//===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/AffineExpr.h" #include "AffineExprDetail.h" #include "mlir/IR/AffineExprVisitor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/IntegerSet.h" #include "mlir/Support/MathExtras.h" #include "mlir/Support/STLExtras.h" #include "llvm/ADT/STLExtras.h" using namespace mlir; using namespace mlir::detail; MLIRContext *AffineExpr::getContext() const { return expr->context; } AffineExprKind AffineExpr::getKind() const { return static_cast(expr->getKind()); } /// Walk all of the AffineExprs in this subgraph in postorder. void AffineExpr::walk(std::function callback) const { struct AffineExprWalker : public AffineExprVisitor { std::function callback; AffineExprWalker(std::function callback) : callback(callback) {} void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); } void visitConstantExpr(AffineConstantExpr expr) { callback(expr); } void visitDimExpr(AffineDimExpr expr) { callback(expr); } void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); } }; AffineExprWalker(callback).walkPostOrder(*this); } // Dispatch affine expression construction based on kind. AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, AffineExpr rhs) { if (kind == AffineExprKind::Add) return lhs + rhs; if (kind == AffineExprKind::Mul) return lhs * rhs; if (kind == AffineExprKind::FloorDiv) return lhs.floorDiv(rhs); if (kind == AffineExprKind::CeilDiv) return lhs.ceilDiv(rhs); if (kind == AffineExprKind::Mod) return lhs % rhs; llvm_unreachable("unknown binary operation on affine expressions"); } /// This method substitutes any uses of dimensions and symbols (e.g. /// dim#0 with dimReplacements[0]) and returns the modified expression tree. AffineExpr AffineExpr::replaceDimsAndSymbols(ArrayRef dimReplacements, ArrayRef symReplacements) const { switch (getKind()) { case AffineExprKind::Constant: return *this; case AffineExprKind::DimId: { unsigned dimId = cast().getPosition(); if (dimId >= dimReplacements.size()) return *this; return dimReplacements[dimId]; } case AffineExprKind::SymbolId: { unsigned symId = cast().getPosition(); if (symId >= symReplacements.size()) return *this; return symReplacements[symId]; } case AffineExprKind::Add: case AffineExprKind::Mul: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: auto binOp = cast(); auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements); auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements); if (newLHS == lhs && newRHS == rhs) return *this; return getAffineBinaryOpExpr(getKind(), newLHS, newRHS); } llvm_unreachable("Unknown AffineExpr"); } /// Returns true if this expression is made out of only symbols and /// constants (no dimensional identifiers). bool AffineExpr::isSymbolicOrConstant() const { switch (getKind()) { case AffineExprKind::Constant: return true; case AffineExprKind::DimId: return false; case AffineExprKind::SymbolId: return true; case AffineExprKind::Add: case AffineExprKind::Mul: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { auto expr = this->cast(); return expr.getLHS().isSymbolicOrConstant() && expr.getRHS().isSymbolicOrConstant(); } } llvm_unreachable("Unknown AffineExpr"); } /// Returns true if this is a pure affine expression, i.e., multiplication, /// floordiv, ceildiv, and mod is only allowed w.r.t constants. bool AffineExpr::isPureAffine() const { switch (getKind()) { case AffineExprKind::SymbolId: case AffineExprKind::DimId: case AffineExprKind::Constant: return true; case AffineExprKind::Add: { auto op = cast(); return op.getLHS().isPureAffine() && op.getRHS().isPureAffine(); } case AffineExprKind::Mul: { // TODO: Canonicalize the constants in binary operators to the RHS when // possible, allowing this to merge into the next case. auto op = cast(); return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() && (op.getLHS().template isa() || op.getRHS().template isa()); } case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { auto op = cast(); return op.getLHS().isPureAffine() && op.getRHS().template isa(); } } llvm_unreachable("Unknown AffineExpr"); } // Returns the greatest known integral divisor of this affine expression. int64_t AffineExpr::getLargestKnownDivisor() const { AffineBinaryOpExpr binExpr(nullptr); switch (getKind()) { case AffineExprKind::SymbolId: LLVM_FALLTHROUGH; case AffineExprKind::DimId: return 1; case AffineExprKind::Constant: return std::abs(this->cast().getValue()); case AffineExprKind::Mul: { binExpr = this->cast(); return binExpr.getLHS().getLargestKnownDivisor() * binExpr.getRHS().getLargestKnownDivisor(); } case AffineExprKind::Add: LLVM_FALLTHROUGH; case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { binExpr = cast(); return llvm::GreatestCommonDivisor64( binExpr.getLHS().getLargestKnownDivisor(), binExpr.getRHS().getLargestKnownDivisor()); } } llvm_unreachable("Unknown AffineExpr"); } bool AffineExpr::isMultipleOf(int64_t factor) const { AffineBinaryOpExpr binExpr(nullptr); uint64_t l, u; switch (getKind()) { case AffineExprKind::SymbolId: LLVM_FALLTHROUGH; case AffineExprKind::DimId: return factor * factor == 1; case AffineExprKind::Constant: return cast().getValue() % factor == 0; case AffineExprKind::Mul: { binExpr = cast(); // It's probably not worth optimizing this further (to not traverse the // whole sub-tree under - it that would require a version of isMultipleOf // that on a 'false' return also returns the largest known divisor). return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 || (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 || (l * u) % factor == 0; } case AffineExprKind::Add: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { binExpr = cast(); return llvm::GreatestCommonDivisor64( binExpr.getLHS().getLargestKnownDivisor(), binExpr.getRHS().getLargestKnownDivisor()) % factor == 0; } } llvm_unreachable("Unknown AffineExpr"); } bool AffineExpr::isFunctionOfDim(unsigned position) const { if (getKind() == AffineExprKind::DimId) { return *this == mlir::getAffineDimExpr(position, getContext()); } if (auto expr = this->dyn_cast()) { return expr.getLHS().isFunctionOfDim(position) || expr.getRHS().isFunctionOfDim(position); } return false; } AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} AffineExpr AffineBinaryOpExpr::getLHS() const { return static_cast(expr)->lhs; } AffineExpr AffineBinaryOpExpr::getRHS() const { return static_cast(expr)->rhs; } AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} unsigned AffineDimExpr::getPosition() const { return static_cast(expr)->position; } static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position, MLIRContext *context) { auto assignCtx = [context](AffineDimExprStorage *storage) { storage->context = context; }; StorageUniquer &uniquer = context->getAffineUniquer(); return uniquer.get( assignCtx, static_cast(kind), position); } AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) { return getAffineDimOrSymbol(AffineExprKind::DimId, position, context); } AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} unsigned AffineSymbolExpr::getPosition() const { return static_cast(expr)->position; } AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) { return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context); ; } AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} int64_t AffineConstantExpr::getValue() const { return static_cast(expr)->constant; } bool AffineExpr::operator==(int64_t v) const { return *this == getAffineConstantExpr(v, getContext()); } AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) { auto assignCtx = [context](AffineConstantExprStorage *storage) { storage->context = context; }; StorageUniquer &uniquer = context->getAffineUniquer(); return uniquer.get( assignCtx, static_cast(AffineExprKind::Constant), constant); } /// Simplify add expression. Return nullptr if it can't be simplified. static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = lhs.dyn_cast(); auto rhsConst = rhs.dyn_cast(); // Fold if both LHS, RHS are a constant. if (lhsConst && rhsConst) return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(), lhs.getContext()); // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4). // If only one of them is a symbolic expressions, make it the RHS. if (lhs.isa() || (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) { return rhs + lhs; } // At this point, if there was a constant, it would be on the right. // Addition with a zero is a noop, return the other input. if (rhsConst) { if (rhsConst.getValue() == 0) return lhs; } // Fold successive additions like (d0 + 2) + 3 into d0 + 5. auto lBin = lhs.dyn_cast(); if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) { if (auto lrhs = lBin.getRHS().dyn_cast()) return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue()); } // When doing successive additions, bring constant to the right: turn (d0 + 2) // + d1 into (d0 + d1) + 2. if (lBin && lBin.getKind() == AffineExprKind::Add) { if (auto lrhs = lBin.getRHS().dyn_cast()) { return lBin.getLHS() + rhs + lrhs; } } // Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This // leads to a much more efficient form when 'c' is a power of two, and in // general a more compact and readable form. // Process '(expr floordiv c) * (-c)'. AffineBinaryOpExpr rBinOpExpr = rhs.dyn_cast(); if (!rBinOpExpr) return nullptr; auto lrhs = rBinOpExpr.getLHS(); auto