//===- PatternMatchTest.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/ConstantFoldingMIRBuilder.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MIRParser/MIRParser.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "gtest/gtest.h" using namespace llvm; using namespace MIPatternMatch; namespace { void initLLVM() { InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmPrinters(); InitializeAllAsmParsers(); PassRegistry *Registry = PassRegistry::getPassRegistry(); initializeCore(*Registry); initializeCodeGen(*Registry); } /// Create a TargetMachine. As we lack a dedicated always available target for /// unittests, we go for "AArch64". std::unique_ptr createTargetMachine() { Triple TargetTriple("aarch64--"); std::string Error; const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error); if (!T) return nullptr; TargetOptions Options; return std::unique_ptr(static_cast( T->createTargetMachine("AArch64", "", "", Options, None, None, CodeGenOpt::Aggressive))); } std::unique_ptr parseMIR(LLVMContext &Context, std::unique_ptr &MIR, const TargetMachine &TM, StringRef MIRCode, const char *FuncName, MachineModuleInfo &MMI) { SMDiagnostic Diagnostic; std::unique_ptr MBuffer = MemoryBuffer::getMemBuffer(MIRCode); MIR = createMIRParser(std::move(MBuffer), Context); if (!MIR) return nullptr; std::unique_ptr M = MIR->parseIRModule(); if (!M) return nullptr; M->setDataLayout(TM.createDataLayout()); if (MIR->parseMachineFunctions(*M, MMI)) return nullptr; return M; } std::pair, std::unique_ptr> createDummyModule(LLVMContext &Context, const LLVMTargetMachine &TM, StringRef MIRFunc) { SmallString<512> S; StringRef MIRString = (Twine(R"MIR( --- ... name: func registers: - { id: 0, class: _ } - { id: 1, class: _ } - { id: 2, class: _ } - { id: 3, class: _ } body: | bb.1: %0(s64) = COPY $x0 %1(s64) = COPY $x1 %2(s64) = COPY $x2 )MIR") + Twine(MIRFunc) + Twine("...\n")) .toNullTerminatedStringRef(S); std::unique_ptr MIR; auto MMI = std::make_unique(&TM); std::unique_ptr M = parseMIR(Context, MIR, TM, MIRString, "func", *MMI); return make_pair(std::move(M), std::move(MMI)); } static MachineFunction *getMFFromMMI(const Module *M, const MachineModuleInfo *MMI) { Function *F = M->getFunction("func"); auto *MF = MMI->getMachineFunction(*F); return MF; } static void collectCopies(SmallVectorImpl &Copies, MachineFunction *MF) { for (auto &MBB : *MF) for (MachineInstr &MI : MBB) { if (MI.getOpcode() == TargetOpcode::COPY) Copies.push_back(MI.getOperand(0).getReg()); } } TEST(PatternMatchInstr, MatchIntConstant) { LLVMContext Context; std::unique_ptr TM = createTargetMachine(); if (!TM) return; auto ModuleMMIPair = createDummyModule(Context, *TM, ""); MachineFunction *MF = getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get()); SmallVector Copies; collectCopies(Copies, MF); MachineBasicBlock *EntryMBB = &*MF->begin(); MachineIRBuilder B(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); B.setInsertPt(*EntryMBB, EntryMBB->end()); auto MIBCst = B.buildConstant(LLT::scalar(64), 42); int64_t Cst; bool match = mi_match(MIBCst->getOperand(0).getReg(), MRI, m_ICst(Cst)); EXPECT_TRUE(match); EXPECT_EQ(Cst, 42); } TEST(PatternMatchInstr, MatchBinaryOp) { LLVMContext Context; std::unique_ptr TM = createTargetMachine(); if (!TM) return; auto ModuleMMIPair = createDummyModule(Context, *TM, ""); MachineFunction *MF = getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get()); SmallVector Copies; collectCopies(Copies, MF); MachineBasicBlock *EntryMBB = &*MF->begin(); MachineIRBuilder B(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); B.setInsertPt(*EntryMBB, EntryMBB->end()); LLT s64 = LLT::scalar(64); auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); // Test case for no bind. bool match = mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_GAdd(m_Reg(), m_Reg())); EXPECT_TRUE(match); Register Src0, Src1, Src2; match = mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_GAdd(m_Reg(Src0), m_Reg(Src1))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); EXPECT_EQ(Src1, Copies[1]); // Build MUL(ADD %0, %1), %2 auto MIBMul = B.buildMul(s64, MIBAdd, Copies[2]); // Try to match MUL. match = mi_match(MIBMul->getOperand(0).getReg(), MRI, m_GMul(m_Reg(Src0), m_Reg(Src1))); EXPECT_TRUE(match); EXPECT_EQ(Src0, MIBAdd->getOperand(0).getReg()); EXPECT_EQ(Src1, Copies[2]); // Try to match MUL(ADD) match = mi_match(MIBMul->getOperand(0).getReg(), MRI, m_GMul(m_GAdd(m_Reg(Src0), m_Reg(Src1)), m_Reg(Src2))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); EXPECT_EQ(Src1, Copies[1]); EXPECT_EQ(Src2, Copies[2]); // Test Commutativity. auto MIBMul2 = B.buildMul(s64, Copies[0], B.buildConstant(s64, 42)); // Try to match MUL(Cst, Reg) on src of MUL(Reg, Cst) to validate // commutativity. int64_t Cst; match = mi_match(MIBMul2->getOperand(0).getReg(), MRI, m_GMul(m_ICst(Cst), m_Reg(Src0))); EXPECT_TRUE(match); EXPECT_EQ(Cst, 42); EXPECT_EQ(Src0, Copies[0]); // Make sure commutative doesn't work with something like SUB. auto MIBSub = B.buildSub(s64, Copies[0], B.buildConstant(s64, 42)); match = mi_match(MIBSub->getOperand(0).getReg(), MRI, m_GSub(m_ICst(Cst), m_Reg(Src0))); EXPECT_FALSE(match); auto MIBFMul = B.buildInstr(TargetOpcode::G_FMUL, {s64}, {Copies[0], B.buildConstant(s64, 42)}); // Match and test commutativity for FMUL. match = mi_match(MIBFMul->getOperand(0).getReg(), MRI, m_GFMul(m_ICst(Cst), m_Reg(Src0))); EXPECT_TRUE(match); EXPECT_EQ(Cst, 42); EXPECT_EQ(Src0, Copies[0]); // FSUB auto MIBFSub = B.buildInstr(TargetOpcode::G_FSUB, {s64}, {Copies[0], B.buildConstant(s64, 42)}); match = mi_match(MIBFSub->getOperand(0).getReg(), MRI, m_GFSub(m_Reg(Src0), m_Reg())); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); // Build AND %0, %1 auto MIBAnd = B.buildAnd(s64, Copies[0], Copies[1]); // Try to match AND. match = mi_match(MIBAnd->getOperand(0).getReg(), MRI, m_GAnd(m_Reg(Src0), m_Reg(Src1))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); EXPECT_EQ(Src1, Copies[1]); // Build OR %0, %1 auto MIBOr = B.buildOr(s64, Copies[0], Copies[1]); // Try to match OR. match = mi_match(MIBOr->getOperand(0).getReg(), MRI, m_GOr(m_Reg(Src0), m_Reg(Src1))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); EXPECT_EQ(Src1, Copies[1]); // Try to use the FoldableInstructionsBuilder to build binary ops. ConstantFoldingMIRBuilder CFB(B.getState()); LLT s32 = LLT::scalar(32); auto MIBCAdd = CFB.buildAdd(s32, CFB.buildConstant(s32, 0), CFB.buildConstant(s32, 1)); // This should be a constant now. match = mi_match(MIBCAdd->getOperand(0).getReg(), MRI, m_ICst(Cst)); EXPECT_TRUE(match); EXPECT_EQ(Cst, 1); auto MIBCAdd1 = CFB.buildInstr(TargetOpcode::G_ADD, {s32}, {CFB.buildConstant(s32, 0), CFB.buildConstant(s32, 1)}); // This should be a constant now. match = mi_match(MIBCAdd1->getOperand(0).getReg(), MRI, m_ICst(Cst)); EXPECT_TRUE(match); EXPECT_EQ(Cst, 1); // Try one of the other constructors of MachineIRBuilder to make sure it's // compatible. ConstantFoldingMIRBuilder CFB1(*MF); CFB1.setInsertPt(*EntryMBB, EntryMBB->end()); auto MIBCSub = CFB1.buildInstr(TargetOpcode::G_SUB, {s32}, {CFB1.buildConstant(s32, 1), CFB1.buildConstant(s32, 1)}); // This should be a constant now. match = mi_match(MIBCSub->getOperand(0).getReg(), MRI, m_ICst(Cst)); EXPECT_TRUE(match); EXPECT_EQ(Cst, 0); auto MIBCSext1 = CFB1.buildInstr(TargetOpcode::G_SEXT_INREG, {s32}, {CFB1.buildConstant(s32, 0x01), uint64_t(8)}); // This should be a constant now. match = mi_match(MIBCSext1->getOperand(0).getReg(), MRI, m_ICst(Cst)); EXPECT_TRUE(match); EXPECT_EQ(1, Cst); auto MIBCSext2 = CFB1.buildInstr(TargetOpcode::G_SEXT_INREG, {s32}, {CFB1.buildConstant(s32, 0x80), uint64_t(8)}); // This should be a constant now. match = mi_match(MIBCSext2->getOperand(0).getReg(), MRI, m_ICst(Cst)); EXPECT_TRUE(match); EXPECT_EQ(-0x80, Cst); } TEST(PatternMatchInstr, MatchFPUnaryOp) { LLVMContext Context; std::unique_ptr TM = createTargetMachine(); if (!TM) return; auto ModuleMMIPair = createDummyModule(Context, *TM, ""); MachineFunction *MF = getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get()); SmallVector Copies; collectCopies(Copies, MF); MachineBasicBlock *EntryMBB = &*MF->begin(); MachineIRBuilder B(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); B.setInsertPt(*EntryMBB, EntryMBB->end()); // Truncate s64 to s32. LLT s32 = LLT::scalar(32); auto Copy0s32 = B.buildFPTrunc(s32, Copies[0]); // Match G_FABS. auto MIBFabs = B.buildInstr(TargetOpcode::G_FABS, {s32}, {Copy0s32}); bool match = mi_match(MIBFabs->getOperand(0).getReg(), MRI, m_GFabs(m_Reg())); EXPECT_TRUE(match); Register Src; auto MIBFNeg = B.buildInstr(TargetOpcode::G_FNEG, {s32}, {Copy0s32}); match = mi_match(MIBFNeg->getOperand(0).getReg(), MRI, m_GFNeg(m_Reg(Src))); EXPECT_TRUE(match); EXPECT_EQ(Src, Copy0s32->getOperand(0).getReg()); match = mi_match(MIBFabs->getOperand(0).getReg(), MRI, m_GFabs(m_Reg(Src))); EXPECT_TRUE(match); EXPECT_EQ(Src, Copy0s32->getOperand(0).getReg()); // Build and match FConstant. auto MIBFCst = B.buildFConstant(s32, .5); const ConstantFP *TmpFP{}; match = mi_match(MIBFCst->getOperand(0).getReg(), MRI, m_GFCst(TmpFP)); EXPECT_TRUE(match); EXPECT_TRUE(TmpFP); APFloat APF((float).5); auto *CFP = ConstantFP::get(Context, APF); EXPECT_EQ(CFP, TmpFP); // Build double float. LLT s64 = LLT::scalar(64); auto MIBFCst64 = B.buildFConstant(s64, .5); const ConstantFP *TmpFP64{}; match = mi_match(MIBFCst64->getOperand(0).getReg(), MRI, m_GFCst(TmpFP64)); EXPECT_TRUE(match); EXPECT_TRUE(TmpFP64); APFloat APF64(.5); auto CFP64 = ConstantFP::get(Context, APF64); EXPECT_EQ(CFP64, TmpFP64); EXPECT_NE(TmpFP64, TmpFP); // Build half float. LLT s16 = LLT::scalar(16); auto MIBFCst16 = B.buildFConstant(s16, .5); const ConstantFP *TmpFP16{}; match = mi_match(MIBFCst16->getOperand(0).getReg(), MRI, m_GFCst(TmpFP16)); EXPECT_TRUE(match); EXPECT_TRUE(TmpFP16); bool Ignored; APFloat APF16(.5); APF16.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); auto CFP16 = ConstantFP::get(Context, APF16); EXPECT_EQ(TmpFP16, CFP16); EXPECT_NE(TmpFP16, TmpFP); } TEST(PatternMatchInstr, MatchExtendsTrunc) { LLVMContext Context; std::unique_ptr TM = createTargetMachine(); if (!TM) return; auto ModuleMMIPair = createDummyModule(Context, *TM, ""); MachineFunction *MF = getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get()); SmallVector Copies; collectCopies(Copies, MF); MachineBasicBlock *EntryMBB = &*MF->begin(); MachineIRBuilder B(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); B.setInsertPt(*EntryMBB, EntryMBB->end()); LLT s64 = LLT::scalar(64); LLT s32 = LLT::scalar(32); auto MIBTrunc = B.buildTrunc(s32, Copies[0]); auto MIBAExt = B.buildAnyExt(s64, MIBTrunc); auto MIBZExt = B.buildZExt(s64, MIBTrunc); auto MIBSExt = B.buildSExt(s64, MIBTrunc); Register Src0; bool match = mi_match(MIBTrunc->getOperand(0).getReg(), MRI, m_GTrunc(m_Reg(Src0))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); match = mi_match(MIBAExt->getOperand(0).getReg(), MRI, m_GAnyExt(m_Reg(Src0))); EXPECT_TRUE(match); EXPECT_EQ(Src0, MIBTrunc->getOperand(0).getReg()); match = mi_match(MIBSExt->getOperand(0).getReg(), MRI, m_GSExt(m_Reg(Src0))); EXPECT_TRUE(match); EXPECT_EQ(Src0, MIBTrunc->getOperand(0).getReg()); match = mi_match(MIBZExt->getOperand(0).getReg(), MRI, m_GZExt(m_Reg(Src0))); EXPECT_TRUE(match); EXPECT_EQ(Src0, MIBTrunc->getOperand(0).getReg()); // Match ext(trunc src) match = mi_match(MIBAExt->getOperand(0).getReg(), MRI, m_GAnyExt(m_GTrunc(m_Reg(Src0)))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); match = mi_match(MIBSExt->getOperand(0).getReg(), MRI, m_GSExt(m_GTrunc(m_Reg(Src0)))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); match = mi_match(MIBZExt->getOperand(0).getReg(), MRI, m_GZExt(m_GTrunc(m_Reg(Src0)))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); } TEST(PatternMatchInstr, MatchSpecificType) { LLVMContext Context; std::unique_ptr