//===- AffineStructures.cpp - MLIR Affine Structures Class-------*- C++ -*-===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // Structures for affine/polyhedral analysis of MLIR functions. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/AffineStructures.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/IR/AffineExprVisitor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Instructions.h" #include "mlir/IR/IntegerSet.h" #include "mlir/Support/MathExtras.h" #include "llvm/ADT/DenseSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "affine-structures" using namespace mlir; using namespace llvm; //===----------------------------------------------------------------------===// // MutableAffineMap. //===----------------------------------------------------------------------===// MutableAffineMap::MutableAffineMap(AffineMap map) : numDims(map.getNumDims()), numSymbols(map.getNumSymbols()), // A map always has at least 1 result by construction context(map.getResult(0).getContext()) { for (auto result : map.getResults()) results.push_back(result); for (auto rangeSize : map.getRangeSizes()) results.push_back(rangeSize); } void MutableAffineMap::reset(AffineMap map) { results.clear(); rangeSizes.clear(); numDims = map.getNumDims(); numSymbols = map.getNumSymbols(); // A map always has at least 1 result by construction context = map.getResult(0).getContext(); for (auto result : map.getResults()) results.push_back(result); for (auto rangeSize : map.getRangeSizes()) results.push_back(rangeSize); } bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const { if (results[idx].isMultipleOf(factor)) return true; // TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to // complete this (for a more powerful analysis). return false; } // Simplifies the result affine expressions of this map. The expressions have to // be pure for the simplification implemented. void MutableAffineMap::simplify() { // Simplify each of the results if possible. // TODO(ntv): functional-style map for (unsigned i = 0, e = getNumResults(); i < e; i++) { results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols); } } AffineMap MutableAffineMap::getAffineMap() const { return AffineMap::get(numDims, numSymbols, results, rangeSizes); } MutableIntegerSet::MutableIntegerSet(IntegerSet set, MLIRContext *context) : numDims(set.getNumDims()), numSymbols(set.getNumSymbols()), context(context) { // TODO(bondhugula) } // Universal set. MutableIntegerSet::MutableIntegerSet(unsigned numDims, unsigned numSymbols, MLIRContext *context) : numDims(numDims), numSymbols(numSymbols), context(context) {} //===----------------------------------------------------------------------===// // AffineValueMap. //===----------------------------------------------------------------------===// AffineValueMap::AffineValueMap(const AffineApplyOp &op) : map(op.getAffineMap()) { for (auto *operand : op.getOperands()) operands.push_back(const_cast(operand)); results.push_back(const_cast(op.getResult())); } AffineValueMap::AffineValueMap(AffineMap map, ArrayRef operands) : map(map) { for (Value *operand : operands) { this->operands.push_back(operand); } } void AffineValueMap::reset(AffineMap map, ArrayRef operands) { this->operands.clear(); this->results.clear(); this->map.reset(map); for (Value *operand : operands) { this->operands.push_back(operand); } } // Returns true and sets 'indexOfMatch' if 'valueToMatch' is found in // 'valuesToSearch' beginning at 'indexStart'. Returns false otherwise. static bool findIndex(Value *valueToMatch, ArrayRef valuesToSearch, unsigned indexStart, unsigned *indexOfMatch) { unsigned size = valuesToSearch.size(); for (unsigned i = indexStart; i < size; ++i) { if (valueToMatch == valuesToSearch[i]) { *indexOfMatch = i; return true; } } return false; } inline bool AffineValueMap::isMultipleOf(unsigned idx, int64_t factor) const { return map.isMultipleOf(idx, factor); } /// This method uses the invariant that operands are always positionally aligned /// with the AffineDimExpr in the underlying AffineMap. bool AffineValueMap::isFunctionOf(unsigned idx, Value *value) const { unsigned index; if (!findIndex(value, operands, /*indexStart=*/0, &index)) { return false; } auto expr = const_cast(this)->getAffineMap().getResult(idx); // TODO(ntv): this is better implemented on a flattened representation. // At least for now it is conservative. return expr.isFunctionOfDim(index); } Value *AffineValueMap::getOperand(unsigned i) const { return static_cast(operands[i]); } ArrayRef AffineValueMap::getOperands() const { return ArrayRef(operands); } AffineMap AffineValueMap::getAffineMap() const { return map.getAffineMap(); } AffineValueMap::~AffineValueMap() {} //===----------------------------------------------------------------------===// // FlatAffineConstraints. //===----------------------------------------------------------------------===// // Copy constructor. FlatAffineConstraints::FlatAffineConstraints( const FlatAffineConstraints &other) { numReservedCols = other.numReservedCols; numDims = other.getNumDimIds(); numSymbols = other.getNumSymbolIds(); numIds = other.getNumIds(); auto otherIds = other.getIds(); ids.reserve(numReservedCols); ids.append(otherIds.begin(), otherIds.end()); unsigned numReservedEqualities = other.getNumReservedEqualities(); unsigned numReservedInequalities = other.getNumReservedInequalities(); equalities.reserve(numReservedEqualities * numReservedCols); inequalities.reserve(numReservedInequalities * numReservedCols); for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { addInequality(other.getInequality(r)); } for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { addEquality(other.getEquality(r)); } } // Clones this object. std::unique_ptr FlatAffineConstraints::clone() const { return std::make_unique(*this); } // Construct from an IntegerSet. FlatAffineConstraints::FlatAffineConstraints(IntegerSet set) : numReservedCols(set.getNumOperands() + 1), numIds(set.getNumDims() + set.getNumSymbols()), numDims(set.getNumDims()), numSymbols(set.getNumSymbols()) { equalities.reserve(set.getNumEqualities() * numReservedCols); inequalities.reserve(set.getNumInequalities() * numReservedCols); ids.resize(numIds, None); // Flatten expressions and add them to the constraint system. std::vector> flatExprs; FlatAffineConstraints localVarCst; if (!getFlattenedAffineExprs(set, &flatExprs, &localVarCst)) { assert(false && "flattening unimplemented for semi-affine integer sets"); return; } assert(flatExprs.size() == set.getNumConstraints()); for (unsigned l = 0, e = localVarCst.getNumLocalIds(); l < e; l++) { addLocalId(getNumLocalIds()); } for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) { const auto &flatExpr = flatExprs[i]; assert(flatExpr.size() == getNumCols()); if (set.getEqFlags()[i]) { addEquality(flatExpr); } else { addInequality(flatExpr); } } // Add the other constraints involving local id's from flattening. append(localVarCst); } void FlatAffineConstraints::reset(unsigned numReservedInequalities, unsigned numReservedEqualities, unsigned newNumReservedCols, unsigned newNumDims, unsigned newNumSymbols, unsigned newNumLocals, ArrayRef idArgs) { assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 && "minimum 1 column"); numReservedCols = newNumReservedCols; numDims = newNumDims; numSymbols = newNumSymbols; numIds = numDims + numSymbols + newNumLocals; clearConstraints(); if (numReservedEqualities >= 1) equalities.reserve(newNumReservedCols * numReservedEqualities); if (numReservedInequalities >= 1) inequalities.reserve(newNumReservedCols * numReservedInequalities); ids.clear(); if (idArgs.empty()) { ids.resize(numIds, None); } else { ids.reserve(idArgs.size()); ids.append(idArgs.begin(), idArgs.end()); } } void FlatAffineConstraints::reset(unsigned newNumDims, unsigned newNumSymbols, unsigned newNumLocals, ArrayRef idArgs) { reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims, newNumSymbols, newNumLocals, idArgs); } void FlatAffineConstraints::append(const FlatAffineConstraints &other) { assert(other.getNumCols() == getNumCols()); assert(other.getNumDimIds() == getNumDimIds()); assert(other.getNumSymbolIds() == getNumSymbolIds()); inequalities.reserve(inequalities.size() + other.getNumInequalities() * numReservedCols); equalities.reserve(equalities.size() + other.getNumEqualities() * numReservedCols); for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { addInequality(other.getInequality(r)); } for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { addEquality(other.getEquality(r)); } } void FlatAffineConstraints::addLocalId(unsigned pos) { addId(IdKind::Local, pos); } void