//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the GPU kernel-related dialect and its operations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/StandardOps/Ops.h" #include "mlir/IR/Builders.h" #include "mlir/IR/Function.h" #include "mlir/IR/FunctionImplementation.h" #include "mlir/IR/Module.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/StandardTypes.h" using namespace mlir; using namespace mlir::gpu; //===----------------------------------------------------------------------===// // GPUDialect //===----------------------------------------------------------------------===// StringRef GPUDialect::getDialectName() { return "gpu"; } bool GPUDialect::isKernel(Operation *op) { UnitAttr isKernelAttr = op->getAttrOfType(getKernelFuncAttrName()); return static_cast(isKernelAttr); } GPUDialect::GPUDialect(MLIRContext *context) : Dialect(getDialectName(), context) { addOperations< #define GET_OP_LIST #include "mlir/Dialect/GPU/GPUOps.cpp.inc" >(); } LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, NamedAttribute attr) { if (!attr.second.isa() || !attr.first.is(getContainerModuleAttrName())) return success(); auto module = dyn_cast(op); if (!module) return op->emitError("expected '") << getContainerModuleAttrName() << "' attribute to be attached to '" << ModuleOp::getOperationName() << '\''; auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { // Ignore launches that are nested more or less deep than functions in the // module we are currently checking. if (!launchOp.getParentOp() || launchOp.getParentOp()->getParentOp() != module) return success(); // Ignore launch ops with missing attributes here. The errors will be // reported by the verifiers of those ops. if (!launchOp.getAttrOfType( LaunchFuncOp::getKernelAttrName()) || !launchOp.getAttrOfType( LaunchFuncOp::getKernelModuleAttrName())) return success(); // Check that `launch_func` refers to a well-formed GPU kernel module. StringRef kernelModuleName = launchOp.getKernelModuleName(); auto kernelModule = module.lookupSymbol(kernelModuleName); if (!kernelModule) return launchOp.emitOpError() << "kernel module '" << kernelModuleName << "' is undefined"; if (!kernelModule.getAttrOfType( GPUDialect::getKernelModuleAttrName())) return launchOp.emitOpError("module '") << kernelModuleName << "' is missing the '" << GPUDialect::getKernelModuleAttrName() << "' attribute"; // Check that `launch_func` refers to a well-formed kernel function. StringRef kernelName = launchOp.kernel(); Operation *kernelFunc = kernelModule.lookupSymbol(kernelName); auto kernelGPUFunction = dyn_cast_or_null(kernelFunc); auto kernelLLVMFunction = dyn_cast_or_null(kernelFunc); if (!kernelGPUFunction && !kernelLLVMFunction) return launchOp.emitOpError("kernel function '") << kernelName << "' is undefined"; if (!kernelFunc->getAttrOfType( GPUDialect::getKernelFuncAttrName())) return launchOp.emitOpError("kernel function is missing the '") << GPUDialect::getKernelFuncAttrName() << "' attribute"; unsigned actualNumArguments = launchOp.getNumKernelOperands(); unsigned expectedNumArguments = kernelLLVMFunction ? kernelLLVMFunction.getNumArguments() : kernelGPUFunction.getNumArguments(); if (expectedNumArguments != actualNumArguments) return launchOp.emitOpError("got ") << actualNumArguments << " kernel operands but expected " << expectedNumArguments; // Due to the ordering of the current impl of lowering and LLVMLowering, // type checks need to be temporarily disabled. // TODO(ntv,zinenko,herhut): reactivate checks once "changing gpu.launchFunc // to encode target module" has landed. // auto functionType = kernelFunc.getType(); // for (unsigned i = 0; i < numKernelFuncArgs; ++i) { // if (getKernelOperand(i).getType() != functionType.getInput(i)) { // return emitOpError("type of function argument ") // << i << " does not match"; // } // } return success(); }); return walkResult.wasInterrupted() ? failure() : success(); } template static LogicalResult verifyIndexOp(T op) { auto dimension = op.dimension(); if (dimension != "x" && dimension != "y" && dimension != "z") return op.emitError("dimension \"") << dimension << "\" is invalid"; return success(); } static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { if (allReduce.body().empty() != allReduce.op().hasValue()) return allReduce.emitError( "expected either an op attribute or a non-empty body"); if (!allReduce.body().empty()) { if (allReduce.body().front().getNumArguments() != 2) return allReduce.emitError("expected two region arguments"); for (auto argument : allReduce.body().front().getArguments()) { if (argument.getType() != allReduce.getType()) return allReduce.emitError("incorrect region argument type"); } unsigned yieldCount = 0; for (Block &block : allReduce.body()) { if (auto yield = dyn_cast(block.getTerminator())) { if (yield.getNumOperands() != 1) return allReduce.emitError("expected one gpu.yield operand"); if (yield.getOperand(0).getType() != allReduce.getType()) return allReduce.emitError("incorrect gpu.yield type"); ++yieldCount; } } if (yieldCount == 0) return allReduce.emitError("expected gpu.yield op in region"); } return success(); } static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { auto type = shuffleOp.value().getType(); if (shuffleOp.result().getType() != type) { return shuffleOp.emitOpError() << "requires the same type for value operand and result"; } if (!type.isIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { return shuffleOp.emitOpError() << "requires value operand type to be f32 or i32"; } return success(); } static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { p << ShuffleOp::getOperationName() << ' ' << op.getOperands() << ' ' << op.mode() << " : " << op.value().getType(); } static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { SmallVector operandInfo; if (parser.parseOperandList(operandInfo, 3)) return failure(); StringRef mode; if (parser.parseKeyword(&mode)) return failure(); state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); Type valueType; Type int32Type = parser.getBuilder().getIntegerType(32); Type int1Type = parser.getBuilder().getI1Type(); if (parser.parseColonType(valueType) || parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, parser.getCurrentLocation(), state.operands) || parser.addTypesToList({valueType, int1Type}, state.types)) return failure(); return success(); } //===----------------------------------------------------------------------===// // LaunchOp //===----------------------------------------------------------------------===// void LaunchOp::build(Builder *builder, OperationState &result, Value gridSizeX, Value gridSizeY, Value gridSizeZ, Value blockSizeX, Value blockSizeY, Value blockSizeZ, ValueRange operands) { // Add grid and block sizes as op operands, followed by the data operands. result.addOperands( {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); result.addOperands(operands); // Create a kernel body region with kNumConfigRegionAttributes + N arguments, // where the first kNumConfigRegionAttributes arguments have `index` type and // the rest have the same types as the data operands. Region *kernelRegion = result.addRegion(); Block *body = new Block(); body->addArguments( std::vector(kNumConfigRegionAttributes, builder->getIndexType())); body->addArguments(llvm::to_vector<4>(operands.getTypes())); kernelRegion->push_back(body); } KernelDim3 LaunchOp::getBlockIds() { assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); auto args = body().getBlocks().front().getArguments(); return KernelDim3{args[0], args[1], args[2]}; } KernelDim3 LaunchOp::getThreadIds() { assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); auto args = body().getBlocks().front().getArguments(); return KernelDim3{args[3], args[4], args[5]}; } KernelDim3 LaunchOp::getGridSize() { assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); auto args = body().getBlocks().front().getArguments(); return KernelDim3{args[6], args[7], args[8]}; } KernelDim3 LaunchOp::getBlockSize() { assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); auto args = body().getBlocks().front().getArguments(); return KernelDim3{args[9], args[10], args[11]}; } LaunchOp::operand_range LaunchOp::getKernelOperandValues() { return llvm::drop_begin(getOperands(), kNumConfigOperands); } LaunchOp::operand_type_range LaunchOp::getKernelOperandTypes() { return llvm::drop_begin(getOperandTypes(), kNumConfigOperands); } KernelDim3 LaunchOp::getGridSizeOperandValues() { return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; } KernelDim3 LaunchOp::getBlockSizeOperandValues() { return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; } iterator_range LaunchOp::getKernelArguments() { auto args = body().getBlocks().front().getArguments(); return llvm::drop_begin(args, LaunchOp::kNumConfigRegionAttributes); } static LogicalResult verify(LaunchOp op) { // Kernel launch takes kNumConfigOperands leading operands for grid/block // sizes and transforms them into kNumConfigRegionAttributes region arguments // for block/thread identifiers and grid/block sizes. if (!op.body().empty()) { Block &entryBlock = op.body().front(); if (entryBlock.getNumArguments() != LaunchOp::kNumConfigOperands + op.getNumOperands()) return op.emitOpError("unexpected number of region arguments"); } // Block terminators without successors are expected to exit the kernel region // and must be `gpu.launch`. for (Block &block : op.body()) { if (block.empty()) continue; if (block.back().getNumSuccessors() != 0) continue; if (!isa(&block.back())) { return block.back() .emitError("expected 'gpu.terminator' or a terminator with " "successors") .attachNote(op.getLoc()) << "in '" << LaunchOp::getOperationName() << "' body region"; } } return success(); } // Pretty-print the kernel grid/block size assignment as // (%iter-x, %iter-y, %iter-z) in // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) // where %size-* and %iter-* will correspond to the body region arguments. static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, ValueRange operands, KernelDim3 ids) { p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; p << size.x << " = " << operands[0] << ", "; p << size.y << " = " << operands[1] << ", "; p << size.z << " = " << operands[2] << ')'; } static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { ValueRange operands = op.getOperands(); // Print the launch configuration. p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword(); printSizeAssignment(p, op.getGridSize(), operands.take_front(3), op.getBlockIds()); p << ' ' << op.getThreadsKeyword(); printSizeAssignment(p, op.getBlockSize(), operands.slice(3, 3), op.getThreadIds()); // From now on, the first kNumConfigOperands operands corresponding to grid // and block sizes are irrelevant, so we can drop them. operands = operands.drop_front(LaunchOp::kNumConfigOperands); // Print the data argument remapping. if (!op.body().empty() && !operands.empty()) { p << ' ' << op.getArgsKeyword() << '('; Block *entryBlock = &op.body().front(); interleaveComma(llvm::seq(0, operands.size()), p, [&](int i) { p << entryBlock->getArgument(LaunchOp::kNumConfigRegionAttributes + i) << " = " << operands[i]; }); p << ") "; } // Print the types of data arguments. if (!operands.empty()) p << ": " << operands.getTypes(); p.printRegion(op.body(), /*printEntryBlockArgs=*/false); p.printOptionalAttrDict(op.getAttrs()); } // Parse the size assignment blocks for blocks and threads. These have the form // (%region_arg, %region_arg, %region_arg) in // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) // where %region_arg are percent-identifiers for the region arguments to be // introduced further (SSA defs), and %operand are percent-identifiers for the // SSA value uses. static ParseResult parseSizeAssignment(OpAsmParser &parser, MutableArrayRef sizes, MutableArrayRef regionSizes, MutableArrayRef indices) { assert(indices.size() == 3 && "space for three indices expected"); SmallVector args; if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, OpAsmParser::Delimiter::Paren) || parser.parseKeyword("in") || parser.parseLParen()) return failure(); std::move(args.begin(), args.end(), indices.begin()); for (int i = 0; i < 3; ++i) { if (i != 0 && parser.parseComma()) return failure(); if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || parser.parseOperand(sizes[i])) return failure(); } return parser.parseRParen(); } // Parses a Launch operation. // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment // `threads` `(` ssa-id-list `)` `in` ssa-reassignment // (`args` ssa-reassignment `:` type-list)? // region attr-dict? // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { // Sizes of the grid and block. SmallVector sizes( LaunchOp::kNumConfigOperands); MutableArrayRef sizesRef(sizes); // Actual (data) operands passed to the kernel. SmallVector dataOperands; // Region arguments to be created. SmallVector regionArgs( LaunchOp::kNumConfigRegionAttributes); MutableArrayRef regionArgsRef(regionArgs); // Parse the size assignment segments: the first segment assigns grid sizes // and defines values for block identifiers; the second segment assigns block // sizes and defines values for thread identifiers. In the region argument // list, identifiers precede sizes, and block-related values precede // thread-related values. if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || parseSizeAssignment(parser, sizesRef.take_front(3), regionArgsRef.slice(6, 3), regionArgsRef.slice(0, 3)) || parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || parseSizeAssignment(parser, sizesRef.drop_front(3), regionArgsRef.slice(9, 3), regionArgsRef.slice(3, 