//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This implements a straightforward conversion of an loop nest into a GPU // kernel. The caller is expected to guarantee that the conversion is correct // or to further transform the kernel to ensure correctness. // //===----------------------------------------------------------------------===// #include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h" #include "mlir/AffineOps/AffineOps.h" #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/LoopOps/LoopOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/StandardOps/Ops.h" #include "mlir/Transforms/LowerAffine.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "loops-to-gpu" using namespace mlir; using namespace mlir::loop; // Extract an indexed value from KernelDim3. static Value *getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { switch (pos) { case 0: return dim3.x; case 1: return dim3.y; case 2: return dim3.z; default: llvm_unreachable("dim3 position out of bounds"); } return nullptr; } // Get the lower bound-related operands of a loop operation. static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) { return forOp.getLowerBoundOperands(); } static SmallVector getLowerBoundOperands(ForOp forOp) { SmallVector bounds(1, forOp.lowerBound()); return bounds; } // Get the upper bound-related operands of a loop operation. static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) { return forOp.getUpperBoundOperands(); } static SmallVector getUpperBoundOperands(ForOp forOp) { SmallVector bounds(1, forOp.upperBound()); return bounds; } // Get a Value that corresponds to the loop step. If the step is an attribute, // materialize a corresponding constant using builder. static Value *getOrCreateStep(AffineForOp forOp, OpBuilder &builder) { return builder.create(forOp.getLoc(), forOp.getStep()); } static Value *getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); } // Get a Value for the loop lower bound. If the value requires computation, // materialize the instructions using builder. static Value *getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) { return lowerAffineLowerBound(forOp, builder); } static Value *getOrEmitLowerBound(ForOp forOp, OpBuilder &) { return forOp.lowerBound(); } // Get a Value for the loop upper bound. If the value requires computation, // materialize the instructions using builder. static Value *getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) { return lowerAffineUpperBound(forOp, builder); } static Value *getOrEmitUpperBound(ForOp forOp, OpBuilder &) { return forOp.upperBound(); } // Check the structure of the loop nest: // - there are enough loops to map to numBlockDims + numThreadDims; // - the loops are perfectly nested; // - the loop bounds can be computed above the outermost loop. // This roughly corresponds to the "matcher" part of the pattern-based // rewriting infrastructure. template LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims, unsigned numThreadDims) { if (numBlockDims < 1 || numThreadDims < 1) { LLVM_DEBUG(llvm::dbgs() << "nothing to map"); return success(); } OpBuilder builder(forOp.getOperation()); if (numBlockDims > 3) { return emitError(builder.getUnknownLoc(), "cannot map to more than 3 block dimensions"); } if (numThreadDims > 3) { return emitError(builder.getUnknownLoc(), "cannot map to more than 3 thread dimensions"); } OpTy currentLoop = forOp; Region &limit = forOp.region(); for (unsigned i = 0, e = numBlockDims + numThreadDims; i < e; ++i) { Operation *nested = ¤tLoop.getBody()->front(); if (!areValuesDefinedAbove(getLowerBoundOperands(currentLoop), limit) || !areValuesDefinedAbove(getUpperBoundOperands(currentLoop), limit)) return currentLoop.emitError( "loops with bounds depending on other mapped loops " "are not supported"); // The innermost loop can have an arbitrary body, skip the perfect nesting // check for it. if (i == e - 1) break; auto begin = currentLoop.getBody()->begin(), end = currentLoop.getBody()->end(); if (currentLoop.getBody()->empty() || std::next(begin, 2) != end) return currentLoop.emitError( "expected perfectly nested loops in the body"); if (!(currentLoop = dyn_cast(nested))) return nested->emitError("expected a nested loop"); } return success(); } namespace { // Helper structure that holds common state of the loop to GPU kernel // conversion. struct LoopToGpuConverter { template Optional collectBounds(OpTy forOp, unsigned numLoops); template void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims, unsigned numThreadDims); // Ranges of the loops mapped to blocks or threads. SmallVector dims; // Lower bounds of the loops mapped to blocks or threads. SmallVector lbs; // Induction variables of the loops mapped to blocks or threads. SmallVector ivs; // Steps of the loops mapped to blocks or threads. SmallVector steps; }; } // namespace // Return true if the value is obviously a constant "one". static bool isConstantOne(Value *value) { if (auto def = dyn_cast_or_null(value->getDefiningOp())) return def.getValue() == 1; return false; } // Collect ranges, bounds, steps and induction variables in preparation for // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel. // This may fail if the IR for computing loop bounds cannot be constructed, for // example if an affine loop uses semi-affine maps. Return the last loop to be // mapped on success, llvm::None on failure. template Optional LoopToGpuConverter::collectBounds(OpTy