FlatAffineConstraints::addDimId(unsigned pos, Value *id) { addId(IdKind::Dimension, pos, id); } void FlatAffineConstraints::addSymbolId(unsigned pos, Value *id) { addId(IdKind::Symbol, pos, id); } /// Adds a dimensional identifier. The added column is initialized to /// zero. void FlatAffineConstraints::addId(IdKind kind, unsigned pos, Value *id) { if (kind == IdKind::Dimension) { assert(pos <= getNumDimIds()); } else if (kind == IdKind::Symbol) { assert(pos <= getNumSymbolIds()); } else { assert(pos <= getNumLocalIds()); } unsigned oldNumReservedCols = numReservedCols; // Check if a resize is necessary. if (getNumCols() + 1 > numReservedCols) { equalities.resize(getNumEqualities() * (getNumCols() + 1)); inequalities.resize(getNumInequalities() * (getNumCols() + 1)); numReservedCols++; } unsigned absolutePos; if (kind == IdKind::Dimension) { absolutePos = pos; numDims++; } else if (kind == IdKind::Symbol) { absolutePos = pos + getNumDimIds(); numSymbols++; } else { absolutePos = pos + getNumDimIds() + getNumSymbolIds(); } numIds++; // Note that getNumCols() now will already return the new size, which will be // at least one. int numInequalities = static_cast(getNumInequalities()); int numEqualities = static_cast(getNumEqualities()); int numCols = static_cast(getNumCols()); for (int r = numInequalities - 1; r >= 0; r--) { for (int c = numCols - 2; c >= 0; c--) { if (c < absolutePos) atIneq(r, c) = inequalities[r * oldNumReservedCols + c]; else atIneq(r, c + 1) = inequalities[r * oldNumReservedCols + c]; } atIneq(r, absolutePos) = 0; } for (int r = numEqualities - 1; r >= 0; r--) { for (int c = numCols - 2; c >= 0; c--) { // All values in column absolutePositions < absolutePos have the same // coordinates in the 2-d view of the coefficient buffer. if (c < absolutePos) atEq(r, c) = equalities[r * oldNumReservedCols + c]; else // Those at absolutePosition >= absolutePos, get a shifted // absolutePosition. atEq(r, c + 1) = equalities[r * oldNumReservedCols + c]; } // Initialize added dimension to zero. atEq(r, absolutePos) = 0; } // If an 'id' is provided, insert it; otherwise use None. if (id) { ids.insert(ids.begin() + absolutePos, id); } else { ids.insert(ids.begin() + absolutePos, None); } assert(ids.size() == getNumIds()); } // This routine may add additional local variables if the flattened expression // corresponding to the map has such variables due to the presence of // mod's, ceildiv's, and floordiv's. bool FlatAffineConstraints::composeMap(AffineValueMap *vMap) { // Assert if the map and this constraint set aren't associated with the same // identifiers in the same order. assert(vMap->getNumDims() <= getNumDimIds()); assert(vMap->getNumSymbols() <= getNumSymbolIds()); for (unsigned i = 0, e = vMap->getNumDims(); i < e; i++) { assert(ids[i].hasValue()); assert(vMap->getOperand(i) == ids[i].getValue()); } for (unsigned i = 0, e = vMap->getNumSymbols(); i < e; i++) { assert(ids[numDims + i].hasValue()); assert(vMap->getOperand(vMap->getNumDims() + i) == ids[numDims + i].getValue()); } std::vector> flatExprs; FlatAffineConstraints cst; if (!getFlattenedAffineExprs(vMap->getAffineMap(), &flatExprs, &cst)) { LLVM_DEBUG(llvm::dbgs() << "composition unimplemented for semi-affine maps\n"); return false; } assert(flatExprs.size() == vMap->getNumResults()); // Make the value map and the flat affine cst dimensions compatible. // A lot of this code will be refactored/cleaned up. // TODO(bondhugula): the next ~20 lines of code is pretty UGLY. This needs // to be factored out into an FlatAffineConstraints::alignAndMerge(). for (unsigned l = 0, e = cst.getNumLocalIds(); l < e; l++) { addLocalId(0); } for (unsigned t = 0, e = vMap->getNumResults(); t < e; t++) { // TODO: Consider using a batched version to add a range of IDs. addDimId(0); cst.addDimId(0); } assert(cst.getNumDimIds() <= getNumDimIds()); for (unsigned t = 0, e = getNumDimIds() - cst.getNumDimIds(); t < e; t++) { // Dimensions that are in 'this' but not in vMap/cst are added at the end. cst.addDimId(cst.getNumDimIds()); } assert(cst.getNumSymbolIds() <= getNumSymbolIds()); for (unsigned t = 0, e = getNumSymbolIds() - cst.getNumSymbolIds(); t < e; t++) { // Dimensions that are in 'this' but not in vMap/cst are added at the end. cst.addSymbolId(cst.getNumSymbolIds()); } assert(cst.getNumLocalIds() <= getNumLocalIds()); for (unsigned t = 0, e = getNumLocalIds() - cst.getNumLocalIds(); t < e; t++) { cst.addLocalId(cst.getNumLocalIds()); } /// Finally, append cst to this constraint set. append(cst); // We add one equality for each result connecting the result dim of the map to // the other identifiers. // For eg: if the expression is 16*i0 + i1, and this is the r^th // iteration/result of the value map, we are adding the equality: // d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we // add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0. for (unsigned r = 0, e = flatExprs.size(); r < e; r++) { const auto &flatExpr = flatExprs[r]; // eqToAdd is the equality corresponding to the flattened affine expression. SmallVector eqToAdd(getNumCols(), 0); // Set the coefficient for this result to one. eqToAdd[r] = 1; assert(flatExpr.size() >= vMap->getNumOperands() + 1); // Dims and symbols. for (unsigned i = 0, e = vMap->getNumOperands(); i < e; i++) { unsigned loc; bool ret = findId(*vMap->getOperand(i), &loc); assert(ret && "value map's id can't be found"); (void)ret; // We need to negate 'eq[r]' since the newly added dimension is going to // be set to this one. eqToAdd[loc] = -flatExpr[i]; } // Local vars common to eq and cst are at the beginning. int j = getNumDimIds() + getNumSymbolIds(); int end = flatExpr.size() - 1; for (int i = vMap->getNumOperands(); i < end; i++, j++) { eqToAdd[j] = -flatExpr[i]; } // Constant term. eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1]; // Add the equality connecting the result of the map to this constraint set. addEquality(eqToAdd); } return true; } // Searches for a constraint with a non-zero coefficient at 'colIdx' in // equality (isEq=true) or inequality (isEq=false) constraints. // Returns true and sets row found in search in 'rowIdx'. // Returns false otherwise. static bool findConstraintWithNonZeroAt(const FlatAffineConstraints &constraints, unsigned colIdx, bool isEq, unsigned *rowIdx) { auto at = [&](unsigned rowIdx) -> int64_t { return isEq ? constraints.atEq(rowIdx, colIdx) : constraints.atIneq(rowIdx, colIdx); }; unsigned e = isEq ? constraints.getNumEqualities() : constraints.getNumInequalities(); for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) { if (at(*rowIdx) != 0) { return true; } } return false; } // Normalizes the coefficient values across all columns in 'rowIDx' by their // GCD in equality or inequality contraints as specified by 'isEq'. template static void normalizeConstraintByGCD(FlatAffineConstraints *constraints, unsigned rowIdx) { auto at = [&](unsigned colIdx) -> int64_t { return isEq ? constraints->atEq(rowIdx, colIdx) : constraints->atIneq(rowIdx, colIdx); }; uint64_t gcd = std::abs(at(0)); for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) { gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j))); } if (gcd > 0 && gcd != 1) { for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) { int64_t v = at(j) / static_cast(gcd); isEq ? constraints->atEq(rowIdx, j) = v : constraints->atIneq(rowIdx, j) = v; } } } void FlatAffineConstraints::normalizeConstraintsByGCD() { for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { normalizeConstraintByGCD(this, i); } for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { normalizeConstraintByGCD(this, i); } } bool FlatAffineConstraints::hasConsistentState() const { if (inequalities.size() != getNumInequalities() * numReservedCols) return false; if (equalities.size() != getNumEqualities() * numReservedCols) return false; if (ids.size() != getNumIds()) return false; // Catches errors where numDims, numSymbols, numIds aren't consistent. if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds) return false; return true; } /// Checks all rows of equality/inequality constraints for trivial /// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced /// after elimination. Returns 'true' if an invalid constraint is found; /// 'false' otherwise. bool FlatAffineConstraints::hasInvalidConstraint() const { assert(hasConsistentState()); auto check = [&](bool isEq) -> bool { unsigned numCols = getNumCols(); unsigned numRows = isEq ? getNumEqualities() : getNumInequalities(); for (unsigned i = 0, e = numRows; i < e; ++i) { unsigned j; for (j = 0; j < numCols - 1; ++j) { int64_t v = isEq ? atEq(i, j) : atIneq(i, j); // Skip rows with non-zero variable coefficients. if (v != 0) break; } if (j < numCols - 1) { continue; } // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'. // Example invalid constraints include: '1 == 0' or '-1 >= 0' int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1); if ((isEq && v != 0) || (!isEq && v < 0)) { return true; } } return false; }; if (check(/*isEq=*/true)) return true; return check(/*isEq=*/false); } // Eliminate identifier from constraint at 'rowIdx' based on coefficient at // pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be // updated as they have already been eliminated. static void eliminateFromConstraint(FlatAffineConstraints *constraints, unsigned rowIdx, unsigned pivotRow, unsigned pivotCol, unsigned elimColStart, bool isEq) { // Skip if equality 'rowIdx' if same as 'pivotRow'. if (isEq && rowIdx == pivotRow) return; auto at = [&](unsigned i, unsigned j) -> int64_t { return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j); }; int64_t leadCoeff = at(rowIdx, pivotCol); // Skip if leading coefficient at 'rowIdx' is already zero. if (leadCoeff == 0) return; int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol); int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1; int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff); int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff)); int64_t rowMultiplier = lcm / std::abs(leadCoeff); unsigned numCols = constraints->getNumCols(); for (unsigned j = 0; j < numCols; ++j) { // Skip updating column 'j' if it was just eliminated. if (j >= elimColStart && j < pivotCol) continue; int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) + rowMultiplier * at(rowIdx, j); isEq ? constraints->atEq(rowIdx, j) = v : constraints->atIneq(rowIdx, j) = v; } } // Remove coefficients in column range [colStart, colLimit) in place. // This removes in data in the specified column range, and copies any // remaining valid data into place. static void shiftColumnsToLeft(FlatAffineConstraints *constraints, unsigned colStart, unsigned colLimit, bool isEq) { assert(colStart >= 0 && colLimit <= constraints->getNumIds()); if (colLimit <= colStart) return; unsigned numCols = constraints->getNumCols(); unsigned numRows = isEq ? constraints->getNumEqualities() : constraints->getNumInequalities(); unsigned numToEliminate = colLimit - colStart; for (unsigned r = 0, e = numRows; r < e; ++r) { for (unsigned c = colLimit; c < numCols; ++c) { if (isEq) { constraints->atEq(r, c - numToEliminate) = constraints->atEq(r, c); } else { constraints->atIneq(r, c - numToEliminate) = constraints->atIneq(r, c); } } } } // Removes identifiers in column range [idStart, idLimit), and copies any // remaining valid data into place, and updates member variables. void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) { assert(idLimit < getNumCols() && "invalid id limit"); if (idStart >= idLimit) return; // We are going to be removing one or more identifiers from the range. assert(idStart < numIds && "invalid idStart position"); // TODO(andydavis) Make 'removeIdRange' a lambda called from here. // Remove eliminated identifiers from equalities. shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true); // Remove eliminated identifiers from inequalities. shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/false); // Update members numDims, numSymbols and numIds. unsigned numDimsEliminated = 0; unsigned numLocalsEliminated = 0; unsigned numColsEliminated = idLimit - idStart; if (idStart < numDims) { numDimsEliminated = std::min(numDims, idLimit) - idStart; } // Check how many local id's were removed. Note that our identifier order is // [dims, symbols, locals]. Local id start at position numDims + numSymbols. if (idLimit > numDims + numSymbols) { numLocalsEliminated = std::min( idLimit - std::max(idStart, numDims + numSymbols), getNumLocalIds()); } unsigned numSymbolsEliminated = numColsEliminated - numDimsEliminated - numLocalsEliminated; numDims -= numDimsEliminated; numSymbols -= numSymbolsEliminated; numIds = numIds - numColsEliminated; ids.erase(ids.begin() + idStart, ids.begin() + idLimit); // No resize necessary. numReservedCols remains the same. } /// Returns the position of the identifier that has the minimum times from the specified range of /// identifiers [start, end). It is often best to eliminate in the increasing /// order of these counts when doing Fourier-Motzkin elimination since FM adds /// that many new constraints. static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst, unsigned start, unsigned end) { assert(start < cst.getNumIds() && end < cst.getNumIds() + 1); auto getProductOfNumLowerUpperBounds = [&](unsigned pos) { unsigned numLb = 0; unsigned numUb = 0; for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { if (cst.atIneq(r, pos) > 0) { ++numLb; } else if (cst.atIneq(r, pos) < 0) { ++numUb; } } return numLb * numUb; }; unsigned minLoc = start; unsigned min = getProductOfNumLowerUpperBounds(start); for (unsigned c = start + 1; c < end; c++) { unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c); if (numLbUbProduct < min) { min = numLbUbProduct; minLoc = c; } } return minLoc; } // Checks for emptiness of the set by eliminating identifiers successively and // using the GCD test (on all equality constraints) and checking for trivially // invalid constraints. Returns 'true' if the constraint system is found to be // empty; false otherwise. bool FlatAffineConstraints::isEmpty() const { if (isEmptyByGCDTest() || hasInvalidConstraint()) return true; // First, eliminate as many identifiers as possible using Gaussian // elimination. FlatAffineConstraints tmpCst(*this); unsigned currentPos = 0; while (currentPos < tmpCst.getNumIds()) { tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds()); ++currentPos; // We check emptiness through trivial checks after eliminating each ID to // detect emptiness early. Since the checks isEmptyByGCDTest() and // hasInvalidConstraint() are linear time and single sweep on the constraint // buffer, this appears reasonable - but can optimize in the future. if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest()) return true; } // Eliminate the remaining using FM. for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) { tmpCst.FourierMotzkinEliminate( getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds())); // Check for a constraint explosion. This rarely happens in practice, but // this check exists as a safeguard against improperly constructed // constraint systems or artifically created arbitrarily complex systems // that aren't the intended use case for FlatAffineConstraints. This is // needed since FM has a worst case exponential complexity in theory. if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) { LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected"); return false; } // FM wouldn't have modified the equalities in any way. So no need to again // run GCD test. Check for trivial invalid constraints. if (tmpCst.hasInvalidConstraint()) return true; } return false; } // Runs the GCD test on all equality constraints. Returns 'true' if this test // fails on any equality. Returns 'false' otherwise. // This test can be used to disprove the existence of a solution. If it returns // true, no integer solution to the equality constraints can exist. // // GCD test definition: // // The equality constraint: // // c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0 // // has an integer solution iff: // // GCD of c_1, c_2, ..., c_n divides c_0. // bool FlatAffineConstraints::isEmptyByGCDTest() const { assert(hasConsistentState()); unsigned numCols = getNumCols(); for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { uint64_t gcd = std::abs(atEq(i, 0)); for (unsigned j = 1; j < numCols - 1; ++j) { gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j))); } int64_t v = std::abs(atEq(i, numCols - 1)); if (gcd > 0 && (v % gcd != 0)) { return true; } } return false; } /// Tightens inequalities given that we are dealing with integer spaces. This is /// analogous to the GCD test but applied to inequalities. The constant term can /// be reduced to the preceding multiple of the GCD of the coefficients, i.e., /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a /// fast method - linear in the number of coefficients. // Example on how this affects practical cases: consider the scenario: // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield // j >= 100 instead of the tighter (exact) j >= 128. void FlatAffineConstraints::GCDTightenInequalities() { unsigned numCols = getNumCols(); for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { uint64_t gcd = std::abs(atIneq(i, 0)); for (unsigned j = 1; j < numCols - 1; ++j) { gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j))); } if (gcd > 0) { int64_t gcdI = static_cast(gcd); atIneq(i, numCols - 1) = gcdI * mlir::floorDiv(atIneq(i, numCols - 1), gcdI); } } } // Eliminates all identifer variables in column range [posStart, posLimit). // Returns the number of variables eliminated. unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart, unsigned posLimit) { // Return if identifier positions to eliminate are out of range. assert(posLimit <= numIds); assert(hasConsistentState()); if (posStart >= posLimit) return 0; LLVM_DEBUG(llvm::dbgs() << "Eliminating by Gaussian [" << posStart << ", " << posLimit << ")\n"); GCDTightenInequalities(); unsigned pivotCol = 0; for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) { // Find a row which has a non-zero coefficient in column 'j'. unsigned pivotRow; if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true, &pivotRow)) { // No pivot row in equalities with non-zero at 'pivotCol'. if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false, &pivotRow)) { // If inequalities are also non-zero in 'pivotCol', it can be // eliminated. continue; } break; } // Eliminate identifier at 'pivotCol' from each equality row. for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart, /*isEq=*/true); normalizeConstraintByGCD(this, i); } // Eliminate identifier at 'pivotCol' from each inequality row. for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart, /*isEq=*/false); normalizeConstraintByGCD(this, i); } removeEquality(pivotRow); } // Update position limit based on number eliminated. posLimit = pivotCol; // Remove eliminated columns from all constraints. removeIdRange(posStart, posLimit); return posLimit - posStart; } // Detect the identifier at 'pos' (say id_r) as modulo of another identifier // (say id_n) w.r.t a constant. When this happens, another identifier (say id_q) // could be detected as the floordiv of n. For eg: // id_n - 4*id_q - id_r = 0, 0 <= id_r <= 3 <=> // id_r = id_n mod 4, id_q = id_n floordiv 4. // lbConst and ubConst are the constant lower and upper bounds for 'pos' - // pre-detected at the caller. static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos, int64_t lbConst, int64_t ubConst, SmallVectorImpl *memo) { assert(pos < cst.getNumIds() && "invalid position"); // Check if 0 <= id_r <= divisor - 1 and if id_r is equal to // id_n - divisor * id_q. If these are true, then id_n becomes the dividend // and id_q the quotient when dividing id_n by the divisor. if (lbConst != 0 || ubConst < 1) return false; int64_t divisor = ubConst + 1; // Now check for: id_r = id_n - divisor * id_q. As an example, we // are looking r = d - 4q, i.e., either r - d + 4q = 0 or -r + d - 4q = 0. unsigned seenQuotient = 0, seenDividend = 0; int quotientPos = -1, dividendPos = -1; for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { // id_n should have coeff 1 or -1. if (std::abs(cst.atEq(r, pos)) != 1) continue; for (unsigned c = 0, f = cst.getNumDimAndSymbolIds(); c < f; c++) { // The coeff of the quotient should be -divisor if the coefficient of // the pos^th identifier is -1, and divisor if the latter is -1. if (cst.atEq(r, c) * cst.atEq(r, pos) == divisor) { seenQuotient++; quotientPos = c; } else if (cst.atEq(r, c) * cst.atEq(r, pos) == -1) { seenDividend++; dividendPos = c; } } // We are looking for exactly one identifier as part of the dividend. // TODO(bondhugula): could be extended to cover multiple ones in the // dividend to detect mod of an affine function of identifiers. if (seenDividend == 1 && seenQuotient >= 1) { if (!(*memo)[dividendPos]) return false; // Successfully detected a mod. (*memo)[pos] = (*memo)[dividendPos] % divisor; if (seenQuotient == 1 && !(*memo)[quotientPos]) // Successfully detected a floordiv as well. (*memo)[quotientPos] = (*memo)[dividendPos].floorDiv(divisor); return true; } } return false; } // Check if the pos^th identifier can be expressed as a floordiv of an affine // function of other identifiers (where the divisor is a positive constant). // For eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4. bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos, SmallVectorImpl *memo, MLIRContext *context) { assert(pos < cst.getNumIds() && "invalid position"); SmallVector lbIndices, ubIndices; // Gather all lower bounds and upper bound constraints of this identifier. // Since the canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint // is a lower bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { if (cst.atIneq(r, pos) >= 1) // Lower bound. lbIndices.push_back(r); else if (cst.atIneq(r, pos) <= -1) // Upper bound. ubIndices.push_back(r); } // Check if any lower bound, upper bound pair is of the form: // divisor * id >= expr - (divisor - 1) <-- Lower bound for 'id' // divisor * id <= expr <-- Upper bound for 'id' // Then, 'id' is equivalent to 'expr floordiv divisor'. (where divisor > 1). // // For example, if -32*k + 16*i + j >= 0 // 32*k - 16*i - j + 31 >= 0 <=> // k = ( 16*i + j ) floordiv 32 unsigned seenDividends = 0; for (auto ubPos : ubIndices) { for (auto lbPos : lbIndices) { // Check if lower bound's constant term is 'divisor - 1'. The 'divisor' // here is cst.atIneq(lbPos, pos) and we already know that it's positive // (since cst.Ineq(lbPos, ...) is a lower bound expression for 'pos'. if (cst.atIneq(lbPos, cst.getNumCols() - 1) != cst.atIneq(lbPos, pos) - 1) continue; // Check if upper bound's constant term is 0. if (cst.atIneq(ubPos, cst.getNumCols() - 1) != 0) continue; // For the remaining part, check if the lower bound expr's coeff's are // negations of corresponding upper bound ones'. unsigned c, f; for (c = 0, f = cst.getNumCols() - 1; c < f; c++) { if (cst.atIneq(lbPos, c) != -cst.atIneq(ubPos, c)) break; if (c != pos && cst.atIneq(lbPos, c) != 0) seenDividends++; } // Lb coeff's aren't negative of ub coeff's (for the non constant term // part). if (c < f) continue; if (seenDividends >= 1) { // The divisor is the constant term of the lower bound expression. // We already know that cst.atIneq(lbPos, pos) > 0. int64_t divisor = cst.atIneq(lbPos, pos); // Construct the dividend expression. auto dividendExpr = getAffineConstantExpr(0, context); unsigned c, f; for (c = 0, f = cst.getNumCols() - 1; c < f; c++) { if (c == pos) continue; int64_t ubVal = cst.atIneq(ubPos, c); if (ubVal == 0) continue; if (!(*memo)[c]) break; dividendExpr = dividendExpr + ubVal * (*memo)[c]; } // Expression can't be constructed as it depends on a yet unknown // identifier. // TODO(mlir-team): Visit/compute the identifiers in an order so that // this doesn't happen. More complex but much more efficient. if (c < f) continue; // Successfully detected the floordiv. (*memo)[pos] = dividendExpr.floorDiv(divisor); return true; } } } return false; } /// Computes the lower and upper bounds of the first 'num' dimensional /// identifiers as affine maps of the remaining identifiers (dimensional and /// symbolic identifiers). Local identifiers are themselves explicitly computed /// as affine functions of other identifiers in this process if needed. void FlatAffineConstraints::getSliceBounds(unsigned num, MLIRContext *context, SmallVectorImpl *lbMaps, SmallVectorImpl *ubMaps) { assert(num < getNumDimIds() && "invalid range"); // Basic simplification. normalizeConstraintsByGCD(); LLVM_DEBUG(llvm::dbgs() << "getSliceBounds on:\n"); LLVM_DEBUG(dump()); // Record computed/detected identifiers. SmallVector memo(getNumIds(), AffineExpr::Null()); // Initialize dimensional and symbolic identifiers. for (unsigned i = num, e = getNumDimIds(); i < e; i++) memo[i] = getAffineDimExpr(i - num, context); for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++) memo[i] = getAffineSymbolExpr(i - getNumDimIds(), context); bool changed; do { changed = false; // Identify yet unknown identifiers as constants or mod's / floordiv's of // other identifiers if possible. for (unsigned pos = 0; pos < getNumIds(); pos++) { if (memo[pos]) continue; auto lbConst = getConstantLowerBound(pos); auto ubConst = getConstantUpperBound(pos); if (lbConst.hasValue() && ubConst.hasValue()) { // Detect equality to a constant. if (lbConst.getValue() == ubConst.getValue()) { memo[pos] = getAffineConstantExpr(lbConst.getValue(), context); changed = true; continue; } // Detect an identifier as modulo of another identifier w.r.t a // constant. if (detectAsMod(*this, pos, lbConst.getValue(), ubConst.getValue(), &memo)) { changed = true; continue; } } // Detect an identifier