3)) || parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), result.operands)) return failure(); // If kernel argument renaming segment is present, parse it. When present, // the segment should have at least one element. If this segment is present, // so is the trailing type list. Parse it as well and use the parsed types // to resolve the operands passed to the kernel arguments. SmallVector dataTypes; if (!parser.parseOptionalKeyword(LaunchOp::getArgsKeyword())) { llvm::SMLoc argsLoc = parser.getCurrentLocation(); regionArgs.push_back({}); dataOperands.push_back({}); if (parser.parseLParen() || parser.parseRegionArgument(regionArgs.back()) || parser.parseEqual() || parser.parseOperand(dataOperands.back())) return failure(); while (!parser.parseOptionalComma()) { regionArgs.push_back({}); dataOperands.push_back({}); if (parser.parseRegionArgument(regionArgs.back()) || parser.parseEqual() || parser.parseOperand(dataOperands.back())) return failure(); } if (parser.parseRParen() || parser.parseColonTypeList(dataTypes) || parser.resolveOperands(dataOperands, dataTypes, argsLoc, result.operands)) return failure(); } // Introduce the body region and parse it. The region has // kNumConfigRegionAttributes leading arguments that correspond to // block/thread identifiers and grid/block sizes, all of the `index` type. // Follow the actual kernel arguments. Type index = parser.getBuilder().getIndexType(); dataTypes.insert(dataTypes.begin(), LaunchOp::kNumConfigRegionAttributes, index); Region *body = result.addRegion(); return failure(parser.parseRegion(*body, regionArgs, dataTypes) || parser.parseOptionalAttrDict(result.attributes)); } void LaunchOp::eraseKernelArgument(unsigned index) { Block &entryBlock = body().front(); assert(index < entryBlock.getNumArguments() - kNumConfigRegionAttributes && "kernel argument index overflow"); entryBlock.eraseArgument(kNumConfigRegionAttributes + index); getOperation()->eraseOperand(kNumConfigOperands + index); } namespace { // Clone any known constants passed as operands to the kernel into its body. class PropagateConstantBounds : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; PatternMatchResult matchAndRewrite(LaunchOp launchOp, PatternRewriter &rewriter) const override { rewriter.startRootUpdate(launchOp); PatternRewriter::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(&launchOp.body().front()); // Traverse operands passed to kernel and check if some of them are known // constants. If so, clone the constant operation inside the kernel region // and use it instead of passing the value from the parent region. Perform // the traversal in the inverse order to simplify index arithmetics when // dropping arguments. auto operands = launchOp.getKernelOperandValues(); auto kernelArgs = launchOp.getKernelArguments(); bool found = false; for (unsigned i = operands.size(); i > 0; --i) { unsigned index = i - 1; Value operand = operands[index]; if (!isa_and_nonnull(operand.getDefiningOp())) continue; found = true; Value internalConstant = rewriter.clone(*operand.getDefiningOp())->getResult(0); Value kernelArg = *std::next(kernelArgs.begin(), index); kernelArg.replaceAllUsesWith(internalConstant); launchOp.eraseKernelArgument(index); } if (!found) { rewriter.cancelRootUpdate(launchOp); return matchFailure(); } rewriter.finalizeRootUpdate(launchOp); return matchSuccess(); } }; } // end namespace void LaunchOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } //===----------------------------------------------------------------------===// // LaunchFuncOp //===----------------------------------------------------------------------===// void LaunchFuncOp::build(Builder *builder, OperationState &result, GPUFuncOp kernelFunc, Value gridSizeX, Value gridSizeY, Value gridSizeZ, Value blockSizeX, Value blockSizeY, Value blockSizeZ, ValueRange kernelOperands) { // Add grid and block sizes as op operands, followed by the data operands. result.addOperands( {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); result.addOperands(kernelOperands); result.addAttribute(getKernelAttrName(), builder->getStringAttr(kernelFunc.getName())); auto kernelModule = kernelFunc.getParentOfType(); if (Optional kernelModuleName = kernelModule.getName()) result.addAttribute(getKernelModuleAttrName(), builder->getSymbolRefAttr(*kernelModuleName)); } void LaunchFuncOp::build(Builder *builder, OperationState &result, GPUFuncOp kernelFunc, KernelDim3 gridSize, KernelDim3 blockSize, ValueRange kernelOperands) { build(builder, result, kernelFunc, gridSize.x, gridSize.y, gridSize.z, blockSize.x, blockSize.y, blockSize.z, kernelOperands); } StringRef