//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= #include "mlir/IR/SymbolTable.h" #include "llvm/ADT/SmallString.h" using namespace mlir; /// Return true if the given operation is unknown and may potentially define a /// symbol table. static bool isPotentiallyUnknownSymbolTable(Operation *op) { return !op->getDialect() && op->getNumRegions() == 1; } //===----------------------------------------------------------------------===// // SymbolTable //===----------------------------------------------------------------------===// /// Build a symbol table with the symbols within the given operation. SymbolTable::SymbolTable(Operation *symbolTableOp) : symbolTableOp(symbolTableOp) { assert(symbolTableOp->hasTrait() && "expected operation to have SymbolTable trait"); assert(symbolTableOp->getNumRegions() == 1 && "expected operation to have a single region"); assert(has_single_element(symbolTableOp->getRegion(0)) && "expected operation to have a single block"); for (auto &op : symbolTableOp->getRegion(0).front()) { auto nameAttr = op.getAttrOfType(getSymbolAttrName()); if (!nameAttr) continue; auto inserted = symbolTable.insert({nameAttr.getValue(), &op}); (void)inserted; assert(inserted.second && "expected region to contain uniquely named symbol operations"); } } /// Look up a symbol with the specified name, returning null if no such name /// exists. Names never include the @ on them. Operation *SymbolTable::lookup(StringRef name) const { return symbolTable.lookup(name); } /// Erase the given symbol from the table. void SymbolTable::erase(Operation *symbol) { auto nameAttr = symbol->getAttrOfType(getSymbolAttrName()); assert(nameAttr && "expected valid 'name' attribute"); assert(symbol->getParentOp() == symbolTableOp && "expected this operation to be inside of the operation with this " "SymbolTable"); auto it = symbolTable.find(nameAttr.getValue()); if (it != symbolTable.end() && it->second == symbol) { symbolTable.erase(it); symbol->erase(); } } /// Insert a new symbol into the table and associated operation, and rename it /// as necessary to avoid collisions. void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { auto nameAttr = symbol->getAttrOfType(getSymbolAttrName()); assert(nameAttr && "expected valid 'name' attribute"); auto &body = symbolTableOp->getRegion(0).front(); if (insertPt == Block::iterator() || insertPt == body.end()) insertPt = Block::iterator(body.getTerminator()); assert(insertPt->getParentOp() == symbolTableOp && "expected insertPt to be in the associated module operation"); body.getOperations().insert(insertPt, symbol); // Add this symbol to the symbol table, uniquing the name if a conflict is // detected. if (symbolTable.insert({nameAttr.getValue(), symbol}).second) return; // If a conflict was detected, then the symbol will not have been added to // the symbol table. Try suffixes until we get to a unique name that works. SmallString<128> nameBuffer(nameAttr.getValue()); unsigned originalLength = nameBuffer.size(); // Iteratively try suffixes until we find one that isn't used. do { nameBuffer.resize(originalLength); nameBuffer += '_'; nameBuffer += std::to_string(uniquingCounter++); } while (!symbolTable.insert({nameBuffer, symbol}).second); symbol->setAttr(getSymbolAttrName(), StringAttr::get(nameBuffer, symbolTableOp->getContext())); } /// Returns the operation registered with the given symbol name with the /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol /// was found. Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, StringRef symbol) { assert(symbolTableOp->hasTrait()); // Look for a symbol with the given name. for (auto &block : symbolTableOp->getRegion(0)) { for (auto &op : block) { auto nameAttr = op.template getAttrOfType( mlir::SymbolTable::getSymbolAttrName()); if (nameAttr && nameAttr.getValue() == symbol) return &op; } } return nullptr; } /// Returns the operation registered with the given symbol name within the /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns /// nullptr if no valid symbol was found. Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, StringRef symbol) { assert(from && "expected valid operation"); while (!from->hasTrait()) { from = from->getParentOp(); // Check that this is a valid op and isn't an unknown symbol table. if (!from || isPotentiallyUnknownSymbolTable(from)) return nullptr; } return lookupSymbolIn(from, symbol); } //===----------------------------------------------------------------------===// // SymbolTable Trait Types //===----------------------------------------------------------------------===// LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) { if (op->getNumRegions() != 1) return op->emitOpError() << "Operations with a 'SymbolTable' must have exactly one region"; if (!has_single_element(op->getRegion(0))) return op->emitOpError() << "Operations with a 'SymbolTable' must have exactly one block"; // Check that all symbols are uniquely named within child regions. llvm::StringMap nameToOrigLoc; for (auto &block : op->getRegion(0)) { for (auto &op : block) { // Check for a symbol name attribute. auto nameAttr = op.getAttrOfType(mlir::SymbolTable::getSymbolAttrName()); if (!nameAttr) continue; // Try to insert this symbol into the table. auto it = nameToOrigLoc.try_emplace(nameAttr.getValue(), op.getLoc()); if (!it.second) return op.emitError() .append("redefinition