//===- VectorAnalysis.cpp - Analysis for Vectorization --------------------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Dialect/AffineOps/AffineOps.h" #include "mlir/Dialect/StandardOps/Ops.h" #include "mlir/Dialect/VectorOps/Utils.h" #include "mlir/Dialect/VectorOps/VectorOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/IntegerSet.h" #include "mlir/IR/Operation.h" #include "mlir/Support/Functional.h" #include "mlir/Support/STLExtras.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" /// /// Implements Analysis functions specific to vectors which support /// the vectorization and vectorization materialization passes. /// using namespace mlir; using llvm::SetVector; Optional> mlir::shapeRatio(ArrayRef superShape, ArrayRef subShape) { if (superShape.size() < subShape.size()) { return Optional>(); } // Starting from the end, compute the integer divisors. // Set the boolean `divides` if integral division is not possible. std::vector result; result.reserve(superShape.size()); bool divides = true; auto divide = [÷s, &result](int superSize, int subSize) { assert(superSize > 0 && "superSize must be > 0"); assert(subSize > 0 && "subSize must be > 0"); divides &= (superSize % subSize == 0); result.push_back(superSize / subSize); }; functional::zipApply( divide, SmallVector{superShape.rbegin(), superShape.rend()}, SmallVector{subShape.rbegin(), subShape.rend()}); // If integral division does not occur, return and let the caller decide. if (!divides) { return None; } // At this point we computed the ratio (in reverse) for the common // size. Fill with the remaining entries from the super-vector shape (still in // reverse). int commonSize = subShape.size(); std::copy(superShape.rbegin() + commonSize, superShape.rend(), std::back_inserter(result)); assert(result.size() == superShape.size() && "super to sub shape ratio is not of the same size as the super rank"); // Reverse again to get it back in the proper order and return. return SmallVector{result.rbegin(), result.rend()}; } Optional> mlir::shapeRatio(VectorType superVectorType, VectorType subVectorType) { assert(superVectorType.getElementType() == subVectorType.getElementType() && "vector types must be of the same elemental type"); return shapeRatio(superVectorType.getShape(), subVectorType.getShape()); } /// Constructs a permutation map from memref indices to vector dimension. /// /// The implementation uses the knowledge of the mapping of enclosing loop to /// vector dimension. `enclosingLoopToVectorDim` carries this information as a /// map with: /// - keys representing "vectorized enclosing loops"; /// - values representing the corresponding vector dimension. /// The algorithm traverses "vectorized enclosing loops" and extracts the /// at-most-one MemRef index that is invariant along said loop. This index is /// guaranteed to be at most one by construction: otherwise the MemRef is not /// vectorizable. /// If this invariant index is found, it is added to the permutation_map at the /// proper vector dimension. /// If no index is found to be invariant, 0 is added to the permutation_map and /// corresponds to a vector broadcast along that dimension. /// /// Returns an empty AffineMap if `enclosingLoopToVectorDim` is empty, /// signalling that no permutation map can be constructed given /// `enclosingLoopToVectorDim`. /// /// Examples can be found in the documentation of `makePermutationMap`, in the /// header file. static AffineMap makePermutationMap( ArrayRef indices, const DenseMap &enclosingLoopToVectorDim) { if (enclosingLoopToVectorDim.empty()) return AffineMap(); MLIRContext *context = enclosingLoopToVectorDim.begin()->getFirst()->getContext(); using functional::makePtrDynCaster; using functional::map; SmallVector perm(enclosingLoopToVectorDim.size(), getAffineConstantExpr(0, context)); for (auto kvp : enclosingLoopToVectorDim) { assert(kvp.second < perm.size()); auto invariants = getInvariantAccesses( cast(kvp.first).getInductionVar(), indices); unsigned numIndices = indices.size(); unsigned countInvariantIndices = 0; for (unsigned dim = 0; dim < numIndices; ++dim) { if (!invariants.count(indices[dim])) { assert(perm[kvp.second] == getAffineConstantExpr(0, context) && "permutationMap already has an entry along dim"); perm[kvp.second] = getAffineDimExpr(dim, context); } else { ++countInvariantIndices; } } assert((countInvariantIndices == numIndices || countInvariantIndices == numIndices - 1) && "Vectorization prerequisite violated: at most 1 index may be " "invariant wrt a vectorized loop"); } return AffineMap::get(indices.size(), 0, perm); } /// Implementation detail that walks up the parents and records the ones with /// the specified type. /// TODO(ntv): could also be implemented as a collect parents followed by a /// filter and made available outside this file. template static SetVector getParentsOfType(Operation *op) { SetVector res; auto *current = op; while (auto *parent = current->getParentOp()) { if (auto typedParent = dyn_cast(parent)) { assert(res.count(parent) == 0 && "Already inserted"); res.insert(parent); } current = parent; } return res; } /// Returns the enclosing AffineForOp, from closest to farthest. static SetVector getEnclosingforOps(Operation *op) { return getParentsOfType(op); } AffineMap mlir::makePermutationMap( Operation *op, ArrayRef indices, const DenseMap &loopToVectorDim) { DenseMap enclosingLoopToVectorDim; auto enclosingLoops = getEnclosingforOps(op); for (auto *forInst : enclosingLoops) { auto it = loopToVectorDim.find(forInst); if (it != loopToVectorDim.end()) { enclosingLoopToVectorDim.insert(*it); } } return ::makePermutationMap(indices, enclosingLoopToVectorDim); } bool mlir::matcher::operatesOnSuperVectorsOf(Operation &op, VectorType subVectorType) { // First, extract the vector type and distinguish between: // a. ops that *must* lower a super-vector (i.e. vector.transfer_read, // vector.transfer_write); and // b. ops that *may* lower a super-vector (all other ops). // The ops that *may* lower a super-vector only do so if the super-vector to // sub-vector ratio exists. The ops that *must* lower a super-vector are // explicitly checked for this property. /// TODO(ntv): there should be a single function for all ops to do this so we /// do not have to special case. Maybe a trait, or just a method, unclear atm. bool mustDivide = false; (void)mustDivide; VectorType superVectorType; if (auto read = dyn_cast(op)) { superVectorType = read.getVectorType(); mustDivide = true; } else if (auto write = dyn_cast(op)) { superVectorType = write.getVectorType(); mustDivide = true; } else if (op.getNumResults() == 0) { if (!isa(op)) { op.emitError("NYI: assuming only return operations can have 0 " " results at this point"); } return false; } else if (op.getNumResults() == 1) { if (auto v = op.getResult(0).getType().dyn_cast()) { superVectorType = v; } else { // Not a vector type. return false; } } else { // Not a vector.transfer and has more than 1 result, fail hard for now to // wake us up when something changes. op.emitError("NYI: operation has more than 1 result"); return false; } // Get the ratio. auto ratio = shapeRatio(superVectorType, subVectorType); // Sanity check. assert((ratio.hasValue() || !mustDivide) && "vector.transfer operation in which super-vector size is not an" " integer multiple of sub-vector size"); // This catches cases that are not strictly necessary to have multiplicity but // still aren't divisible by the sub-vector shape. // This could be useful information if we wanted to reshape at the level of // the vector type (but we would have to look at the compute and distinguish // between parallel, reduction and possibly other cases. if (!ratio.hasValue()) { return false; } return true; }