//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Tiling pass. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Utils/Intrinsics.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/LoopOps/LoopOps.h" #include "mlir/EDSC/Helpers.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineExprVisitor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/OpImplementation.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/STLExtras.h" #include "mlir/Transforms/FoldUtils.h" #include "llvm/Support/CommandLine.h" using namespace mlir; using namespace mlir::edsc; using namespace mlir::edsc::intrinsics; using namespace mlir::linalg; using namespace mlir::linalg::intrinsics; using namespace mlir::loop; #define DEBUG_TYPE "linalg-tiling" static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options"); static llvm::cl::list clTileSizes("linalg-tile-sizes", llvm::cl::desc("Tile sizes by which to tile linalg operations"), llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated, llvm::cl::cat(clOptionsCategory)); static bool isZero(Value v) { return isa_and_nonnull(v.getDefiningOp()) && cast(v.getDefiningOp()).getValue() == 0; } using LoopIndexToRangeIndexMap = DenseMap; // Creates a number of ranges equal to the number of non-zero in `tileSizes`. // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has // one entry per surrounding loop. It uses zero as the convention that a // particular loop is not tiled. This convention simplifies implementations by // avoiding affine map manipulations. // The returned ranges correspond to the loop ranges, in the proper order, that // are tiled and for which new loops will be created. Also the function returns // a map from loop indices of the LinalgOp to the corresponding non-empty range // indices of newly created loops. static std::tuple, LoopIndexToRangeIndexMap> makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, ArrayRef allViewSizes, ArrayRef allTileSizes, OperationFolder *folder) { assert(allTileSizes.size() == map.getNumResults()); // Apply `map` to get view sizes in loop order. auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder); SmallVector tileSizes(allTileSizes.begin(), allTileSizes.end()); // Traverse the tile sizes, which are in loop order, erase zeros everywhere. LoopIndexToRangeIndexMap loopIndexToRangeIndex; for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { if (isZero(tileSizes[idx - zerosCount])) { viewSizes.erase(viewSizes.begin() + idx - zerosCount); tileSizes.erase(tileSizes.begin() + idx - zerosCount); ++zerosCount; continue; } loopIndexToRangeIndex[idx] = idx - zerosCount; } // Create a new range with the applied tile sizes. SmallVector res; for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) { res.push_back(SubViewOp::Range{constant_index(folder, 0), viewSizes[idx], tileSizes[idx]}); } return std::make_tuple(res, loopIndexToRangeIndex); } namespace { // Helper visitor to determine whether an AffineExpr is tiled. // This is achieved by traversing every AffineDimExpr with position `pos` and // checking whether the corresponding `tileSizes[pos]` is non-zero. // This also enforces only positive coefficients occur in multiplications. // // Example: // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] // struct TileCheck : public AffineExprVisitor { TileCheck(ArrayRef tileSizes) : isTiled(false), tileSizes(tileSizes) {} void visitDimExpr(AffineDimExpr expr) { isTiled |= !isZero(tileSizes[expr.getPosition()]); } void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { visit(expr.getLHS()); visit(expr.getRHS()); if (expr.getKind() == mlir::AffineExprKind::Mul) assert(expr.getRHS().cast().getValue() > 0 && "nonpositive multiplying coefficient"); } bool isTiled; ArrayRef tileSizes; }; } // namespace // IndexedGenericOp explicitly uses induction variables in the loop body. The // values of the indices that are used in the loop body for any given access of // input/output memref before `subview` op was applied should be invariant with // respect to tiling. // // Therefore, if the operation is tiled, we have to transform the indices // accordingly, i.e. offset them by the values of the corresponding induction // variables that are captured implicitly in the body of the op. // // Example. `linalg.indexed_generic` before tiling: // // #id_2d = (i, j) -> (i, j) // #pointwise_2d_trait = { // indexing_maps = [#id_2d, #id_2d], // iterator_types = ["parallel", "parallel"], // n_views = [1, 1] // } // linalg.indexed_generic #pointwise_2d_trait %operand, %result { // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): // // }: memref<50x100xf32>, memref<50x100xf32> // // After tiling pass with tiles sizes 10 and 25: // // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) // // %c1 = constant 1 : index // %c0 = constant 0 : index // %c25 = constant 25 : index // %c10 = constant 10 : index // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> // loop.for %k = %c0 to operand_dim_0 step %c10 { // loop.for %l = %c0 to operand_dim_1 step %c25 { // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] // : memref<50x100xf32> to memref // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] // : memref<50x100xf32> to