of symbol named '", nameAttr.getValue(), "'") .attachNote(it.first->second) .append("see existing symbol definition here"); } } return success(); } LogicalResult OpTrait::impl::verifySymbol(Operation *op) { if (!op->getAttrOfType(mlir::SymbolTable::getSymbolAttrName())) return op->emitOpError() << "requires string attribute '" << mlir::SymbolTable::getSymbolAttrName() << "'"; return success(); } //===----------------------------------------------------------------------===// // Symbol Use Lists //===----------------------------------------------------------------------===// /// Walk all of the symbol references within the given operation, invoking the /// provided callback for each found use. The callbacks takes as arguments: the /// use of the symbol, and the nested access chain to the attribute within the /// operation dictionary. An access chain is a set of indices into nested /// container attributes. For example, a symbol use in an attribute dictionary /// that looks like the following: /// /// {use = [{other_attr, @symbol}]} /// /// May have the following access chain: /// /// [0, 0, 1] /// static WalkResult walkSymbolRefs( Operation *op, function_ref)> callback) { // Check to see if the operation has any attributes. DictionaryAttr attrDict = op->getAttrList().getDictionary(); if (!attrDict) return WalkResult::advance(); // A worklist of a container attribute and the current index into the held // attribute list. SmallVector attrWorklist(1, attrDict); SmallVector curAccessChain(1, /*Value=*/-1); // Process the symbol references within the given nested attribute range. auto processAttrs = [&](int &index, auto attrRange) -> WalkResult { for (Attribute attr : llvm::drop_begin(attrRange, index)) { /// Check for a nested container attribute, these will also need to be /// walked. if (attr.isa() || attr.isa()) { attrWorklist.push_back(attr); curAccessChain.push_back(-1); return WalkResult::advance(); } // Invoke the provided callback if we find a symbol use and check for a // requested interrupt. if (auto symbolRef = attr.dyn_cast()) if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) return WalkResult::interrupt(); // Make sure to keep the index counter in sync. ++index; } // Pop this container attribute from the worklist. attrWorklist.pop_back(); curAccessChain.pop_back(); return WalkResult::advance(); }; WalkResult result = WalkResult::advance(); do { Attribute attr = attrWorklist.back(); int &index = curAccessChain.back(); ++index; // Process the given attribute, which is guaranteed to be a container. if (auto dict = attr.dyn_cast()) result = processAttrs(index, make_second_range(dict.getValue())); else result = processAttrs(index, attr.cast().getValue()); } while (!attrWorklist.empty() && !result.wasInterrupted()); return result; } /// Walk all of the uses, for any symbol, that are nested within the given /// operation 'from', invoking the provided callback for each. This does not /// traverse into any nested symbol tables, and will also only return uses on /// 'from' if it does not also define a symbol table. static Optional walkSymbolUses( Operation *from, function_ref)> callback) { // If from is not a symbol table, check for uses. A symbol table defines a new // scope, so we can't walk the attributes from the symbol table op. if (!from->hasTrait()) { if (walkSymbolRefs(from, callback).wasInterrupted()) return WalkResult::interrupt(); } SmallVector worklist; worklist.reserve(from->getNumRegions()); for (Region ®ion : from->getRegions()) worklist.push_back(®ion); while (!worklist.empty()) { Region *region = worklist.pop_back_val(); for (Block &block : *region) { for (Operation &op : block) { if (walkSymbolRefs(&op, callback).wasInterrupted()) return WalkResult::interrupt(); // If this operation has regions, and it as well as its dialect aren't // registered then conservatively fail. The operation may define a // symbol table, so we can't opaquely know if we should traverse to find // nested uses. if (isPotentiallyUnknownSymbolTable(&op)) return llvm::None; // If this op defines a new symbol table scope, we can't traverse. Any // symbol references nested within 'op' are different semantically. if (!op.hasTrait()) { for (Region ®ion : op.getRegions()) worklist.push_back(®ion); } } } } return WalkResult::advance(); } /// Get an iterator range for all of the uses, for any symbol, that are nested /// within the given operation 'from'. This does not traverse into any nested /// symbol tables, and will also only return uses on 'from' if it does not /// also define a symbol table. This is because we treat the region as the /// boundary of the symbol table, and not the op itself. This function returns /// None if there are any unknown operations that may potentially be symbol /// tables. auto SymbolTable::getSymbolUses(Operation *from) -> Optional { std::vector uses; Optional result = walkSymbolUses(from, [&](SymbolUse symbolUse, ArrayRef) { uses.push_back(symbolUse); return WalkResult::advance(); }); return result ? Optional(std::move(uses)) : Optional(); } /// Get all of the uses of the given symbol that are nested within the given /// operation 'from', invoking the provided callback for each. This does not /// traverse into any nested symbol tables, and will also only return uses on /// 'from' if it does not also define a symbol table. This