token::integer)) return emitError("expected integer"); auto uval = getToken().getUInt64IntegerValue(); if (!uval.hasValue() || (int64_t)uval.getValue() < 0) { return emitError("bound or step is too large for index"); } val = (int64_t)uval.getValue(); if (negate) val = -val; consumeToken(); return ParseSuccess; } /// Dimensions and symbol use list. /// /// dim-use-list ::= `(` ssa-use-list? `)` /// symbol-use-list ::= `[` ssa-use-list? `]` /// dim-and-symbol-use-list ::= dim-use-list symbol-use-list? /// ParseResult MLFunctionParser::parseDimAndSymbolList(SmallVectorImpl &operands, unsigned numDims, unsigned numOperands, const char *affineStructName) { if (parseToken(Token::l_paren, "expected '('")) return ParseFailure; SmallVector opInfo; parseOptionalSSAUseList(opInfo); if (parseToken(Token::r_paren, "expected ')'")) return ParseFailure; if (numDims != opInfo.size()) return emitError("dim operand count and " + Twine(affineStructName) + " dim count must match"); if (consumeIf(Token::l_square)) { parseOptionalSSAUseList(opInfo); if (parseToken(Token::r_square, "expected ']'")) return ParseFailure; } if (numOperands != opInfo.size()) return emitError("symbol operand count and " + Twine(affineStructName) + " symbol count must match"); // Resolve SSA uses. Type indexType = builder.getIndexType(); for (unsigned i = 0, e = opInfo.size(); i != e; ++i) { SSAValue *sval = resolveSSAUse(opInfo[i], indexType); if (!sval) return ParseFailure; auto *v = cast(sval); if (i < numDims && !v->isValidDim()) return emitError(opInfo[i].loc, "value '" + opInfo[i].name.str() + "' cannot be used as a dimension id"); if (i >= numDims && !v->isValidSymbol()) return emitError(opInfo[i].loc, "value '" + opInfo[i].name.str() + "' cannot be used as a symbol"); operands.push_back(v); } return ParseSuccess; } // Loop bound. /// /// lower-bound ::= `max`? affine-map dim-and-symbol-use-list | /// shorthand-bound upper-bound ::= `min`? affine-map dim-and-symbol-use-list /// | shorthand-bound shorthand-bound ::= ssa-id | `-`? integer-literal /// ParseResult MLFunctionParser::parseBound(SmallVectorImpl &operands, AffineMap &map, bool isLower) { // 'min' / 'max' prefixes are syntactic sugar. Ignore them. if (isLower) consumeIf(Token::kw_max); else consumeIf(Token::kw_min); // Parse full form - affine map followed by dim and symbol list. if (getToken().isAny(Token::hash_identifier, Token::l_paren)) { map = parseAffineMapReference(); if (!map) return ParseFailure; if (parseDimAndSymbolList(operands, map.getNumDims(), map.getNumInputs(), "affine map")) return ParseFailure; return ParseSuccess; } // Parse shorthand form. if (getToken().isAny(Token::minus, Token::integer)) { int64_t val; if (!parseIntConstant(val)) { map = builder.getConstantAffineMap(val); return ParseSuccess; } return ParseFailure; } // Parse ssa-id as identity map. SSAUseInfo opInfo; if (parseSSAUse(opInfo)) return ParseFailure; // TODO: improve error message when SSA value is not an affine integer. // Currently it is 'use of value ... expects different type than prior uses' if (auto *value = resolveSSAUse(opInfo, builder.getIndexType())) operands.push_back(cast(value)); else return ParseFailure; // Create an identity map using dim id for an induction variable and // symbol otherwise. This representation is optimized for storage. // Analysis passes may expand it into a multi-dimensional map if desired. if (isa(operands[0])) map = builder.getDimIdentityMap(); else map = builder.getSymbolIdentityMap(); return ParseSuccess; } /// Parse an affine constraint. /// affine-constraint ::= affine-expr `>=` `0` /// | affine-expr `==` `0` /// /// isEq is set to true if the parsed constraint is an equality, false if it /// is an inequality (greater than or equal). /// AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { AffineExpr expr = parseAffineExpr(); if (!expr) return nullptr; if (consumeIf(Token::greater) && consumeIf(Token::equal) && getToken().is(Token::integer)) { auto dim = getToken().getUnsignedIntegerValue(); if (dim.hasValue() && dim.getValue() == 0) { consumeToken(Token::integer); *isEq = false; return expr; } return (emitError("expected '0' after '>='"), nullptr); } if (consumeIf(Token::equal) && consumeIf(Token::equal) && getToken().is(Token::integer)) { auto dim = getToken().getUnsignedIntegerValue(); if (dim.hasValue() && dim.getValue() == 0) { consumeToken(Token::integer); *isEq = true; return expr; } return (emitError("expected '0' after '=='"), nullptr); } return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), nullptr); } /// Parse the constraints that are