TM = createTargetMachine(); if (!TM) return; auto ModuleMMIPair = createDummyModule(Context, *TM, ""); MachineFunction *MF = getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get()); SmallVector Copies; collectCopies(Copies, MF); MachineBasicBlock *EntryMBB = &*MF->begin(); MachineIRBuilder B(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); B.setInsertPt(*EntryMBB, EntryMBB->end()); // Try to match a 64bit add. LLT s64 = LLT::scalar(64); LLT s32 = LLT::scalar(32); auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); EXPECT_FALSE(mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_GAdd(m_SpecificType(s32), m_Reg()))); EXPECT_TRUE(mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_GAdd(m_SpecificType(s64), m_Reg()))); // Try to match the destination type of a bitcast. LLT v2s32 = LLT::vector(2, 32); auto MIBCast = B.buildCast(v2s32, Copies[0]); EXPECT_TRUE( mi_match(MIBCast->getOperand(0).getReg(), MRI, m_GBitcast(m_Reg()))); EXPECT_TRUE( mi_match(MIBCast->getOperand(0).getReg(), MRI, m_SpecificType(v2s32))); EXPECT_TRUE( mi_match(MIBCast->getOperand(1).getReg(), MRI, m_SpecificType(s64))); // Build a PTRToInt and INTTOPTR and match and test them. LLT PtrTy = LLT::pointer(0, 64); auto MIBIntToPtr = B.buildCast(PtrTy, Copies[0]); auto MIBPtrToInt = B.buildCast(s64, MIBIntToPtr); Register Src0; // match the ptrtoint(inttoptr reg) bool match = mi_match(MIBPtrToInt->getOperand(0).getReg(), MRI, m_GPtrToInt(m_GIntToPtr(m_Reg(Src0)))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); } TEST(PatternMatchInstr, MatchCombinators) { LLVMContext Context; std::unique_ptr TM = createTargetMachine(); if (!TM) return; auto ModuleMMIPair = createDummyModule(Context, *TM, ""); MachineFunction *MF = getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get()); SmallVector Copies; collectCopies(Copies, MF); MachineBasicBlock *EntryMBB = &*MF->begin(); MachineIRBuilder B(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); B.setInsertPt(*EntryMBB, EntryMBB->end()); LLT s64 = LLT::scalar(64); LLT s32 = LLT::scalar(32); auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); Register Src0, Src1; bool match = mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_all_of(m_SpecificType(s64), m_GAdd(m_Reg(Src0), m_Reg(Src1)))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); EXPECT_EQ(Src1, Copies[1]); // Check for s32 (which should fail). match = mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_all_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1)))); EXPECT_FALSE(match); match = mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_any_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1)))); EXPECT_TRUE(match); EXPECT_EQ(Src0, Copies[0]); EXPECT_EQ(Src1, Copies[1]); // Match a case where none of the predicates hold true. match = mi_match( MIBAdd->getOperand(0).getReg(), MRI, m_any_of(m_SpecificType(LLT::scalar(16)), m_GSub(m_Reg(), m_Reg()))); EXPECT_FALSE(match); } TEST(PatternMatchInstr, MatchMiscellaneous) { LLVMContext Context; std::unique_ptr TM = createTargetMachine(); if (!TM) return; auto ModuleMMIPair = createDummyModule(Context, *TM, ""); MachineFunction *MF = getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get()); SmallVector Copies; collectCopies(Copies, MF); MachineBasicBlock *EntryMBB = &*MF->begin(); MachineIRBuilder B(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); B.setInsertPt(*EntryMBB, EntryMBB->end()); LLT s64 = LLT::scalar(64); auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); // Make multiple uses of this add. B.buildCast(LLT::pointer(0, 32), MIBAdd); B.buildCast(LLT::pointer(1, 32), MIBAdd); bool match = mi_match(MIBAdd.getReg(0), MRI, m_GAdd(m_Reg(), m_Reg())); EXPECT_TRUE(match); match = mi_match(MIBAdd.getReg(0), MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg()))); EXPECT_FALSE(match); } } // namespace int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); initLLVM(); return RUN_ALL_TESTS(); }