rrhs = rBinOpExpr.getRHS(); // Process lrhs, which is 'expr floordiv c'. AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast(); if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv) return nullptr; auto llrhs = lrBinOpExpr.getLHS(); auto rlrhs = lrBinOpExpr.getRHS(); if (lhs == llrhs && rlrhs == -rrhs) { return lhs % rlrhs; } return nullptr; } AffineExpr AffineExpr::operator+(int64_t v) const { return *this + getAffineConstantExpr(v, getContext()); } AffineExpr AffineExpr::operator+(AffineExpr other) const { if (auto simplified = simplifyAdd(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::Add), *this, other); } /// Simplify a multiply expression. Return nullptr if it can't be simplified. static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = lhs.dyn_cast(); auto rhsConst = rhs.dyn_cast(); if (lhsConst && rhsConst) return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(), lhs.getContext()); assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant()); // Canonicalize the mul expression so that the constant/symbolic term is the // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a // constant. (Note that a constant is trivially symbolic). if (!rhs.isSymbolicOrConstant() || lhs.isa()) { // At least one of them has to be symbolic. return rhs * lhs; } // At this point, if there was a constant, it would be on the right. // Multiplication with a one is a noop, return the other input. if (rhsConst) { if (rhsConst.getValue() == 1) return lhs; // Multiplication with zero. if (rhsConst.getValue() == 0) return rhsConst; } // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6. auto lBin = lhs.dyn_cast(); if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = lBin.getRHS().dyn_cast()) return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue()); } // When doing successive multiplication, bring constant to the right: turn (d0 // * 2) * d1 into (d0 * d1) * 2. if (lBin && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = lBin.getRHS().dyn_cast()) { return (lBin.getLHS() * rhs) * lrhs; } } return nullptr; } AffineExpr AffineExpr::operator*(int64_t v) const { return *this * getAffineConstantExpr(v, getContext()); } AffineExpr AffineExpr::operator*(AffineExpr other) const { if (auto simplified = simplifyMul(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::Mul), *this, other); } // Unary minus, delegate to operator*. AffineExpr AffineExpr::operator-() const { return *this * getAffineConstantExpr(-1, getContext()); } // Delegate to operator+. AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); } AffineExpr AffineExpr::operator-(AffineExpr other) const { return *this + (-other); } static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = lhs.dyn_cast(); auto rhsConst = rhs.dyn_cast(); // mlir floordiv by zero or negative numbers is undefined and preserved as is. if (!rhsConst || rhsConst.getValue() < 1) return nullptr; if (lhsConst) return getAffineConstantExpr( floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); // Fold floordiv of a multiply with a constant that is a multiple of the // divisor. Eg: (i * 128) floordiv 64 = i * 2. if (rhsConst == 1) return lhs; // Simplify (expr * const) floordiv divConst when expr is known to be a // multiple of divConst. auto lBin = lhs.dyn_cast(); if (lBin && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = lBin.getRHS().dyn_cast()) { // rhsConst is known to be a positive constant. if (lrhs.getValue() % rhsConst.getValue() == 0) return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); } } // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is // known to be a multiple of divConst. if (lBin && lBin.getKind() == AffineExprKind::Add) { int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); // rhsConst is known to be a positive constant. if (llhsDiv % rhsConst.getValue() == 0 || lrhsDiv % rhsConst.getValue() == 0) return lBin.getLHS().floorDiv(rhsConst.getValue()) + lBin.getRHS().floorDiv(rhsConst.getValue()); } return nullptr; } AffineExpr AffineExpr::floorDiv(uint64_t v) const { return floorDiv(getAffineConstantExpr(v, getContext())); } AffineExpr AffineExpr::floorDiv(AffineExpr other) const { if (auto simplified = simplifyFloorDiv(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::FloorDiv), *this, other); } static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = lhs.dyn_cast(); auto rhsConst = rhs.dyn_cast(); if (!rhsConst || rhsConst.getValue() < 1) return nullptr; if (lhsConst) return getAffineConstantExpr( ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); // Fold ceildiv of a multiply with a constant that is a multiple of the // divisor. Eg: (i * 128) ceildiv 