as floordiv of another identifier w.r.t a // constant. if (detectAsFloorDiv(*this, pos, &memo, context)) { changed = true; continue; } // Detect an identifier as an expression of other identifiers. unsigned idx; if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) { continue; } // Build AffineExpr solving for identifier 'pos' in terms of all others. auto expr = getAffineConstantExpr(0, context); unsigned j, e; for (j = 0, e = getNumIds(); j < e; ++j) { if (j == pos) continue; int64_t c = atEq(idx, j); if (c == 0) continue; // If any of the involved IDs hasn't been found yet, we can't proceed. if (!memo[j]) break; expr = expr + memo[j] * c; } if (j < e) // Can't construct expression as it depends on a yet uncomputed // identifier. continue; // Add constant term to AffineExpr. expr = expr + atEq(idx, getNumIds()); int64_t vPos = atEq(idx, pos); assert(vPos != 0 && "expected non-zero here"); if (vPos > 0) expr = (-expr).floorDiv(vPos); else // vPos < 0. expr = expr.floorDiv(-vPos); // Successfully constructed expression. memo[pos] = expr; changed = true; } // This loop is guaranteed to reach a fixed point - since once an // identifier's explicit form is computed (in memo[pos]), it's not updated // again. } while (changed); // Set the lower and upper bound maps for all the identifiers that were // computed as affine expressions of the rest as the "detected expr" and // "detected expr + 1" respectively; set the undetected ones to Null(). for (unsigned pos = 0; pos < num; pos++) { unsigned numMapDims = getNumDimIds() - num; unsigned numMapSymbols = getNumSymbolIds(); AffineExpr expr = memo[pos]; if (expr) expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols); if (expr) { (*lbMaps)[pos] = AffineMap::get(numMapDims, numMapSymbols, expr, {}); (*ubMaps)[pos] = AffineMap::get(numMapDims, numMapSymbols, expr + 1, {}); } else { // TODO(andydavis, bondhugula) Add support for computing slice bounds // symbolic in the identifies [num, numIds). auto lbConst = getConstantLowerBound(pos); auto ubConst = getConstantUpperBound(pos); if (lbConst.hasValue() && ubConst.hasValue()) { (*lbMaps)[pos] = AffineMap::get( numMapDims, numMapSymbols, getAffineConstantExpr(lbConst.getValue(), context), {}); (*ubMaps)[pos] = AffineMap::get( numMapDims, numMapSymbols, getAffineConstantExpr(ubConst.getValue() + 1, context), {}); } else { (*lbMaps)[pos] = AffineMap(); (*ubMaps)[pos] = AffineMap(); } } LLVM_DEBUG(llvm::dbgs() << "lb map for pos = " << Twine(pos) << ", expr: "); LLVM_DEBUG(expr.dump();); } } void FlatAffineConstraints::addEquality(ArrayRef eq) { assert(eq.size() == getNumCols()); unsigned offset = equalities.size(); equalities.resize(equalities.size() + numReservedCols); std::copy(eq.begin(), eq.end(), equalities.begin() + offset); } void FlatAffineConstraints::addInequality(ArrayRef inEq) { assert(inEq.size() == getNumCols()); unsigned offset = inequalities.size(); inequalities.resize(inequalities.size() + numReservedCols); std::copy(inEq.begin(), inEq.end(), inequalities.begin() + offset); } void FlatAffineConstraints::addConstantLowerBound(unsigned pos, int64_t lb) { assert(pos < getNumCols()); unsigned offset = inequalities.size(); inequalities.resize(inequalities.size() + numReservedCols); std::fill(inequalities.begin() + offset, inequalities.begin() + offset + getNumCols(), 0); inequalities[offset + pos] = 1; inequalities[offset + getNumCols() - 1] = -lb; } void FlatAffineConstraints::addConstantUpperBound(unsigned pos, int64_t ub) { assert(pos < getNumCols()); unsigned offset = inequalities.size(); inequalities.resize(inequalities.size() + numReservedCols); std::fill(inequalities.begin() + offset, inequalities.begin() + offset + getNumCols(), 0); inequalities[offset + pos] = -1; inequalities[offset + getNumCols() - 1] = ub; } void FlatAffineConstraints::addConstantLowerBound(ArrayRef expr, int64_t lb) { assert(expr.size() == getNumCols()); unsigned offset = inequalities.size(); inequalities.resize(inequalities.size() + numReservedCols); std::fill(inequalities.begin() + offset, inequalities.begin() + offset + getNumCols(), 0); std::copy(expr.begin(), expr.end(), inequalities.begin() + offset); inequalities[offset + getNumCols() - 1] += -lb; } void FlatAffineConstraints::addConstantUpperBound(ArrayRef expr, int64_t ub) { assert(expr.size() == getNumCols()); unsigned offset = inequalities.size(); inequalities.resize(inequalities.size() + numReservedCols); std::fill(inequalities.begin() + offset, inequalities.begin() + offset + getNumCols(), 0); for (unsigned i = 0, e = getNumCols(); i < e; i++) { inequalities[offset + i] = -expr[i]; } inequalities[offset + getNumCols() - 1] += ub; } /// Adds a new local identifier as the floordiv of an affine function of other /// identifiers, the coefficients of which are provided in 'dividend' and with /// respect to a positive constant 'divisor'. Two constraints are added to the /// system to capture equivalence with the floordiv. /// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1. void FlatAffineConstraints::addLocalFloorDiv(ArrayRef dividend, int64_t divisor) { assert(dividend.size() == getNumCols() && "incorrect dividend size"); assert(divisor > 0 && "positive divisor expected"); addLocalId(getNumLocalIds()); // Add two constraints for this new identifier 'q'. SmallVector bound(dividend.size() + 1); // dividend - q * divisor >= 0 std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1, bound.begin()); bound.back() = dividend.back(); bound[getNumIds() - 1] = -divisor; addInequality(bound); // -dividend +qdivisor * q + divisor - 1 >= 0 std::transform(bound.begin(), bound.end(), bound.begin(), std::negate()); bound[bound.size() - 1] += divisor - 1; addInequality(bound); } bool FlatAffineConstraints::findId(const Value &id, unsigned *pos) const { unsigned i = 0; for (const auto &mayBeId : ids) { if (mayBeId.hasValue() && mayBeId.getValue() == &id) { *pos = i; return true; } i++; } return false; } void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) { assert(newSymbolCount <= numDims + numSymbols && "invalid separation position"); numDims = numDims + numSymbols - newSymbolCount; numSymbols = newSymbolCount; } bool FlatAffineConstraints::addForInstDomain(const ForInst &forInst) { unsigned pos; // Pre-condition for this method. if (!findId(*forInst.getInductionVar(), &pos)) { assert(0 && "Value not found"); return false; } if (forInst.getStep() != 1) LLVM_DEBUG(llvm::dbgs() << "Domain conservative: non-unit stride not handled\n"); // Adds a lower or upper bound when the bounds aren't constant. auto addLowerOrUpperBound = [&](bool lower) -> bool { auto operands = lower ? forInst.getLowerBoundOperands() : forInst.getUpperBoundOperands(); for (const auto &operand : operands) { unsigned loc; if (!findId(*operand, &loc)) { if (operand->isValidSymbol()) { addSymbolId(getNumSymbolIds(), const_cast(operand)); loc = getNumDimIds() + getNumSymbolIds() - 1; // Check if the symbol is a constant. if (auto *opInst = operand->getDefiningInst()) { if (auto constOp = opInst->dyn_cast()) { setIdToConstant(*operand, constOp->getValue()); } } } else { addDimId(getNumDimIds(), const_cast(operand)); loc = getNumDimIds() - 1; } } } // Record positions of the operands in the constraint system. SmallVector positions; for (const auto &operand : operands) { unsigned loc; if (!findId(*operand, &loc)) assert(0 && "expected to be found"); positions.push_back(loc); } auto boundMap = lower ? forInst.getLowerBoundMap() : forInst.getUpperBoundMap(); FlatAffineConstraints localVarCst; std::vector> flatExprs; if (!getFlattenedAffineExprs(boundMap, &flatExprs, &localVarCst)) { LLVM_DEBUG(llvm::dbgs() << "semi-affine expressions not yet supported\n"); return false; } if (localVarCst.getNumLocalIds() > 0) { LLVM_DEBUG(llvm::dbgs() << "loop bounds with mod/floordiv expr's not yet supported\n"); return false; } for (const auto &flatExpr : flatExprs) { SmallVector ineq(getNumCols(), 0); ineq[pos] = lower ? 