LaunchFuncOp::kernel() { return getAttrOfType(getKernelAttrName()).getValue(); } unsigned LaunchFuncOp::getNumKernelOperands() { return getNumOperands() - kNumConfigOperands; } StringRef LaunchFuncOp::getKernelModuleName() { return getAttrOfType(getKernelModuleAttrName()) .getRootReference(); } Value LaunchFuncOp::getKernelOperand(unsigned i) { return getOperation()->getOperand(i + kNumConfigOperands); } KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; } KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; } static LogicalResult verify(LaunchFuncOp op) { auto module = op.getParentOfType(); if (!module) return op.emitOpError("expected to belong to a module"); if (!module.getAttrOfType(GPUDialect::getContainerModuleAttrName())) return op.emitOpError( "expected the closest surrounding module to have the '" + GPUDialect::getContainerModuleAttrName() + "' attribute"); auto kernelAttr = op.getAttrOfType(op.getKernelAttrName()); if (!kernelAttr) return op.emitOpError("string attribute '" + op.getKernelAttrName() + "' must be specified"); auto kernelModuleAttr = op.getAttrOfType(op.getKernelModuleAttrName()); if (!kernelModuleAttr) return op.emitOpError("symbol reference attribute '" + op.getKernelModuleAttrName() + "' must be specified"); return success(); } //===----------------------------------------------------------------------===// // GPUFuncOp //===----------------------------------------------------------------------===// /// Adds a workgroup attribution to "op" of the MemRef type with the given shape /// and element type. Value GPUFuncOp::addWorkgroupAttribution(ArrayRef shape, Type elementType) { unsigned pos = getNumFuncArguments() + getNumWorkgroupAttributions(); Block &bodyBlock = body().front(); Value attribution = bodyBlock.insertArgument( std::next(bodyBlock.args_begin(), pos), MemRefType::get(shape, elementType, /*affineMapComposition=*/{}, GPUDialect::getWorkgroupAddressSpace())); auto numWorkgroupBuffersAttr = getAttrOfType(getNumWorkgroupAttributionsAttrName()); setAttr(getNumWorkgroupAttributionsAttrName(), IntegerAttr::get(numWorkgroupBuffersAttr.getType(), numWorkgroupBuffersAttr.getValue() + 1)); return attribution; } void GPUFuncOp::build(Builder *builder, OperationState &result, StringRef name, FunctionType type, ArrayRef workgroupAttributions, ArrayRef privateAttributions, ArrayRef attrs) { result.addAttribute(SymbolTable::getSymbolAttrName(), builder->getStringAttr(name)); result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); result.addAttribute(getNumWorkgroupAttributionsAttrName(), builder->getI64IntegerAttr(workgroupAttributions.size())); result.addAttributes(attrs); Region *body = result.addRegion(); Block *entryBlock = new Block; entryBlock->addArguments(type.getInputs()); entryBlock->addArguments(workgroupAttributions); entryBlock->addArguments(privateAttributions); body->getBlocks().push_back(entryBlock); } /// Parses a GPU function memory attribution. /// /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? /// (`private` `(` ssa-id-and-type-list `)`)? /// /// Note that this function parses only one of the two similar parts, with the /// keyword provided as argument. static ParseResult parseAttributions(OpAsmParser &parser, StringRef keyword, SmallVectorImpl &args, SmallVectorImpl &argTypes) { // If we could not parse the keyword, just assume empty list and succeed. if (failed(parser.parseOptionalKeyword(keyword))) return success(); if (failed(parser.parseLParen())) return failure(); // Early exit for an empty list. if (succeeded(parser.parseOptionalRParen())) return success(); do { OpAsmParser::OperandType arg; Type type; if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) return failure(); args.push_back(arg); argTypes.push_back(type); } while (succeeded(parser.parseOptionalComma())); return parser.parseRParen(); } /// Parses a GPU function. /// /// ::= `gpu.func` symbol-ref-id `(` argument-list `)` /// (`->` function-result-list)? memory-attribution `kernel`? /// function-attributes? region static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { SmallVector entryArgs; SmallVector, 1> argAttrs; SmallVector, 1> resultAttrs; SmallVector argTypes; SmallVector resultTypes; bool isVariadic; // Parse the function name. StringAttr nameAttr; if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), result.attributes)) return failure(); auto signatureLocation = parser.getCurrentLocation(); if (failed(impl::parseFunctionSignature( parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, isVariadic, resultTypes, resultAttrs))) return