//===- ConvertGPUToSPIRVPass.cpp - GPU to SPIR-V dialect lowering passes --===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to convert a kernel function in the GPU Dialect // into a spv.module operation // //===----------------------------------------------------------------------===// #include "mlir/Conversion/GPUToSPIRV/ConvertGPUToSPIRVPass.h" #include "mlir/Conversion/GPUToSPIRV/ConvertGPUToSPIRV.h" #include "mlir/Conversion/StandardToSPIRV/ConvertStandardToSPIRV.h" #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/LoopOps/LoopOps.h" #include "mlir/Dialect/SPIRV/SPIRVDialect.h" #include "mlir/Dialect/SPIRV/SPIRVLowering.h" #include "mlir/Dialect/SPIRV/SPIRVOps.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassRegistry.h" using namespace mlir; namespace { /// Pass to lower GPU Dialect to SPIR-V. The pass only converts those functions /// that have the "gpu.kernel" attribute, i.e. those functions that are /// referenced in gpu::LaunchKernelOp operations. For each such function /// /// 1) Create a spirv::ModuleOp, and clone the function into spirv::ModuleOp /// (the original function is still needed by the gpu::LaunchKernelOp, so cannot /// replace it). /// /// 2) Lower the body of the spirv::ModuleOp. class GPUToSPIRVPass : public ModulePass { public: GPUToSPIRVPass() = default; GPUToSPIRVPass(const GPUToSPIRVPass &) {} GPUToSPIRVPass(ArrayRef workGroupSize) { this->workGroupSize = workGroupSize; } void runOnModule() override; private: /// Command line option to specify the workgroup size. ListOption workGroupSize{ *this, "workgroup-size", llvm::cl::desc( "Workgroup Sizes in the SPIR-V module for x, followed by y, followed " "by z dimension of the dispatch (others will be ignored)"), llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated}; }; } // namespace void GPUToSPIRVPass::runOnModule() { MLIRContext *context = &getContext(); ModuleOp module = getModule(); SmallVector kernelModules; OpBuilder builder(context); module.walk([&builder, &kernelModules](ModuleOp moduleOp) { if (moduleOp.getAttrOfType( gpu::GPUDialect::getKernelModuleAttrName())) { // For each kernel module (should be only 1 for now, but that is not a // requirement here), clone the module for conversion because the // gpu.launch function still needs the kernel module. builder.setInsertionPoint(moduleOp.getOperation()); kernelModules.push_back(builder.clone(*moduleOp.getOperation())); } }); SPIRVTypeConverter typeConverter; OwningRewritePatternList patterns; populateGPUToSPIRVPatterns(context, typeConverter, patterns, workGroupSize); populateStandardToSPIRVPatterns(context, typeConverter, patterns); std::unique_ptr target = spirv::SPIRVConversionTarget::get( spirv::lookupTargetEnvOrDefault(module), context); target->addDynamicallyLegalOp( [&](FuncOp op) { return typeConverter.isSignatureLegal(op.getType()); }); if (failed(applyFullConversion(kernelModules, *target, patterns, &typeConverter))) { return signalPassFailure(); } } std::unique_ptr> mlir::createConvertGPUToSPIRVPass(ArrayRef workGroupSize) { return std::make_unique(workGroupSize); } static PassRegistration pass("convert-gpu-to-spirv", "Convert GPU dialect to SPIR-V dialect");