1 : -1; for (unsigned j = 0, e = boundMap.getNumInputs(); j < e; j++) { ineq[positions[j]] = lower ? -flatExpr[j] : flatExpr[j]; } // Constant term. ineq[getNumCols() - 1] = lower ? -flatExpr[flatExpr.size() - 1] // Upper bound in flattenedExpr is an exclusive one. : flatExpr[flatExpr.size() - 1] - 1; addInequality(ineq); } return true; }; if (forInst.hasConstantLowerBound()) { addConstantLowerBound(pos, forInst.getConstantLowerBound()); } else { // Non-constant lower bound case. if (!addLowerOrUpperBound(/*lower=*/true)) return false; } if (forInst.hasConstantUpperBound()) { addConstantUpperBound(pos, forInst.getConstantUpperBound() - 1); return true; } // Non-constant upper bound case. return addLowerOrUpperBound(/*lower=*/false); } /// Sets the specified identifer to a constant value. void FlatAffineConstraints::setIdToConstant(unsigned pos, int64_t val) { unsigned offset = equalities.size(); equalities.resize(equalities.size() + numReservedCols); std::fill(equalities.begin() + offset, equalities.begin() + offset + getNumCols(), 0); equalities[offset + pos] = 1; equalities[offset + getNumCols() - 1] = -val; } /// Sets the specified identifer to a constant value; asserts if the id is not /// found. void FlatAffineConstraints::setIdToConstant(const Value &id, int64_t val) { unsigned pos; if (!findId(id, &pos)) // This is a pre-condition for this method. assert(0 && "id not found"); setIdToConstant(pos, val); } void FlatAffineConstraints::removeEquality(unsigned pos) { unsigned numEqualities = getNumEqualities(); assert(pos < numEqualities); unsigned outputIndex = pos * numReservedCols; unsigned inputIndex = (pos + 1) * numReservedCols; unsigned numElemsToCopy = (numEqualities - pos - 1) * numReservedCols; std::copy(equalities.begin() + inputIndex, equalities.begin() + inputIndex + numElemsToCopy, equalities.begin() + outputIndex); equalities.resize(equalities.size() - numReservedCols); } /// Finds an equality that equates the specified identifier to a constant. /// Returns the position of the equality row. If 'symbolic' is set to true, /// symbols are also treated like a constant, i.e., an affine function of the /// symbols is also treated like a constant. static int findEqualityToConstant(const FlatAffineConstraints &cst, unsigned pos, bool symbolic = false) { assert(pos < cst.getNumIds() && "invalid position"); for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { int64_t v = cst.atEq(r, pos); if (v * v != 1) continue; unsigned c; unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds(); // This checks for zeros in all positions other than 'pos' in [0, f) for (c = 0; c < f; c++) { if (c == pos) continue; if (cst.atEq(r, c) != 0) { // Dependent on another identifier. break; } } if (c == f) // Equality is free of other identifiers. return r; } return -1; } void FlatAffineConstraints::setAndEliminate(unsigned pos, int64_t constVal) { assert(pos < getNumIds() && "invalid position"); for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { atIneq(r, getNumCols() - 1) += atIneq(r, pos) * constVal; } for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { atEq(r, getNumCols() - 1) += atEq(r, pos) * constVal; } removeId(pos); } bool FlatAffineConstraints::constantFoldId(unsigned pos) { assert(pos < getNumIds() && "invalid position"); int rowIdx; if ((rowIdx = findEqualityToConstant(*this, pos)) == -1) return false; // atEq(rowIdx, pos) is either -1 or 1. assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1); int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos); setAndEliminate(pos, constVal); return true; } void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) { for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) { if (!constantFoldId(t)) t++; } } /// Returns the extent (upper bound - lower bound) of the specified /// identifier if it is found to be a constant; returns None if it's not a /// constant. This methods treats symbolic identifiers specially, i.e., /// it looks for constant differences between affine expressions involving /// only the symbolic identifiers. See comments at function definition for /// example. 'lb', if provided, is set to the lower bound associated with the /// constant difference. Note that 'lb' is purely symbolic and thus will contain /// the coefficients of the symbolic identifiers and the constant coefficient. // Egs: 0 <= i <= 15, return 16. // s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol) // s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16. // s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb = // ceil(s0 - 7 / 8) = floor(s0 / 8)). Optional FlatAffineConstraints::getConstantBoundOnDimSize( unsigned pos, SmallVectorImpl *lb, int64_t *lbFloorDivisor) const { assert(pos < getNumDimIds() && "Invalid identifier position"); assert(getNumLocalIds() == 0); // TODO(bondhugula): eliminate all remaining dimensional identifiers (other // than the one at 'pos' to make this more powerful. Not needed for // hyper-rectangular spaces. // Find an equality for 'pos'^th identifier that equates it to some function // of the symbolic identifiers (+ constant). int eqRow = findEqualityToConstant(*this, pos, /*symbolic=*/true); if (eqRow != -1) { // This identifier can only take a single value. if (lb) { // Set lb to the symbolic value. lb->resize(getNumSymbolIds() + 1); for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) { int64_t v = atEq(eqRow, pos); // atEq(eqRow, pos) is either -1 or 1. assert(v * v == 1); (*lb)[c] = v < 0 ? atEq(eqRow, getNumDimIds() + c) / -v : -atEq(eqRow, getNumDimIds() + c) / v; } assert(lbFloorDivisor && "both lb and divisor or none should be provided"); *lbFloorDivisor = 1; } return 1; } // Check if the identifier appears at all in any of the inequalities. unsigned r, e; for (r = 0, e = getNumInequalities(); r < e; r++) { if (atIneq(r, pos) != 0) break; } if (r == e) // If it doesn't, there isn't a bound on it. return None; // Positions of constraints that are lower/upper bounds on the variable. SmallVector lbIndices, ubIndices; // Gather all symbolic lower bounds and upper bounds of the variable. Since // the canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a // lower bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { unsigned c, f; for (c = 0, f = getNumDimIds(); c < f; c++) { if (c != pos && atIneq(r, c) != 0) break; } if (c < getNumDimIds()) continue; if (atIneq(r, pos) >= 1) // Lower bound. lbIndices.push_back(r); else if (atIneq(r, pos) <= -1) // Upper bound. ubIndices.push_back(r); } // TODO(bondhugula): eliminate other dimensional identifiers to make this more // powerful. Not needed for hyper-rectangular iteration spaces. Optional minDiff = None; unsigned minLbPosition; for (auto ubPos : ubIndices) { for (auto lbPos : lbIndices) { // Look for a lower bound and an upper bound that only differ by a // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst. // For example, if ii is the pos^th variable, we are looking for // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The // minimum among all such constant differences is kept since that's the // constant bounding the extent of the pos^th variable. unsigned j, e; for (j = 0, e = getNumCols() - 1; j < e; j++) if (atIneq(ubPos, j) != -atIneq(lbPos, j)) { break; } if (j < getNumCols() - 1) continue; int64_t diff = floorDiv(atIneq(ubPos, getNumCols() - 1) + atIneq(lbPos, getNumCols() - 1) + 1, atIneq(lbPos, pos)); if (minDiff == None || diff < minDiff) { minDiff = diff; minLbPosition = lbPos; } } } if (lb && minDiff.hasValue()) { // Set lb to the symbolic lower bound. lb->resize(getNumSymbolIds() + 1); // The lower bound is the ceildiv of the lb constraint over the coefficient // of the variable at 'pos'. We express the ceildiv equivalently as a floor // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N + // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32). *lbFloorDivisor = atIneq(minLbPosition, pos); for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) { // ceildiv (val / d) = floordiv (val + d - 1 / d); hence, the addition of // 'atIneq(minLbPosition, pos) - 1'. (*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c) + atIneq(minLbPosition, pos) - 1; } } return minDiff; } template Optional FlatAffineConstraints::getConstantLowerOrUpperBound(unsigned pos) const { // Check if there's an equality equating the 'pos'^th identifier to a // constant. int eqRowIdx = findEqualityToConstant(*this, pos, /*symbolic=*/false); if (eqRowIdx != -1) // atEq(rowIdx, pos) is either -1 or 1. return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, pos); // Check if the identifier appears at all in any of the inequalities. unsigned r, e; for (r = 0, e = getNumInequalities(); r < e; r++) { if (atIneq(r, pos) != 0) break; } if (r == e) // If it doesn't, there isn't a bound on it. return None; Optional minOrMaxConst = None; // Take the max across all const lower bounds (or min across all constant // upper bounds). for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { if (isLower) { if (atIneq(r, pos) <= 0) // Not a lower bound. continue; } else if (atIneq(r, pos) >= 0) { // Not an upper bound. continue; } unsigned c, f; for (c = 0, f = getNumCols() - 1; c < f; c++) if (c != pos && atIneq(r, c) != 0) break; if (c < getNumCols() - 1) // Not a constant bound. continue; int64_t