failure(); if (entryArgs.empty() && !argTypes.empty()) return parser.emitError(signatureLocation) << "gpu.func requires named arguments"; // Construct the function type. More types will be added to the region, but // not to the functiont type. Builder &builder = parser.getBuilder(); auto type = builder.getFunctionType(argTypes, resultTypes); result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); // Parse workgroup memory attributions. if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), entryArgs, argTypes))) return failure(); // Store the number of operands we just parsed as the number of workgroup // memory attributions. unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), builder.getI64IntegerAttr(numWorkgroupAttrs)); // Parse private memory attributions. if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs, argTypes))) return failure(); // Parse the kernel attribute if present. if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) result.addAttribute(GPUDialect::getKernelFuncAttrName(), builder.getUnitAttr()); // Parse attributes. if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) return failure(); mlir::impl::addArgAndResultAttrs(builder, result, argAttrs, resultAttrs); // Parse the region. If no argument names were provided, take all names // (including those of attributions) from the entry block. auto *body = result.addRegion(); return parser.parseRegion(*body, entryArgs, argTypes); } static void printAttributions(OpAsmPrinter &p, StringRef keyword, ArrayRef values) { if (values.empty()) return; p << ' ' << keyword << '('; interleaveComma(values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); p << ')'; } /// Prints a GPU Func op. static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { p << GPUFuncOp::getOperationName() << ' '; p.printSymbolName(op.getName()); FunctionType type = op.getType(); impl::printFunctionSignature(p, op.getOperation(), type.getInputs(), /*isVariadic=*/false, type.getResults()); printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); if (op.isKernel()) p << ' ' << op.getKernelKeyword(); impl::printFunctionAttributes(p, op.getOperation(), type.getNumInputs(), type.getNumResults(), {op.getNumWorkgroupAttributionsAttrName(), GPUDialect::getKernelFuncAttrName()}); p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); } void GPUFuncOp::setType(FunctionType newType) { auto oldType = getType(); assert(newType.getNumResults() == oldType.getNumResults() && "unimplemented: changes to the number of results"); SmallVector nameBuf; for (int i = newType.getNumInputs(), e = oldType.getNumInputs(); i < e; i++) removeAttr(getArgAttrName(i, nameBuf)); setAttr(getTypeAttrName(), TypeAttr::get(newType)); } /// Hook for FunctionLike verifier. LogicalResult GPUFuncOp::verifyType() { Type type = getTypeAttr().getValue(); if (!type.isa()) return emitOpError("requires '" + getTypeAttrName() + "' attribute of function type"); return success(); } static LogicalResult verifyAttributions(Operation *op, ArrayRef attributions, unsigned memorySpace) { for (Value v : attributions) { auto type = v.getType().dyn_cast(); if (!type) return op->emitOpError() << "expected memref type in attribution"; if (type.getMemorySpace() != memorySpace) { return op->emitOpError() << "expected memory space " << memorySpace << " in attribution"; } } return success(); } /// Verifies the body of the function. LogicalResult GPUFuncOp::verifyBody() { unsigned numFuncArguments = getNumArguments(); unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); unsigned numBlockArguments = front().getNumArguments(); if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) return emitOpError() << "expected at least " << numFuncArguments + numWorkgroupAttributions << " arguments to body region"; ArrayRef funcArgTypes = getType().getInputs(); for (unsigned i = 0; i < numFuncArguments; ++i) { Type blockArgType = front().getArgument(i).getType(); if (funcArgTypes[i] != blockArgType) return emitOpError() << "expected body region argument #" << i << " to be of type " << funcArgTypes[i] << ", got " << blockArgType; } if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), GPUDialect::getWorkgroupAddressSpace())) || failed(verifyAttributions(getOperation(), getPrivateAttributions(), GPUDialect::getPrivateAddressSpace()))) return failure(); return success(); } // Namespace avoids ambiguous ReturnOpOperandAdaptor. namespace mlir { namespace gpu { #define GET_OP_CLASSES #include "mlir/Dialect/GPU/GPUOps.cpp.inc" } // namespace gpu } // namespace mlir