memref // linalg.indexed_generic pointwise_2d_trait %4, %5 { // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): // // Indices `k` and `l` are implicitly captured in the body. // %transformed_i = addi %i, %k : index // index `i` is offset by %k // %transformed_j = addi %j, %l : index // index `j` is offset by %l // // Every use of %i, %j is replaced with %transformed_i, %transformed_j // // }: memref, memref // } // } // // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices // does not lead to losing information. static void transformIndexedGenericOpIndices( OpBuilder &b, LinalgOp op, ArrayRef pivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); auto indexedGenericOp = dyn_cast(op.getOperation()); if (!indexedGenericOp) return; // `linalg.indexed_generic` comes in two flavours. One has a region with a // single block that defines the loop body. The other has a `fun` attribute // that refers to an existing function symbol. The `fun` function call will be // inserted in the loop body in that case. // // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute. auto ®ion = indexedGenericOp.region(); if (region.empty()) { indexedGenericOp.emitOpError("expected a region"); return; } auto &block = region.getBlocks().front(); OpBuilder::InsertionGuard g(b); b.setInsertionPointToStart(&block); for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { auto rangeIndex = loopIndexToRangeIndex.find(i); if (rangeIndex == loopIndexToRangeIndex.end()) continue; Value oldIndex = block.getArgument(i); // Offset the index argument `i` by the value of the corresponding induction // variable and replace all uses of the previous value. Value newIndex = b.create(indexedGenericOp.getLoc(), oldIndex, pivs[rangeIndex->second]->getValue()); for (auto &use : oldIndex.getUses()) { if (use.getOwner() == newIndex.getDefiningOp()) continue; use.set(newIndex); } } } static bool isTiled(AffineExpr expr, ArrayRef tileSizes) { if (!expr) return false; TileCheck t(tileSizes); t.visit(expr); return t.isTiled; } // Checks whether the view with index `viewIndex` within `linalgOp` varies with // respect to a non-zero `tileSize`. static bool isTiled(AffineMap map, ArrayRef tileSizes) { if (!map) return false; for (unsigned r = 0; r < map.getNumResults(); ++r) if (isTiled(map.getResult(r), tileSizes)) return true; return false; } static SmallVector makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp, ArrayRef ivs, ArrayRef tileSizes, ArrayRef viewSizes, OperationFolder *folder) { assert(linalgOp.hasBufferSemantics() && "expected linalg op with buffer semantics"); assert(ivs.size() == static_cast(llvm::count_if( llvm::make_range(tileSizes.begin(), tileSizes.end()), [](Value v) { return !isZero(v); })) && "expected as many ivs as non-zero sizes"); using edsc::intrinsics::select; using edsc::op::operator+; using edsc::op::operator<; // Construct (potentially temporary) mins and maxes on which to apply maps // that define tile subviews. SmallVector lbs, subViewSizes; for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { bool isTiled = !isZero(tileSizes[idx]); lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)constant_index(folder, 0)); subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]); } auto *op = linalgOp.getOperation(); SmallVector res; res.reserve(op->getNumOperands()); auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin(); for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs(); ++viewIndex) { Value view = *(viewIteratorBegin + viewIndex); unsigned rank = view.getType().cast().getRank(); auto map = loopToOperandRangesMaps(linalgOp)[viewIndex]; // If the view is not tiled, we can use it as is. if (!isTiled(map, tileSizes)) { res.push_back(view); continue; } // Construct a new subview for the tile. SmallVector offsets, sizes, strides; offsets.reserve(rank); sizes.reserve(rank); strides.reserve(rank); for (unsigned r = 0; r < rank; ++r) { if (!isTiled(map.getSubMap({r}), tileSizes)) { offsets.push_back(constant_index(folder, 0)); sizes.push_back(dim(view, r)); strides.push_back(constant_index(folder, 1)); continue; } // Tiling creates a new slice at the proper index, the slice step is 1 // (i.e. the slice view does not subsample, stepping occurs in the loop). auto m = map.getSubMap({r}); auto offset = applyMapToValues(b, loc, m, lbs, folder).front(); offsets.push_back(offset); auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front(); sizes.push_back(size); strides.push_back(constant_index(folder, 1)); } // TODO(b/144419024) Atm std.subview is not guaranteed in-bounds. Depending // on the semantics we attach to it, we may need to use min(size, dim) here // and canonicalize later. res.push_back(b.create(loc, view, offsets, sizes, strides)); } // Traverse the mins/maxes and erase those that don't have uses left. // This is a special type of folding that we only apply when `folder` is // defined. if (folder) for (auto v : llvm::concat(lbs, subViewSizes)) if (v.use_empty()) v.getDefiningOp()->erase(); return res; } Optional mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef tileSizes, ArrayRef permutation, OperationFolder *folder) { assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); // 1. Enforce the convention that "tiling by zero" skips tiling a particular // dimension. This convention is significantly simpler to handle instead of // adjusting affine maps to account for missing dimensions. assert(op.getNumParallelLoops() + op.getNumReductionLoops() + op.getNumWindowLoops() == tileSizes.size() && "expected matching number of tile sizes and loops"); // If permutation is empty, use the identity. Build the permutation map // otherwise. auto invPermutationMap = AffineMap::getMultiDimIdentityMap( tileSizes.size(), ScopedContext::getContext()); if (!permutation.empty()) invPermutationMap = inversePermutation( AffineMap::getPermutationMap(permutation, ScopedContext::getContext())); OpBuilder::InsertionGuard g(b); b.setInsertionPoint(op); ScopedContext scope(b, op.getLoc()); // 2. Build the tiled loop ranges. auto viewSizes = getViewSizes(op); // The flattened loopToOperandRangesMaps is expected to be an invertible // permutation map (asserted in the inverse calculation). auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(loopToOperandRangesMaps(op))); assert(viewSizesToLoopsMap && "expected invertible map"); SmallVector loopRanges; LoopIndexToRangeIndexMap loopIndexToRangeIndex; std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap, viewSizes, tileSizes, folder); if (!permutation.empty()) applyPermutationToVector(loopRanges, permutation); // 3. Create the tiled loops. LinalgOp res = op; SmallVector ivs(loopRanges.size()); auto pivs = makeHandlePointers(MutableArrayRef(ivs)); LoopNestRangeBuilder(pivs, loopRanges)([&] { auto b = ScopedContext::getBuilder(); auto loc = ScopedContext::getLocation(); SmallVector ivValues(ivs.begin(), ivs.end()); // If we have to apply a permutation to the tiled loop nest, we have to // reorder the induction variables This permutation is the right one // assuming that loopRanges have previously been permuted by // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of // that one: (d0,d1,d2)->(d2,d0,d1) if (!permutation.empty()) ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder); auto views = makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder); auto operands = getAssumedNonViewOperands(op); views.append(operands.begin(), operands.end()); res = op.clone(b, loc, views); }); // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. transformIndexedGenericOpIndices(b, res, pivs, loopIndexToRangeIndex); // 5. Gather the newly created loops and return them with the new op. SmallVector loops; loops.reserve(ivs.size()); for (auto iv : ivs) loops.push_back(loop::getForInductionVarOwner(iv)); return TiledLinalgOp{res, loops}; } Optional mlir::linalg::tileLinalgOp( OpBuilder &b, LinalgOp op, ArrayRef tileSizes, ArrayRef permutation, OperationFolder *folder) { assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); if (tileSizes.empty()) return llvm::None; // The following uses the convention that "tiling by zero" skips tiling a // particular dimension. This convention is significantly simpler to handle // instead of adjusting affine maps to account for missing dimensions. auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() + op.getNumWindowLoops(); tileSizes = tileSizes.take_front(nLoops); // If only 0 tilings are left, then return. if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; })) return llvm::None; // Create a builder for tile size constants. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(op); ScopedContext scope(b, op.getLoc()); // Materialize concrete tile size values to pass the generic tiling function. SmallVector tileSizeValues; tileSizeValues.reserve(tileSizes.size()); for (auto ts : tileSizes) tileSizeValues.push_back(constant_index(folder, ts)); // Pad tile sizes with zero values to enforce our convention. if (tileSizeValues.size() < nLoops) { for (unsigned i = tileSizeValues.size(); i < nLoops; ++i) tileSizeValues.push_back(constant_index(folder, 0)); } return tileLinalgOp(b, op, tileSizeValues, permutation, folder); } static void tileLinalgOps(FuncOp f, ArrayRef tileSizes) { OpBuilder b(f); OperationFolder folder(f.getContext()); f.walk([tileSizes, &b, &folder](LinalgOp op) { if (!op.hasBufferSemantics()) return; auto opLoopsPair = tileLinalgOp(b, op, tileSizes, /*permutation=*/{}, &folder); // If tiling occurred successfully, erase old op. if (opLoopsPair) op.erase(); }); f.walk([](LinalgOp op) { if (!op.getOperation()->hasNoSideEffect()) return; if (op.getOperation()->use_empty()) op.erase(); }); } namespace { struct LinalgTilingPass : public FunctionPass { LinalgTilingPass() = default; LinalgTilingPass(ArrayRef sizes); void runOnFunction() override { tileLinalgOps(getFunction(), tileSizes); } SmallVector tileSizes; }; } // namespace LinalgTilingPass::LinalgTilingPass(ArrayRef sizes) { this->tileSizes.assign(sizes.begin(), sizes.end()); } std::unique_ptr> mlir::linalg::createLinalgTilingPass(ArrayRef tileSizes) { return std::make_unique(tileSizes); } static PassRegistration pass("linalg-tile", "Tile operations in the linalg dialect", [] { auto pass = std::make_unique(); pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end()); return pass; });