64 = i * 2. if (rhsConst.getValue() == 1) return lhs; // Simplify (expr * const) ceildiv divConst when const is known to be a // multiple of divConst. auto lBin = lhs.dyn_cast(); if (lBin && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = lBin.getRHS().dyn_cast()) { // rhsConst is known to be a positive constant. if (lrhs.getValue() % rhsConst.getValue() == 0) return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); } } return nullptr; } AffineExpr AffineExpr::ceilDiv(uint64_t v) const { return ceilDiv(getAffineConstantExpr(v, getContext())); } AffineExpr AffineExpr::ceilDiv(AffineExpr other) const { if (auto simplified = simplifyCeilDiv(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::CeilDiv), *this, other); } static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = lhs.dyn_cast(); auto rhsConst = rhs.dyn_cast(); // mod w.r.t zero or negative numbers is undefined and preserved as is. if (!rhsConst || rhsConst.getValue() < 1) return nullptr; if (lhsConst) return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); // Fold modulo of an expression that is known to be a multiple of a constant // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128) // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0. if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0) return getAffineConstantExpr(0, lhs.getContext()); // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is // known to be a multiple of divConst. auto lBin = lhs.dyn_cast(); if (lBin && lBin.getKind() == AffineExprKind::Add) { int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); // rhsConst is known to be a positive constant. if (llhsDiv % rhsConst.getValue() == 0) return lBin.getRHS() % rhsConst.getValue(); if (lrhsDiv % rhsConst.getValue() == 0) return lBin.getLHS() % rhsConst.getValue(); } return nullptr; } AffineExpr AffineExpr::operator%(uint64_t v) const { return *this % getAffineConstantExpr(v, getContext()); } AffineExpr AffineExpr::operator%(AffineExpr other) const { if (auto simplified = simplifyMod(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::Mod), *this, other); } AffineExpr AffineExpr::compose(AffineMap map) const { SmallVector dimReplacements(map.getResults().begin(), map.getResults().end()); return replaceDimsAndSymbols(dimReplacements, {}); } raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr &expr) { expr.print(os); return os; } /// Constructs an affine expression from a flat ArrayRef. If there are local /// identifiers (neither dimensional nor symbolic) that appear in the sum of /// products expression, 'localExprs' is expected to have the AffineExpr /// for it, and is substituted into. The ArrayRef 'eq' is expected to be in the /// format [dims, symbols, locals, constant term]. AffineExpr mlir::toAffineExpr(ArrayRef eq, unsigned numDims, unsigned numSymbols, ArrayRef localExprs, MLIRContext *context) { // Assert expected numLocals = eq.size() - numDims - numSymbols - 1 assert(eq.size() - numDims - numSymbols - 1 == localExprs.size() && "unexpected number of local expressions"); auto expr = getAffineConstantExpr(0, context); // Dimensions and symbols. for (unsigned j = 0; j < numDims + numSymbols; j++) { if (eq[j] == 0) { continue; } auto id = j < numDims ? getAffineDimExpr(j, context) : getAffineSymbolExpr(j - numDims, context); expr = expr + id * eq[j]; } // Local identifiers. for (unsigned j = numDims + numSymbols, e = eq.size() - 1; j < e; j++) { if (eq[j] == 0) { continue; } auto term = localExprs[j - numDims - numSymbols] * eq[j]; expr = expr + term; } // Constant term. int64_t constTerm = eq[eq.size() - 1]; if (constTerm != 0) expr = expr + constTerm; return expr; } SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims, unsigned numSymbols) : numDims(numDims), numSymbols(numSymbols), numLocals(0) { operandExprStack.reserve(8); } void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) { assert(operandExprStack.size() >= 2); // This is a pure affine expr; the RHS will be a constant. assert(expr.getRHS().isa()); // Get the RHS constant. auto rhsConst = operandExprStack.back()[getConstantIndex()]; operandExprStack.pop_back(); // Update the LHS in place instead of pop and push. auto &lhs = operandExprStack.back(); for (unsigned i = 0, e = lhs.size(); i < e; i++) { lhs[i] *= rhsConst; } } void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) { assert(operandExprStack.size() >= 2); const auto &rhs = operandExprStack.back(); auto &lhs = operandExprStack[operandExprStack.size() - 2]; assert(lhs.size() == rhs.size()); // Update the LHS in place. for (unsigned i = 0, e = rhs.size(); i < e; i++) { lhs[i] += rhs[i]; } // Pop off the