part of an integer set definition. /// integer-set-inline /// ::= dim-and-symbol-id-lists `:` /// affine-constraint-conjunction /// affine-constraint-conjunction ::= /*empty*/ /// | affine-constraint (`,` /// affine-constraint)* /// IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols) { parseToken(Token::l_paren, "expected '(' at start of integer set constraint list"); SmallVector constraints; SmallVector isEqs; auto parseElt = [&]() -> ParseResult { bool isEq; auto elt = parseAffineConstraint(&isEq); ParseResult res = elt ? ParseSuccess : ParseFailure; if (elt) { constraints.push_back(elt); isEqs.push_back(isEq); } return res; }; // Parse a list of affine constraints (comma-separated) . // Grammar: affine-constraint-conjunct ::= `(` affine-constraint (`,` // affine-constraint)* `) if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) return IntegerSet(); // Parsed a valid integer set. return builder.getIntegerSet(numDims, numSymbols, constraints, isEqs); } IntegerSet Parser::parseIntegerSetInline() { IntegerSet set; AffineParser(state).parseAffineStructureInline(nullptr, &set); return set; } /// If statement. /// /// ml-if-head ::= `if` ml-if-cond `{` ml-stmt* `}` /// | ml-if-head `else` `if` ml-if-cond `{` ml-stmt* `}` /// ml-if-stmt ::= ml-if-head /// | ml-if-head `else` `{` ml-stmt* `}` /// ParseResult MLFunctionParser::parseIfStmt() { auto loc = getToken().getLoc(); consumeToken(Token::kw_if); IntegerSet set = parseIntegerSetReference(); if (!set) return ParseFailure; SmallVector operands; if (parseDimAndSymbolList(operands, set.getNumDims(), set.getNumOperands(), "integer set")) return ParseFailure; IfStmt *ifStmt = builder.createIf(getEncodedSourceLocation(loc), operands, set); StmtBlock *thenClause = ifStmt->getThen(); // When parsing of an if statement body fails, the IR contains // the if statement with the portion of the body that has been // successfully parsed. if (parseStmtBlock(thenClause)) return ParseFailure; if (consumeIf(Token::kw_else)) { auto *elseClause = ifStmt->createElse(); if (parseElseClause(elseClause)) return ParseFailure; } // Reset insertion point to the current block. builder.setInsertionPointToEnd(ifStmt->getBlock()); return ParseSuccess; } ParseResult MLFunctionParser::parseElseClause(StmtBlock *elseClause) { if (getToken().is(Token::kw_if)) { builder.setInsertionPointToEnd(elseClause); return parseIfStmt(); } return parseStmtBlock(elseClause); } /// /// Parse a list of statements ending with `return` or `}` /// ParseResult MLFunctionParser::parseStatements(StmtBlock *block) { auto createOpFunc = [&](const OperationState &state) -> Operation * { return builder.createOperation(state); }; builder.setInsertionPointToEnd(block); // Parse statements till we see '}' or 'return'. // Return statement is parsed separately to emit a more intuitive error // when '}' is missing after the return statement. while (getToken().isNot(Token::r_brace, Token::kw_return)) { switch (getToken().getKind()) { default: if (parseOperation(createOpFunc)) return ParseFailure; break; case Token::kw_for: if (parseForStmt()) return ParseFailure; break; case Token::kw_if: if (parseIfStmt()) return ParseFailure; break; } // end switch } // Parse the return statement. if (getToken().is(Token::kw_return)) if (parseOperation(createOpFunc)) return ParseFailure; return ParseSuccess; } /// /// Parse `{` ml-stmt* `}` /// ParseResult MLFunctionParser::parseStmtBlock(StmtBlock *block) { if (parseToken(Token::l_brace, "expected '{' before statement list") || parseStatements(block) || parseToken(Token::r_brace, "expected '}' after statement list")) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Top-level entity parsing. //===----------------------------------------------------------------------===// namespace { /// This parser handles entities that are only valid at the top level of the /// file. class ModuleParser : public Parser { public: explicit ModuleParser(ParserState &state) : Parser(state) {} ParseResult parseModule(); private: ParseResult finalizeModule(); ParseResult parseAffineStructureDef(); // Functions. ParseResult parseMLArgumentList(SmallVectorImpl &argTypes, SmallVectorImpl &argNames); ParseResult parseFunctionSignature(StringRef &name, FunctionType &type, SmallVectorImpl *argNames); ParseResult parseFunctionAttribute(SmallVectorImpl &attrs); ParseResult parseExtFunc(); ParseResult parseCFGFunc(); ParseResult parseMLFunc(); }; } // end anonymous namespace /// Parses either an affine map declaration or an integer set declaration. /// /// Affine map declaration. /// /// affine-map-def ::= affine-map-id `=` affine-map-inline /// /// Integer set declaration. /// /// integer-set-decl ::= integer-set-id `=` integer-set-inline /// ParseResult ModuleParser::parseAffineStructureDef() { assert(getToken().is(Token::hash_identifier)); StringRef affineStructureId = getTokenSpelling().drop_front(); // Check for redefinitions. if (getState().affineMapDefinitions.count(affineStructureId) > 0) return emitError("redefinition of affine map id '" + affineStructureId + "'"); if (getState().integerSetDefinitions.count(affineStructureId) > 0) return emitError("redefinition of integer set id '" + affineStructureId + "'"); consumeToken(Token::hash_identifier); // Parse the '=' if (parseToken(Token::equal, "expected '=' in affine map outlined definition")) return ParseFailure; AffineMap map; IntegerSet set; parseAffineStructureInline(&map, &set); if (!map && !set) return ParseFailure; if (map) getState().affineMapDefinitions[affineStructureId] = map; else getState().integerSetDefinitions[affineStructureId] = set; return ParseSuccess; } /// Parse a (possibly empty) list of MLFunction arguments with types. /// /// ml-argument ::= ssa-id `:` type /// ml-argument-list ::= ml-argument (`,` ml-argument)* | /*empty*/ /// ParseResult ModuleParser::parseMLArgumentList(SmallVectorImpl &argTypes, SmallVectorImpl &argNames) { consumeToken(Token::l_paren); auto parseElt = [&]() -> ParseResult { // Parse argument name if (getToken().isNot(Token::percent_identifier)) return emitError("expected SSA identifier"); StringRef name = getTokenSpelling(); consumeToken(Token::percent_identifier); argNames.push_back(name); if (parseToken(Token::colon, "expected ':'")) return ParseFailure; // Parse argument type auto elt = parseType(); if (!elt) return ParseFailure; argTypes.push_back(elt); return ParseSuccess; }; return parseCommaSeparatedListUntil(Token::r_paren, parseElt); } /// Parse a function signature, starting with a name and including the /// parameter list. /// /// argument-list ::= type (`,` type)* | /*empty*/ | ml-argument-list /// function-signature ::= function-id `(` argument-list `)` (`->` /// type-list)? /// ParseResult ModuleParser::parseFunctionSignature(StringRef &name, FunctionType &type, SmallVectorImpl *argNames) { if (getToken().isNot(Token::at_identifier)) return emitError("expected a function identifier like '@foo'"); name = getTokenSpelling().drop_front(); consumeToken(Token::at_identifier); if (getToken().isNot(Token::l_paren)) return emitError("expected '(' in function signature"); SmallVector argTypes; ParseResult parseResult; if (argNames) parseResult = parseMLArgumentList(argTypes, *argNames); else parseResult = parseTypeList(argTypes); if (parseResult) return ParseFailure; // Parse the return type if present. SmallVector results; if (consumeIf(Token::arrow)) { if (parseTypeList(results)) return ParseFailure; } type = builder.getFunctionType(argTypes, results); return ParseSuccess; } /// Parse function attributes, starting with keyword "attributes". /// /// function-attribute ::= (`attributes` attribute-dict)? /// ParseResult ModuleParser::parseFunctionAttribute(SmallVectorImpl &attrs) { if (consumeIf(Token::kw_attributes)) { if (parseAttributeDict(attrs)) { return ParseFailure; } } return ParseSuccess; } /// External function declarations. /// /// ext-func ::= `extfunc` function-signature /// (`attributes` attribute-dict)? /// ParseResult ModuleParser::parseExtFunc() { consumeToken(Token::kw_extfunc); auto loc = getToken().getLoc(); StringRef name; FunctionType type; if (parseFunctionSignature(name, type, /*arguments*/ nullptr)) return ParseFailure; SmallVector attrs; if (parseFunctionAttribute(attrs)) { return ParseFailure; } // Okay, the external function definition was parsed correctly. auto *function = new ExtFunction(getEncodedSourceLocation(loc), name, type, attrs); getModule()->getFunctions().push_back(function); // Verify no name collision / redefinition. if (function->getName() != name) return emitError(loc, "redefinition of function named '" + name.str() + "'"); return ParseSuccess; } /// CFG function declarations. /// /// cfg-func ::= `cfgfunc` function-signature /// (`attributes` attribute-dict)? `{` basic-block+ `}` /// ParseResult ModuleParser::parseCFGFunc() { consumeToken(Token::kw_cfgfunc); auto loc = getToken().getLoc(); StringRef name; FunctionType type; if (parseFunctionSignature(name, type, /*arguments*/ nullptr)) return ParseFailure; SmallVector attrs; if (parseFunctionAttribute(attrs)) { return ParseFailure; } // Okay, the CFG function signature was parsed correctly, create the // function. auto *function = new CFGFunction(getEncodedSourceLocation(loc), name, type, attrs); getModule()->getFunctions().push_back(function); // Verify no name collision / redefinition. if (function->getName() != name) return emitError(loc, "redefinition of function named '" + name.str() + "'"); return CFGFunctionParser(getState(), function).parseFunctionBody(); } /// ML function declarations. /// /// ml-func ::= `mlfunc` ml-func-signature /// (`attributes` attribute-dict)? `{` ml-stmt* ml-return-stmt /// `}` /// ParseResult ModuleParser::parseMLFunc() { consumeToken(Token::kw_mlfunc); StringRef name; FunctionType type; SmallVector argNames; auto loc = getToken().getLoc(); if (parseFunctionSignature(name, type, &argNames)) return ParseFailure; SmallVector attrs; if (parseFunctionAttribute(attrs)) { return ParseFailure; } // Okay, the ML function signature was parsed correctly, create the // function. auto *function = MLFunction::create(getEncodedSourceLocation(loc), name, type, attrs); getModule()->getFunctions().push_back(function); // Verify no name collision / redefinition. if (function->getName() != name) return emitError(loc, "redefinition of function named '" + name.str() + "'"); // Create the parser. auto parser = MLFunctionParser(getState(), function); // Add definitions of the function arguments. for (unsigned i = 0, e = function->getNumArguments(); i != e; ++i) { if (parser.addDefinition({argNames[i], 0, loc}, function->getArgument(i))) return ParseFailure; } return parser.parseFunctionBody(); } /// Finish the end of module parsing - when the result is valid, do final /// checking. ParseResult ModuleParser::finalizeModule() { // Resolve all forward references, building a remapping table of attributes. DenseMap remappingTable; for (auto forwardRef : getState().functionForwardRefs) { auto name = forwardRef.first; // Resolve the reference. auto *resolvedFunction = getModule()->getNamedFunction(name); if (!resolvedFunction) { forwardRef.second->emitError("reference to undefined function '" + name.str() + "'"); return ParseFailure; } remappingTable[builder.getFunctionAttr(forwardRef.second)] = builder.getFunctionAttr(resolvedFunction); } // If there was nothing to remap, then we're done. if (remappingTable.empty()) return ParseSuccess; // Otherwise, walk the entire module replacing uses of one attribute set // with the correct ones. remapFunctionAttrs(*getModule(), remappingTable); // Now that all references to the forward definition placeholders are // resolved, we can deallocate the placeholders. for (auto forwardRef : getState().functionForwardRefs) forwardRef.second->destroy(); getState().functionForwardRefs.clear(); return ParseSuccess; } /// This is the top-level module parser. ParseResult ModuleParser::parseModule() { while (1) { switch (getToken().getKind()) { default: emitError("expected a top level entity"); return ParseFailure; // If we got to the end of the file, then we're done. case Token::eof: return finalizeModule(); // If we got an error token, then the lexer already emitted an error, just // stop. Someday we could introduce error recovery if there was demand // for it. case Token::error: return ParseFailure; case Token::hash_identifier: if (parseAffineStructureDef()) return ParseFailure; break; case Token::kw_extfunc: if (parseExtFunc()) return ParseFailure; break; case Token::kw_cfgfunc: if (parseCFGFunc()) return ParseFailure; break; case Token::kw_mlfunc: if (parseMLFunc()) return ParseFailure; break; } } } //===----------------------------------------------------------------------===// /// This parses the file specified by the indicated SourceMgr and returns an /// MLIR module if it was valid. If not, it emits diagnostics and returns /// null. Module *mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, MLIRContext *context) { // This is the result module we are parsing into. std::unique_ptr module(new Module(context)); ParserState state(sourceMgr, module.get()); if (ModuleParser(state).parseModule()) { return nullptr; } // Make sure the parse module has no other structural problems detected by // the verifier. if (module->verify()) return nullptr; return module.release(); } /// This parses the program string to a MLIR module if it was valid. If not, /// it emits diagnostics and returns null. Module *mlir::parseSourceString(StringRef moduleStr, MLIRContext *context) { auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); if (!memBuffer) return nullptr; SourceMgr sourceMgr; sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); return parseSourceFile(sourceMgr, context); }