//===-- xray-graph.c - XRay Function Call Graph Renderer ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Generate a DOT file to represent the function call graph encountered in // the trace. // //===----------------------------------------------------------------------===// #include #include #include #include #include "xray-extract.h" #include "xray-graph.h" #include "xray-registry.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/XRay/Trace.h" #include "llvm/XRay/YAMLXRayRecord.h" using namespace llvm; using namespace xray; // Setup llvm-xray graph subcommand and its options. static cl::SubCommand Graph("graph", "Generate function-call graph"); static cl::opt GraphInput(cl::Positional, cl::desc(""), cl::Required, cl::sub(Graph)); static cl::opt GraphOutput("output", cl::value_desc("Output file"), cl::init("-"), cl::desc("output file; use '-' for stdout"), cl::sub(Graph)); static cl::alias GraphOutput2("o", cl::aliasopt(GraphOutput), cl::desc("Alias for -output"), cl::sub(Graph)); static cl::opt GraphInstrMap( "instr_map", cl::desc("binary with the instrumrntation map, or " "a separate instrumentation map"), cl::value_desc("binary with xray_instr_map"), cl::sub(Graph), cl::init("")); static cl::alias GraphInstrMap2("m", cl::aliasopt(GraphInstrMap), cl::desc("alias for -instr_map"), cl::sub(Graph)); static cl::opt InstrMapFormat( "instr-map-format", cl::desc("format of instrumentation map"), cl::values(clEnumValN(InstrumentationMapExtractor::InputFormats::ELF, "elf", "instrumentation map in an ELF header"), clEnumValN(InstrumentationMapExtractor::InputFormats::YAML, "yaml", "instrumentation map in YAML")), cl::sub(Graph), cl::init(InstrumentationMapExtractor::InputFormats::ELF)); static cl::alias InstrMapFormat2("t", cl::aliasopt(InstrMapFormat), cl::desc("Alias for -instr-map-format"), cl::sub(Graph)); static cl::opt GraphDeduceSiblingCalls( "deduce-sibling-calls", cl::desc("Deduce sibling calls when unrolling function call stacks"), cl::sub(Graph), cl::init(false)); static cl::alias GraphDeduceSiblingCalls2("d", cl::aliasopt(GraphDeduceSiblingCalls), cl::desc("Alias for -deduce-sibling-calls"), cl::sub(Graph)); static cl::opt GraphEdgeLabel("edge-label", cl::desc("Output graphs with edges labeled with this field"), cl::value_desc("field"), cl::sub(Graph), cl::init(GraphRenderer::StatType::COUNT), cl::values(clEnumValN(GraphRenderer::StatType::COUNT, "count", "function call counts"), clEnumValN(GraphRenderer::StatType::MIN, "min", "minimum function durations"), clEnumValN(GraphRenderer::StatType::MED, "med", "median function durations"), clEnumValN(GraphRenderer::StatType::PCT90, "90p", "90th percentile durations"), clEnumValN(GraphRenderer::StatType::PCT99, "99p", "99th percentile durations"), clEnumValN(GraphRenderer::StatType::MAX, "max", "maximum function durations"), clEnumValN(GraphRenderer::StatType::SUM, "sum", "sum of call durations"))); static cl::alias GraphEdgeLabel2("e", cl::aliasopt(GraphEdgeLabel), cl::desc("Alias for -edge-label"), cl::sub(Graph)); namespace { template T diff(T L, T R) { return std::max(L, R) - std::min(L, R); } void updateStat(GraphRenderer::TimeStat &S, int64_t lat) { S.Count++; if (S.Min > lat || S.Min == 0) S.Min = lat; if (S.Max < lat) S.Max = lat; S.Sum += lat; } } // Evaluates an XRay record and performs accounting on it, creating and // decorating a function call graph as it does so. It does this by maintaining // a call stack on a per-thread basis and adding edges and verticies to the // graph as they are seen for the first time. // // There is an immaginary root for functions at the top of their stack with // FuncId 0. // // FIXME: make more robust to errors and // Decorate Graph More Heavily. // FIXME: Refactor this and account subcommand to reduce code duplication. bool GraphRenderer::accountRecord(const XRayRecord &Record) { if (CurrentMaxTSC == 0) CurrentMaxTSC = Record.TSC; if (Record.TSC < CurrentMaxTSC) return false; auto &ThreadStack = PerThreadFunctionStack[Record.TId]; switch (Record.Type) { case RecordTypes::ENTER: { if (VertexAttrs.count(Record.FuncId) == 0) VertexAttrs[Record.FuncId].SymbolName = FuncIdHelper.SymbolOrNumber(Record.FuncId); ThreadStack.push_back({Record.FuncId, Record.TSC}); break; } case RecordTypes::EXIT: { // FIXME: Refactor this and the account