boundConst = isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, pos)) : mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, pos)); if (isLower) { if (minOrMaxConst == None || boundConst > minOrMaxConst) minOrMaxConst = boundConst; } else { if (minOrMaxConst == None || boundConst < minOrMaxConst) minOrMaxConst = boundConst; } } return minOrMaxConst; } Optional FlatAffineConstraints::getConstantLowerBound(unsigned pos) const { return getConstantLowerOrUpperBound(pos); } Optional FlatAffineConstraints::getConstantUpperBound(unsigned pos) const { return getConstantLowerOrUpperBound(pos); } // A simple (naive and conservative) check for hyper-rectangularlity. bool FlatAffineConstraints::isHyperRectangular(unsigned pos, unsigned num) const { assert(pos < getNumCols() - 1); // Check for two non-zero coefficients in the range [pos, pos + sum). for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { unsigned sum = 0; for (unsigned c = pos; c < pos + num; c++) { if (atIneq(r, c) != 0) sum++; } if (sum > 1) return false; } for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { unsigned sum = 0; for (unsigned c = pos; c < pos + num; c++) { if (atEq(r, c) != 0) sum++; } if (sum > 1) return false; } return true; } void FlatAffineConstraints::print(raw_ostream &os) const { assert(hasConsistentState()); os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds() << " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints() << " constraints)\n"; os << "("; for (unsigned i = 0, e = getNumIds(); i < e; i++) { if (ids[i] == None) os << "None "; else os << "Value "; } os << " const)\n"; for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { for (unsigned j = 0, f = getNumCols(); j < f; ++j) { os << atEq(i, j) << " "; } os << "= 0\n"; } for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { for (unsigned j = 0, f = getNumCols(); j < f; ++j) { os << atIneq(i, j) << " "; } os << ">= 0\n"; } os << '\n'; } void FlatAffineConstraints::dump() const { print(llvm::errs()); } /// Removes duplicate constraints and trivially true constraints: a constraint /// of the form >= 0 is considered a trivially true /// constraint. // Uses a DenseSet to hash and detect duplicates followed by a linear scan to // remove duplicates in place. void FlatAffineConstraints::removeTrivialRedundancy() { DenseSet> rowSet; // Check if constraint is of the form >= 0. auto isTriviallyValid = [&](unsigned r) -> bool { for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) { if (atIneq(r, c) != 0) return false; } return atIneq(r, getNumCols() - 1) >= 0; }; // Detect and mark redundant constraints. std::vector redunIneq(getNumInequalities(), false); for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { int64_t *rowStart = inequalities.data() + numReservedCols * r; auto row = ArrayRef(rowStart, getNumCols()); if (isTriviallyValid(r) || !rowSet.insert(row).second) { redunIneq[r] = true; } } auto copyRow = [&](unsigned src, unsigned dest) { if (src == dest) return; for (unsigned c = 0, e = getNumCols(); c < e; c++) { atIneq(dest, c) = atIneq(src, c); } }; // Scan to get rid of all rows marked redundant, in-place. unsigned pos = 0; for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { if (!redunIneq[r]) copyRow(r, pos++); } inequalities.resize(numReservedCols * pos); // TODO(bondhugula): consider doing this for equalities as well, but probably // not worth the savings. } void FlatAffineConstraints::clearAndCopyFrom( const FlatAffineConstraints &other) { FlatAffineConstraints copy(other); std::swap(*this, copy); assert(copy.getNumIds() == copy.getIds().size()); } void FlatAffineConstraints::removeId(unsigned pos) { removeIdRange(pos, pos + 1); } static std::pair getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) { unsigned numDims = cst.getNumDimIds(); unsigned numSymbols = cst.getNumSymbolIds(); unsigned newNumDims, newNumSymbols; if (pos < numDims) { newNumDims = numDims - 1; newNumSymbols = numSymbols; } else if (pos < numDims + numSymbols) { assert(numSymbols >= 1); newNumDims = numDims; newNumSymbols = numSymbols - 1; } else { newNumDims = numDims; newNumSymbols = numSymbols; } return {newNumDims, newNumSymbols}; } #undef DEBUG_TYPE #define DEBUG_TYPE "fm" /// Eliminates identifier at the specified position using Fourier-Motzkin /// variable elimination. This technique is exact for rational spaces but /// conservative (in "rare" cases) for integer spaces. The operation corresponds /// to a projection operation yielding the (convex) set of integer points /// contained in the rational shadow of the set. An emptiness test that relies /// on this method will guarantee emptiness, i.e., it disproves the existence of /// a solution if it says it's empty. /// If a non-null isResultIntegerExact is passed, it is set to true if the /// result is also integer exact. If it's set to false, the obtained solution /// *may* not be exact, i.e., it may contain integer points that do not have an /// integer pre-image in the original set. /// /// Eg: /// j >= 0, j <= i + 1 /// i >= 0, i <= N + 1 /// Eliminating i yields, /// j >= 0, 0 <= N + 1, j - 1 <= N + 1 /// /// If darkShadow = true, this method computes the dark shadow on elimination; /// the dark shadow is a convex integer subset of the exact integer shadow. A /// non-empty dark shadow proves the existence of an integer solution. The /// elimination in such a case could however be an under-approximation, and thus /// should not be used for scanning sets or used by itself for dependence /// checking. /// /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set. /// ^ /// | /// | * * * * o o /// i | * * o o o o /// | o * * * * * /// ---------------> /// j -> /// /// Eliminating i from this system (projecting on the j dimension): /// rational shadow / integer light shadow: 1 <= j <= 6 /// dark shadow: 3 <= j <= 6 /// exact integer shadow: j = 1 \union 3 <= j <= 6 /// holes/splinters: j = 2 /// /// darkShadow = false, isResultIntegerExact = nullptr are default values. // TODO(bondhugula): a slight modification to yield dark shadow version of FM // (tightened), which can prove the existence of a solution if there is one. void FlatAffineConstraints::FourierMotzkinEliminate( unsigned pos, bool darkShadow, bool *isResultIntegerExact) { LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n"); LLVM_DEBUG(dump()); assert(pos < getNumIds() && "invalid position"); assert(hasConsistentState()); // Check if this identifier can be eliminated through a substitution. for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { if (atEq(r, pos) != 0) { // Use Gaussian elimination here (since we have an equality). bool ret = gaussianEliminateId(pos); (void)ret; assert(ret && "Gaussian elimination guaranteed to succeed"); LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); LLVM_DEBUG(dump()); return; } } // A fast linear time tightening. GCDTightenInequalities(); // Check if the identifier appears at all in any of the inequalities. unsigned r, e; for (r = 0, e = getNumInequalities(); r < e; r++) { if (atIneq(r, pos) != 0) break; } if (r == getNumInequalities()) { // If it doesn't appear, just remove the column and return. // TODO(andydavis,bondhugula): refactor removeColumns to use it from here. removeId(pos); LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); LLVM_DEBUG(dump()); return; } // Positions of constraints that are lower bounds on the variable. SmallVector lbIndices; // Positions of constraints that are lower bounds on the variable. SmallVector ubIndices; // Positions of constraints that do not involve the variable. std::vector nbIndices; nbIndices.reserve(getNumInequalities()); // Gather all lower bounds and upper bounds of the variable. Since the // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { if (atIneq(r, pos) == 0) { // Id does not appear in bound. nbIndices.push_back(r); } else if (atIneq(r, pos) >= 1) { // Lower bound. lbIndices.push_back(r); } else { // Upper bound. ubIndices.push_back(r); } } // Set the number of dimensions, symbols in the resulting system. const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this); unsigned newNumDims = dimsSymbols.first; unsigned newNumSymbols = dimsSymbols.second; SmallVector, 8> newIds; newIds.reserve(numIds - 1); newIds.append(ids.begin(), ids.begin() + pos); newIds.append(ids.begin() + pos + 1, ids.end()); /// Create the new system which has one identifier less. FlatAffineConstraints newFac( lbIndices.size() * ubIndices.size() + nbIndices.size(), getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols, /*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols, newIds); assert(newFac.getIds().size() == newFac.getNumIds()); // This