//===- Builders.cpp - MLIR Declarative Linalg Builders --------------------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/EDSC/Builders.h" #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/EDSC/Builders.h" #include "mlir/EDSC/Intrinsics.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/Support/Functional.h" using namespace mlir; using namespace mlir::edsc; using namespace mlir::edsc::intrinsics; using namespace mlir::edsc::ops; static void getMaxDimIndex(ArrayRef structuredIndices, unsigned &pos) { for (auto sidx : structuredIndices) { for (auto expr : sidx.getExprs()) { expr.walk([&pos](AffineExpr e) { if (auto d = e.dyn_cast()) pos = std::max(pos, d.getPosition()); }); } } } Operation *mlir::edsc::makeGenericLinalgOp( ArrayRef iteratorTypes, ArrayRef inputs, ArrayRef outputs, function_ref)> regionBuilder, ArrayRef otherValues, ArrayRef otherAttributes) { auto &builder = edsc::ScopedContext::getBuilder(); auto *ctx = builder.getContext(); unsigned nInputs = inputs.size(); unsigned nOutputs = outputs.size(); unsigned maxPos = 0; getMaxDimIndex(inputs, maxPos); getMaxDimIndex(outputs, maxPos); // maxPos is 0 indexed, need to turn this into a count (i.e. +1) unsigned nDims = maxPos + 1; SmallVector maps; maps.reserve(nInputs + nOutputs); for (auto in : inputs) maps.push_back( AffineMap::get(/*dimCount=*/nDims, /*symbolCount=*/0, in.getExprs())); for (auto out : outputs) maps.push_back( AffineMap::get(/*dimCount=*/nDims, /*symbolCount=*/0, out.getExprs())); unsigned nViews = nInputs + nOutputs; SmallVector values; values.reserve(nViews); values.append(inputs.begin(), inputs.end()); values.append(outputs.begin(), outputs.end()); auto iteratorStrTypes = functional::map(toString, iteratorTypes); // clang-format off auto *op = edsc::ScopedContext::getBuilder() .create( edsc::ScopedContext::getLocation(), ArrayRef{}, // TODO(ntv): support tensors values, IntegerAttr::get(IntegerType::get(64, ctx), nInputs), IntegerAttr::get(IntegerType::get(64, ctx), nOutputs), builder.getAffineMapArrayAttr(maps), builder.getStrArrayAttr(iteratorStrTypes), StringAttr() /*doc*/, FlatSymbolRefAttr() /*fun*/, StringAttr() /*library_call*/ /* TODO: other attributes in op */ ) .getOperation(); // clang-format on using namespace edsc; SmallVector blockTypes; blockTypes.reserve(values.size()); for (auto it : llvm::enumerate(values)) blockTypes.push_back((it.index() < nViews) ? getElementTypeOrSelf(it.value()) : it.value().getType()); assert(op->getRegions().front().empty()); op->getRegions().front().push_front(new Block); OpBuilder bb(op->getRegions().front()); ScopedContext scope(bb, op->getLoc()); BlockHandle b; auto handles = makeValueHandles(blockTypes); BlockBuilder(&b, makeHandlePointers(MutableArrayRef(handles)))( [&] { regionBuilder(b.getBlock()->getArguments()); }); return op; } void mlir::edsc::ops::macRegionBuilder(ArrayRef args) { using edsc::op::operator+; using edsc::op::operator*; assert(args.size() == 3 && "expected 3 block arguments"); ValueHandle a(args[0]), b(args[1]), c(args[2]); linalg_yield((c + a * b).getValue()); } Operation *mlir::edsc::ops::linalg_pointwise(UnaryPointwiseOpBuilder unaryOp, StructuredIndexed I, StructuredIndexed O) { SmallVector iterTypes(O.getExprs().size(), edsc::IterType::Parallel); auto fun = [&unaryOp](ArrayRef args) { assert(args.size() == 2 && "expected 2 block arguments"); ValueHandle a(args[0]); linalg_yield(unaryOp(a)); }; return makeGenericLinalgOp(iterTypes, {I}, {O}, fun); } Operation *mlir::edsc::ops::linalg_pointwise_tanh(StructuredIndexed I, StructuredIndexed O) { ; using edsc::intrinsics::tanh; UnaryPointwiseOpBuilder unOp([](ValueHandle a) -> Value { return tanh(a); }); return linalg_pointwise(unOp, I, O); } /// Binary