is because we treat /// the region as the boundary of the symbol table, and not the op itself. This /// function returns None if there are any unknown operations that may /// potentially be symbol tables. auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from) -> Optional { SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext()); std::vector uses; Optional result = walkSymbolUses(from, [&](SymbolUse symbolUse, ArrayRef) { if (symbolRefAttr == symbolUse.getSymbolRef()) uses.push_back(symbolUse); return WalkResult::advance(); }); return result ? Optional(std::move(uses)) : Optional(); } /// Return if the given symbol is known to have no uses that are nested within /// the given operation 'from'. This does not traverse into any nested symbol /// tables, and will also only count uses on 'from' if it does not also define /// a symbol table. This is because we treat the region as the boundary of the /// symbol table, and not the op itself. This function will also return false if /// there are any unknown operations that may potentially be symbol tables. bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) { SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext()); // Walk all of the symbol uses looking for a reference to 'symbol'. Optional walkResult = walkSymbolUses(from, [&](SymbolUse symbolUse, ArrayRef) { return symbolUse.getSymbolRef() == symbolRefAttr ? WalkResult::interrupt() : WalkResult::advance(); }); return walkResult && !walkResult->wasInterrupted(); } /// Rebuild the given attribute container after replacing all references to a /// symbol with `newSymAttr`. static Attribute rebuildAttrAfterRAUW(Attribute container, ArrayRef> accesses, SymbolRefAttr newSymAttr, unsigned depth) { // Given a range of Attributes, update the ones referred to by the given // access chains to point to the new symbol attribute. auto updateAttrs = [&](auto &&attrRange) { auto attrBegin = std::begin(attrRange); for (unsigned i = 0, e = accesses.size(); i != e;) { ArrayRef access = accesses[i]; Attribute &attr = *std::next(attrBegin, access[depth]); // Check to see if this is a leaf access, i.e. a SymbolRef. if (access.size() == depth + 1) { attr = newSymAttr; ++i; continue; } // Otherwise, this is a container. Collect all of the accesses for this // index and recurse. The recursion here is bounded by the size of the // largest access array. auto nestedAccesses = accesses.drop_front(i).take_while([&](ArrayRef nextAccess) { return nextAccess.size() > depth + 1 && nextAccess[depth] == access[depth]; }); attr = rebuildAttrAfterRAUW(attr, nestedAccesses, newSymAttr, depth + 1); // Skip over all of the accesses that refer to the nested container. i += nestedAccesses.size(); } }; if (auto dictAttr = container.dyn_cast()) { auto newAttrs = llvm::to_vector<4>(dictAttr.getValue()); updateAttrs(make_second_range(newAttrs)); return DictionaryAttr::get(newAttrs, dictAttr.getContext()); } auto newAttrs = llvm::to_vector<4>(container.cast().getValue()); updateAttrs(newAttrs); return ArrayAttr::get(newAttrs, container.getContext()); } /// Attempt to replace all uses of the given symbol 'oldSymbol' with the /// provided symbol 'newSymbol' that are nested within the given operation /// 'from'. This does not traverse into any nested symbol tables, and will /// also only replace uses on 'from' if it does not also define a symbol /// table. This is because we treat the region as the boundary of the symbol /// table, and not the op itself. If there are any unknown operations that may /// potentially be symbol tables, no uses are replaced and failure is returned. LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, StringRef newSymbol, Operation *from) { SymbolRefAttr oldAttr = SymbolRefAttr::get(oldSymbol, from->getContext()); SymbolRefAttr newSymAttr = SymbolRefAttr::get(newSymbol, from->getContext()); // A collection of operations along with their new attribute dictionary. std::vector> updatedAttrDicts; // The current operation, and its old symbol access chains, being processed. Operation *curOp = nullptr; SmallVector, 1> accessChains; // Generate a new attribute dictionary for the current operation by replacing // references to the old symbol. auto generateNewAttrDict = [&] { auto newAttrDict = rebuildAttrAfterRAUW(curOp->getAttrList().getDictionary(), accessChains, newSymAttr, /*depth=*/0); return newAttrDict.cast(); }; // Walk the symbol uses collecting uses of the old symbol. auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef accessChain) { if (symbolUse.getSymbolRef() != oldAttr) return WalkResult::advance(); // If there was a previous operation, generate a new attribute dict for it. // This means that we've finished processing the current operation, so // generate a new dictionary for it. if (curOp && symbolUse.getUser() != curOp) { updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); accessChains.clear(); } // Record this access. curOp = symbolUse.getUser(); accessChains.push_back(llvm::to_vector<1>(accessChain)); return WalkResult::advance(); }; if (!walkSymbolUses(from, walkFn)) return failure(); // Update the attribute dictionaries as necessary. for (auto &it : updatedAttrDicts) it.first->setAttrs(it.second); // Check to see if we have a dangling op that needs to be processed. if (curOp) curOp->setAttrs(generateNewAttrDict()); return success(); }