will be used to check if the elimination was integer exact. unsigned lcmProducts = 1; // Let x be the variable we are eliminating. // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note // that c_l, c_u >= 1) we have: // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u // We thus generate a constraint: // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub. // Note if c_l = c_u = 1, all integer points captured by the resulting // constraint correspond to integer points in the original system (i.e., they // have integer pre-images). Hence, if the lcm's are all 1, the elimination is // integer exact. for (auto ubPos : ubIndices) { for (auto lbPos : lbIndices) { SmallVector ineq; ineq.reserve(newFac.getNumCols()); int64_t lbCoeff = atIneq(lbPos, pos); // Note that in the comments above, ubCoeff is the negation of the // coefficient in the canonical form as the view taken here is that of the // term being moved to the other size of '>='. int64_t ubCoeff = -atIneq(ubPos, pos); // TODO(bondhugula): refactor this loop to avoid all branches inside. for (unsigned l = 0, e = getNumCols(); l < e; l++) { if (l == pos) continue; assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified"); int64_t lcm = mlir::lcm(lbCoeff, ubCoeff); ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) + atIneq(lbPos, l) * (lcm / lbCoeff)); lcmProducts *= lcm; } if (darkShadow) { // The dark shadow is a convex subset of the exact integer shadow. If // there is a point here, it proves the existence of a solution. ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1; } // TODO: we need to have a way to add inequalities in-place in // FlatAffineConstraints instead of creating and copying over. newFac.addInequality(ineq); } } if (lcmProducts == 1 && isResultIntegerExact) *isResultIntegerExact = 1; // Copy over the constraints not involving this variable. for (auto nbPos : nbIndices) { SmallVector ineq; ineq.reserve(getNumCols() - 1); for (unsigned l = 0, e = getNumCols(); l < e; l++) { if (l == pos) continue; ineq.push_back(atIneq(nbPos, l)); } newFac.addInequality(ineq); } assert(newFac.getNumConstraints() == lbIndices.size() * ubIndices.size() + nbIndices.size()); // Copy over the equalities. for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { SmallVector eq; eq.reserve(newFac.getNumCols()); for (unsigned l = 0, e = getNumCols(); l < e; l++) { if (l == pos) continue; eq.push_back(atEq(r, l)); } newFac.addEquality(eq); } newFac.removeTrivialRedundancy(); clearAndCopyFrom(newFac); LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); LLVM_DEBUG(dump()); } #undef DEBUG_TYPE #define DEBUG_TYPE "affine-structures" void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) { if (num == 0) return; // 'pos' can be at most getNumCols() - 2 if num > 0. assert(getNumCols() < 2 || pos <= getNumCols() - 2 && "invalid position"); assert(pos + num < getNumCols() && "invalid range"); // Eliminate as many identifiers as possible using Gaussian elimination. unsigned currentPos = pos; unsigned numToEliminate = num; unsigned numGaussianEliminated = 0; while (currentPos < getNumIds()) { unsigned curNumEliminated = gaussianEliminateIds(currentPos, currentPos + numToEliminate); ++currentPos; numToEliminate -= curNumEliminated + 1; numGaussianEliminated += curNumEliminated; } // Eliminate the remaining using Fourier-Motzkin. for (unsigned i = 0; i < num - numGaussianEliminated; i++) { unsigned numToEliminate = num - numGaussianEliminated - i; FourierMotzkinEliminate( getBestIdToEliminate(*this, pos, pos + numToEliminate)); } // Fast/trivial simplifications. GCDTightenInequalities(); // Normalize constraints after tightening since the latter impacts this, but // not the other way round. normalizeConstraintsByGCD(); } void FlatAffineConstraints::projectOut(Value *id) { unsigned pos; bool ret = findId(*id, &pos); assert(ret); (void)ret; FourierMotzkinEliminate(pos); } bool FlatAffineConstraints::isRangeOneToOne(unsigned start, unsigned limit) const { assert(start <= getNumIds() - 1 && "invalid start position"); assert(limit > start && limit <= getNumIds() && "invalid limit"); FlatAffineConstraints tmpCst(*this); if (start != 0) { // Move [start, limit) to the left. for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) { for (unsigned c = 0, f = getNumCols(); c < f; ++c) { if (c >= start && c < limit) tmpCst.atIneq(r, c - start) = atIneq(r, c); else if (c < start) tmpCst.atIneq(r, c + limit - start) = atIneq(r, c); else tmpCst.atIneq(r, c) = atIneq(r, c); } } for (unsigned r = 0, e = getNumEqualities(); r < e; ++r) { for (unsigned c = 0, f = getNumCols(); c < f; ++c) { if (c >= start && c < limit) tmpCst.atEq(r, c - start) = atEq(r, c); else if (c < start) tmpCst.atEq(r, c + limit - start) = atEq(r, c); else tmpCst.atEq(r, c) = atEq(r, c); } } } // Mark everything to the right as symbols so that we can check the extents in // a symbolic way below. tmpCst.setDimSymbolSeparation(getNumIds() - (limit - start)); // Check if the extents of all the specified dimensions are just one (when // treating the rest as symbols). for (unsigned pos = 0, e = tmpCst.getNumDimIds(); pos < e; ++pos) { auto extent = tmpCst.getConstantBoundOnDimSize(pos); if (!extent.hasValue() || extent.getValue() != 1) return false; } return true; } void FlatAffineConstraints::clearConstraints() { equalities.clear(); inequalities.clear(); } namespace { enum BoundCmpResult { Greater, Less, Equal, Unknown }; /// Compares two affine bounds whose coefficients are provided in 'first' and /// 'second'. The last coefficient is the constant term. static BoundCmpResult compareBounds(ArrayRef a, ArrayRef b) { assert(a.size() == b.size()); // For the bounds to be comparable, their corresponding identifier // coefficients should be equal; the constant terms are then compared to // determine less/greater/equal. if (!std::equal(a.begin(), a.end() - 1, b.begin())) return Unknown; if (a.back() == b.back()) return Equal; return a.back() < b.back() ? Less : Greater; } }; // namespace // Compute the bounding box with respect to 'other' by finding the min of the // lower bounds and the max of the upper bounds along each of the dimensions. bool FlatAffineConstraints::unionBoundingBox( const FlatAffineConstraints &other) { std::vector> boundingLbs; std::vector> boundingUbs; boundingLbs.reserve(2 * getNumDimIds()); boundingUbs.reserve(2 * getNumDimIds()); SmallVector lb, otherLb; lb.reserve(getNumSymbolIds() + 1); otherLb.reserve(getNumSymbolIds() + 1); int64_t lbDivisor, otherLbDivisor; for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) { lb.clear(); auto extent = getConstantBoundOnDimSize(d, &lb, &lbDivisor); if (!extent.hasValue()) // TODO(bondhugula): symbolic extents when necessary. return false; otherLb.clear(); auto otherExtent = other.getConstantBoundOnDimSize(d, &otherLb, &otherLbDivisor); if (!otherExtent.hasValue() || lbDivisor != otherLbDivisor) // TODO(bondhugula): symbolic extents when necessary. return false; assert(lbDivisor > 0 && "divisor always expected to be positive"); // Compute min of lower bounds and max of upper bounds. ArrayRef minLb, maxUb; auto res = compareBounds(lb, otherLb); // Identify min. if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) { minLb = lb; } else if (res == BoundCmpResult::Greater) { minLb = otherLb; } else { // Uncomparable. return false; } // Do the same for ub's but max of upper bounds. SmallVector ub(lb), otherUb(otherLb); ub.back() += extent.getValue() - 1; otherUb.back() += otherExtent.getValue() - 1; // Identify max. auto uRes = compareBounds(ub, otherUb); if (uRes == BoundCmpResult::Greater || res == BoundCmpResult::Equal) { maxUb = ub; } else if (uRes == BoundCmpResult::Less) { maxUb = otherUb; } else { // Uncomparable. return false; } SmallVector newLb(getNumCols(), 0); SmallVector newUb(getNumCols(), 0); // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor, // and so it's the divisor for newLb and newUb as well. newLb[d] = lbDivisor; newUb[d] = -lbDivisor; // Copy over the symbolic part + constant term. std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimIds()); std::transform(newLb.begin() + getNumDimIds(), newLb.end(), newLb.begin() + getNumDimIds(), std::negate()); std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimIds()); boundingLbs.push_back(newLb); boundingUbs.push_back(newUb); } // Clear all constraints and add the lower/upper bounds for the bounding box. clearConstraints(); for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) { addInequality(boundingLbs[d]); addInequality(boundingUbs[d]); } return true; }