forOp, unsigned numLoops) { OpBuilder builder(forOp.getOperation()); dims.reserve(numLoops); lbs.reserve(numLoops); ivs.reserve(numLoops); steps.reserve(numLoops); OpTy currentLoop = forOp; for (unsigned i = 0; i < numLoops; ++i) { Value *lowerBound = getOrEmitLowerBound(currentLoop, builder); Value *upperBound = getOrEmitUpperBound(currentLoop, builder); if (!lowerBound || !upperBound) { return llvm::None; } Value *range = builder.create(currentLoop.getLoc(), upperBound, lowerBound); Value *step = getOrCreateStep(currentLoop, builder); if (!isConstantOne(step)) range = builder.create(currentLoop.getLoc(), range, step); dims.push_back(range); lbs.push_back(lowerBound); ivs.push_back(currentLoop.getInductionVar()); steps.push_back(step); if (i != numLoops - 1) currentLoop = cast(¤tLoop.getBody()->front()); } return currentLoop; } // Replace the rooted at "rootForOp" with a GPU launch operation. This expects // "innermostForOp" to point to the last loop to be transformed to the kernel, // and to have (numBlockDims + numThreadDims) perfectly nested loops between // "rootForOp" and "innermostForOp". template void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims, unsigned numThreadDims) { OpBuilder builder(rootForOp.getOperation()); // Prepare the grid and block sizes for the launch operation. If there is // no loop mapped to a specific dimension, use constant "1" as its size. Value *constOne = (numBlockDims < 3 || numThreadDims < 3) ? builder.create(rootForOp.getLoc(), 1) : nullptr; Value *gridSizeX = dims[0]; Value *gridSizeY = numBlockDims > 1 ? dims[1] : constOne; Value *gridSizeZ = numBlockDims > 2 ? dims[2] : constOne; Value *blockSizeX = dims[numBlockDims]; Value *blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne; Value *blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne; // Create a launch op and move the body region of the innermost loop to the // launch op. Pass the values defined outside the outermost loop and used // inside the innermost loop and loop lower bounds as kernel data arguments. // Still assuming perfect nesting so there are no values other than induction // variables that are defined in one loop and used in deeper loops. llvm::SetVector valuesToForwardSet; getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(), valuesToForwardSet); auto valuesToForward = valuesToForwardSet.takeVector(); auto originallyForwardedValues = valuesToForward.size(); valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end()); valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end()); auto launchOp = builder.create( rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ, valuesToForward); valuesToForward.resize(originallyForwardedValues); // Replace the loop terminator (loops contain only a single block) with the // gpu return and move the operations from the loop body block to the gpu // launch body block. Do not move the entire block because of the difference // in block arguments. Operation &terminator = innermostForOp.getBody()->back(); Location terminatorLoc = terminator.getLoc(); terminator.erase(); builder.setInsertionPointToEnd(innermostForOp.getBody()); builder.create(terminatorLoc); launchOp.getBody().front().getOperations().splice( launchOp.getBody().front().begin(), innermostForOp.getBody()->getOperations()); // Remap the loop iterators to use block/thread identifiers instead. Loops // may iterate from LB with step S whereas GPU thread/block ids always iterate // from 0 to N with step 1. Therefore, loop induction variables are replaced // with (gpu-thread/block-id * S) + LB. builder.setInsertionPointToStart(&launchOp.getBody().front()); auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(), originallyForwardedValues); auto stepArgumentIt = std::next(lbArgumentIt, lbs.size()); for (auto en : llvm::enumerate(ivs)) { Value *id = en.index() < numBlockDims ? getDim3Value(launchOp.getBlockIds(), en.index()) : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims); Value *step = steps[en.index()]; if (!isConstantOne(step)) id = builder.create(rootForOp.getLoc(), step, id); Value *ivReplacement = builder.create(rootForOp.getLoc(), *lbArgumentIt, id); en.value()->replaceAllUsesWith(ivReplacement); replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt, launchOp.getBody()); std::advance(lbArgumentIt, 1); std::advance(stepArgumentIt, 1); } // Remap the values defined outside the body to use kernel arguments instead. // The list of kernel arguments also contains the lower bounds for loops at // trailing positions, make sure we don't touch those. for (const auto &pair : llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { Value *from = std::get<0>(pair); Value *to = std::get<1>(pair); replaceAllUsesInRegionWith(from, to, launchOp.getBody()); } // We are done and can erase the original outermost loop. rootForOp.erase(); } // Generic loop to GPU kernel conversion function. template static LogicalResult convertLoopNestToGPULaunch(OpTy forOp, unsigned numBlockDims, unsigned numThreadDims) { if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims))) return failure(); LoopToGpuConverter converter; auto maybeInnerLoop = converter.collectBounds(forOp, numBlockDims + numThreadDims); if (!maybeInnerLoop) return failure(); converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims); return success(); } LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); } LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); }