RHS. operandExprStack.pop_back(); } // // t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1 // // A mod expression "expr mod c" is thus flattened by introducing a new local // variable q (= expr floordiv c), such that expr mod c is replaced with // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst. void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) { assert(operandExprStack.size() >= 2); // This is a pure affine expr; the RHS will be a constant. assert(expr.getRHS().isa()); auto rhsConst = operandExprStack.back()[getConstantIndex()]; operandExprStack.pop_back(); auto &lhs = operandExprStack.back(); // TODO(bondhugula): handle modulo by zero case when this issue is fixed // at the other places in the IR. assert(rhsConst > 0 && "RHS constant has to be positive"); // Check if the LHS expression is a multiple of modulo factor. unsigned i, e; for (i = 0, e = lhs.size(); i < e; i++) if (lhs[i] % rhsConst != 0) break; // If yes, modulo expression here simplifies to zero. if (i == lhs.size()) { std::fill(lhs.begin(), lhs.end(), 0); return; } // Add a local variable for the quotient, i.e., expr % c is replaced by // (expr - q * c) where q = expr floordiv c. Do this while canceling out // the GCD of expr and c. SmallVector floorDividend(lhs); uint64_t gcd = rhsConst; for (unsigned i = 0, e = lhs.size(); i < e; i++) gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i])); // Simplify the numerator and the denominator. if (gcd != 1) { for (unsigned i = 0, e = floorDividend.size(); i < e; i++) floorDividend[i] = floorDividend[i] / static_cast(gcd); } int64_t floorDivisor = rhsConst / static_cast(gcd); // Construct the AffineExpr form of the floordiv to store in localExprs. MLIRContext *context = expr.getContext(); auto dividendExpr = toAffineExpr(floorDividend, numDims, numSymbols, localExprs, context); auto divisorExpr = getAffineConstantExpr(floorDivisor, context); auto floorDivExpr = dividendExpr.floorDiv(divisorExpr); int loc; if ((loc = findLocalId(floorDivExpr)) == -1) { addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr); // Set result at top of stack to "lhs - rhsConst * q". lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst; } else { // Reuse the existing local id. lhs[getLocalVarStartIndex() + loc] = -rhsConst; } } void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) { visitDivExpr(expr, /*isCeil=*/true); } void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) { visitDivExpr(expr, /*isCeil=*/false); } void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) { operandExprStack.emplace_back(SmallVector(getNumCols(), 0)); auto &eq = operandExprStack.back(); assert(expr.getPosition() < numDims && "Inconsistent number of dims"); eq[getDimStartIndex() + expr.getPosition()] = 1; } void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) { operandExprStack.emplace_back(SmallVector(getNumCols(), 0)); auto &eq = operandExprStack.back(); assert(expr.getPosition() < numSymbols && "inconsistent number of symbols"); eq[getSymbolStartIndex() + expr.getPosition()] = 1; } void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) { operandExprStack.emplace_back(SmallVector(getNumCols(), 0)); auto &eq = operandExprStack.back(); eq[getConstantIndex()] = expr.getValue(); } // t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1 // A floordiv is thus flattened by introducing a new local variable q, and // replacing that expression with 'q' while adding the constraints // c * q <= expr <= c * q + c - 1 to localVarCst (done by // FlatAffineConstraints::addLocalFloorDiv). // // A ceildiv is similarly flattened: // t = expr ceildiv c <=> t = (expr + c - 1) floordiv c void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr, bool isCeil) { assert(operandExprStack.size() >= 2); assert(expr.getRHS().isa()); // This is a pure affine expr; the RHS is a positive constant. int64_t rhsConst = operandExprStack.back()[getConstantIndex()]; // TODO(bondhugula): handle division by zero at the same time the issue is // fixed at other places. assert(rhsConst > 0 && "RHS constant has to be positive"); operandExprStack.pop_back(); auto &lhs = operandExprStack.back(); // Simplify the floordiv, ceildiv if possible by canceling out the greatest // common divisors of the numerator and denominator. uint64_t gcd = std::abs(rhsConst); for (unsigned i = 0, e = lhs.size(); i < e; i++) gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i])); // Simplify the numerator and the denominator. if (gcd != 1) { for (unsigned i = 0, e = lhs.size(); i < e; i++) lhs[i] = lhs[i] / static_cast(gcd); } int64_t divisor = rhsConst / static_cast(gcd); // If the divisor becomes 1, the updated LHS is the