pointwise operation (with broadcast) entry point. Operation *mlir::edsc::ops::linalg_pointwise(BinaryPointwiseOpBuilder binaryOp, StructuredIndexed I1, StructuredIndexed I2, StructuredIndexed O) { SmallVector iterTypes(O.getExprs().size(), edsc::IterType::Parallel); auto fun = [&binaryOp](ArrayRef args) { assert(args.size() == 3 && "expected 3 block arguments"); ValueHandle a(args[0]), b(args[1]); linalg_yield(binaryOp(a, b)); }; return makeGenericLinalgOp(iterTypes, {I1, I2}, {O}, fun); } Operation *mlir::edsc::ops::linalg_pointwise_add(StructuredIndexed I1, StructuredIndexed I2, StructuredIndexed O) { using edsc::op::operator+; BinaryPointwiseOpBuilder binOp( [](ValueHandle a, ValueHandle b) -> Value { return a + b; }); return linalg_pointwise(binOp, I1, I2, O); } Operation *mlir::edsc::ops::linalg_pointwise_max(StructuredIndexed I1, StructuredIndexed I2, StructuredIndexed O) { BinaryPointwiseOpBuilder binOp([](ValueHandle a, ValueHandle b) -> Value { using edsc::intrinsics::select; using edsc::op::operator>; return select(a > b, a, b).getValue(); }); return linalg_pointwise(binOp, I1, I2, O); } Operation *mlir::edsc::ops::linalg_matmul(ValueHandle vA, ValueHandle vB, ValueHandle vC) { // clang-format off AffineExpr m, n, k; bindDims(ScopedContext::getContext(), m, n, k); StructuredIndexed A(vA), B(vB), C(vC); return makeGenericLinalgOp( {IterType::Parallel, IterType::Parallel, IterType::Reduction}, {A({m, k}), B({k, n})}, {C({m, n})}, macRegionBuilder); // clang-format on } Operation *mlir::edsc::ops::linalg_conv_nhwc(ValueHandle vI, ValueHandle vW, ValueHandle vO, ArrayRef strides, ArrayRef dilations) { MLIRContext *ctx = ScopedContext::getContext(); // TODO(ntv) some template magic to make everything rank-polymorphic. assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm"); assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm"); // Some short names. auto par = IterType::Parallel; auto red = IterType::Reduction; auto s = strides; auto d = dilations; AffineExpr b, f, h, w, kh, kw, c; bindDims(ctx, b, f, h, w, kh, kw, c); unsigned numDims = c.cast().getPosition() + 1; StructuredIndexed I(vI), W(vW), O(vO); // clang-format off return makeGenericLinalgOp( {par, par, par, par, red, red, red}, { I({b, // Roundtrip to flattened form to serve as canonicalization and ensure // consistent ordering of subexpressions. simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0), simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0), c}), W({kh, kw, c, f})}, { O({b, h, w, f})}, macRegionBuilder); // clang-format on } Operation *mlir::edsc::ops::linalg_dilated_conv_nhwc( ValueHandle vI, ValueHandle vW, ValueHandle vO, int depth_multiplier, ArrayRef strides, ArrayRef dilations) { MLIRContext *ctx = ScopedContext::getContext(); // TODO(ntv) some template magic to make everything rank-polymorphic. assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm"); assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm"); // Some short names. auto par = IterType::Parallel; auto red = IterType::Reduction; auto s = strides; auto d = dilations; // clang-format off AffineExpr b, dm, c, h, w, kh, kw; bindDims(ctx, b, dm, c, h, w, kh, kw); unsigned numDims = kw.cast().getPosition() + 1; StructuredIndexed I(vI), W(vW), O(vO); return makeGenericLinalgOp( {par, par, par, par, par, red, red}, { I({b, // Roundtrip to flattened form to serve as canonicalization and ensure // consistent ordering of subexpressions. simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0), simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0), c}), W({kh, kw, c, dm})}, { O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})}, macRegionBuilder); // clang-format on }