result. (The // divisor can't be negative since rhsConst is positive). if (divisor == 1) return; // If the divisor cannot be simplified to one, we will have to retain // the ceil/floor expr (simplified up until here). Add an existential // quantifier to express its result, i.e., expr1 div expr2 is replaced // by a new identifier, q. MLIRContext *context = expr.getContext(); auto a = toAffineExpr(lhs, numDims, numSymbols, localExprs, context); auto b = getAffineConstantExpr(divisor, context); int loc; auto divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b); if ((loc = findLocalId(divExpr)) == -1) { if (!isCeil) { SmallVector dividend(lhs); addLocalFloorDivId(dividend, divisor, divExpr); } else { // lhs ceildiv c <=> (lhs + c - 1) floordiv c SmallVector dividend(lhs); dividend.back() += divisor - 1; addLocalFloorDivId(dividend, divisor, divExpr); } } // Set the expression on stack to the local var introduced to capture the // result of the division (floor or ceil). std::fill(lhs.begin(), lhs.end(), 0); if (loc == -1) lhs[getLocalVarStartIndex() + numLocals - 1] = 1; else lhs[getLocalVarStartIndex() + loc] = 1; } // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr). // The local identifier added is always a floordiv of a pure add/mul affine // function of other identifiers, coefficients of which are specified in // dividend and with respect to a positive constant divisor. localExpr is the // simplified tree expression (AffineExpr) corresponding to the quantifier. void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef dividend, int64_t divisor, AffineExpr localExpr) { assert(divisor > 0 && "positive constant divisor expected"); for (auto &subExpr : operandExprStack) subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0); localExprs.push_back(localExpr); numLocals++; // dividend and divisor are not used here; an override of this method uses it. } int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) { SmallVectorImpl::iterator it; if ((it = llvm::find(localExprs, localExpr)) == localExprs.end()) return -1; return it - localExprs.begin(); } /// Simplify the affine expression by flattening it and reconstructing it. AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims, unsigned numSymbols) { // TODO(bondhugula): only pure affine for now. The simplification here can // be extended to semi-affine maps in the future. if (!expr.isPureAffine()) return expr; SimpleAffineExprFlattener flattener(numDims, numSymbols); flattener.walkPostOrder(expr); ArrayRef flattenedExpr = flattener.operandExprStack.back(); auto simplifiedExpr = toAffineExpr(flattenedExpr, numDims, numSymbols, flattener.localExprs, expr.getContext()); flattener.operandExprStack.pop_back(); assert(flattener.operandExprStack.empty()); return simplifiedExpr; } // Flattens the expressions in map. Returns true on success or false // if 'expr' was unable to be flattened (i.e., semi-affine expressions not // handled yet). static bool getFlattenedAffineExprs(ArrayRef exprs, unsigned numDims, unsigned numSymbols, std::vector> *flattenedExprs) { if (exprs.empty()) { return true; } SimpleAffineExprFlattener flattener(numDims, numSymbols); // Use the same flattener to simplify each expression successively. This way // local identifiers / expressions are shared. for (auto expr : exprs) { if (!expr.isPureAffine()) return false; flattener.walkPostOrder(expr); } flattenedExprs->clear(); assert(flattener.operandExprStack.size() == exprs.size()); flattenedExprs->assign(flattener.operandExprStack.begin(), flattener.operandExprStack.end()); return true; } // Flattens 'expr' into 'flattenedExpr'. Returns true on success or false // if 'expr' was unable to be flattened (semi-affine expressions not handled // yet). bool mlir::getFlattenedAffineExpr(AffineExpr expr, unsigned numDims, unsigned numSymbols, SmallVectorImpl *flattenedExpr) { std::vector> flattenedExprs; bool ret = ::getFlattenedAffineExprs({expr}, numDims, numSymbols, &flattenedExprs); *flattenedExpr = flattenedExprs[0]; return ret; } /// Flattens the expressions in map. Returns true on success or false /// if 'expr' was unable to be flattened (i.e., semi-affine expressions not /// handled yet). bool mlir::getFlattenedAffineExprs( AffineMap map, std::vector> *flattenedExprs) { if (map.getNumResults() == 0) { return true; } return ::getFlattenedAffineExprs(map.getResults(), map.getNumDims(), map.getNumSymbols(), flattenedExprs); } bool mlir::getFlattenedAffineExprs( IntegerSet set, std::vector> *flattenedExprs) { if (set.getNumConstraints() == 0) { return true; } return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(), set.getNumSymbols(), flattenedExprs); }