subcommand to reducr code // duplication if (ThreadStack.size() == 0 || ThreadStack.back().FuncId != Record.FuncId) { if (!DeduceSiblingCalls) return false; auto Parent = std::find_if( ThreadStack.rbegin(), ThreadStack.rend(), [&](const FunctionAttr &A) { return A.FuncId == Record.FuncId; }); if (Parent == ThreadStack.rend()) return false; // There is no matching Function for this exit. while (ThreadStack.back().FuncId != Record.FuncId) { uint64_t D = diff(ThreadStack.back().TSC, Record.TSC); int32_t TopFuncId = ThreadStack.back().FuncId; ThreadStack.pop_back(); assert(ThreadStack.size() != 0); auto &EA = Graph[ThreadStack.back().FuncId][TopFuncId]; EA.Timings.push_back(D); updateStat(EA.S, D); updateStat(VertexAttrs[TopFuncId].S, D); } } uint64_t D = diff(ThreadStack.back().TSC, Record.TSC); ThreadStack.pop_back(); auto &V = Graph[ThreadStack.empty() ? 0 : ThreadStack.back().FuncId]; auto &EA = V[Record.FuncId]; EA.Timings.push_back(D); updateStat(EA.S, D); updateStat(VertexAttrs[Record.FuncId].S, D); break; } } return true; } template void GraphRenderer::getStats(U begin, U end, GraphRenderer::TimeStat &S) { assert(begin != end); std::ptrdiff_t MedianOff = S.Count / 2; std::nth_element(begin, begin + MedianOff, end); S.Median = *(begin + MedianOff); std::ptrdiff_t Pct90Off = (S.Count * 9) / 10; std::nth_element(begin, begin + Pct90Off, end); S.Pct90 = *(begin + Pct90Off); std::ptrdiff_t Pct99Off = (S.Count * 99) / 100; std::nth_element(begin, begin + Pct99Off, end); S.Pct99 = *(begin + Pct99Off); } void GraphRenderer::calculateEdgeStatistics() { for (auto &V : Graph) { for (auto &E : V.second) { auto &A = E.second; getStats(A.Timings.begin(), A.Timings.end(), A.S); } } } void GraphRenderer::calculateVertexStatistics() { DenseMap>> IncommingEdges; uint64_t MaxCount = 0; for (auto &V : Graph) { for (auto &E : V.second) { auto &IEV = IncommingEdges[E.first]; IEV.second.push_back(&E.second); IEV.first += E.second.S.Count; if (IEV.first > MaxCount) MaxCount = IEV.first; } } std::vector TempTimings; TempTimings.reserve(MaxCount); for (auto &V : IncommingEdges) { for (auto &P : V.second.second) { TempTimings.insert(TempTimings.end(), P->Timings.begin(), P->Timings.end()); } getStats(TempTimings.begin(), TempTimings.end(), VertexAttrs[V.first].S); TempTimings.clear(); } } void GraphRenderer::normaliseStatistics(double CycleFrequency) { for (auto &V : Graph) { for (auto &E : V.second) { auto &S = E.second.S; S.Min /= CycleFrequency; S.Median /= CycleFrequency; S.Max /= CycleFrequency; S.Sum /= CycleFrequency; S.Pct90 /= CycleFrequency; S.Pct99 /= CycleFrequency; } } for (auto &V : VertexAttrs) { auto &S = V.second.S; S.Min /= CycleFrequency; S.Median /= CycleFrequency; S.Max /= CycleFrequency; S.Sum /= CycleFrequency; S.Pct90 /= CycleFrequency; S.Pct99 /= CycleFrequency; } } namespace { void outputEdgeInfo(const GraphRenderer::TimeStat &S, GraphRenderer::StatType T, raw_ostream &OS) { switch (T) { case GraphRenderer::StatType::COUNT: OS << S.Count; break; case GraphRenderer::StatType::MIN: OS << S.Min; break; case GraphRenderer::StatType::MED: OS << S.Median; break; case GraphRenderer::StatType::PCT90: OS << S.Pct90; break; case GraphRenderer::StatType::PCT99: OS << S.Pct99; break; case GraphRenderer::StatType::MAX: OS << S.Max; break; case GraphRenderer::StatType::SUM: OS << S.Sum; break; } } } // Outputs a DOT format version of the Graph embedded in the GraphRenderer // object on OS. It does this in the expected way by itterating // through all edges then vertices and then outputting them and their // annotations. // // FIXME: output more information, better presented. void GraphRenderer::exportGraphAsDOT(raw_ostream &OS, const XRayFileHeader &H, StatType T) { calculateEdgeStatistics(); calculateVertexStatistics(); if (H.CycleFrequency) normaliseStatistics(H.CycleFrequency); OS << "digraph xray {\n"; for (const auto &V : Graph) for (const auto &E : V.second) { OS << "F" << V.first << " -> " << "F" << E.first << " [label=\""; outputEdgeInfo(E.second.S, T, OS); OS << "\"];\n"; } for (const auto &V : VertexAttrs) OS << "F" << V.first << " [label=\"" << (V.second.SymbolName.size() > 40 ? V.second.SymbolName.substr(0, 40) + "..." : V.second.SymbolName) << "\"];\n"; OS << "}\n"; } // Here we register and implement the llvm-xray graph subcommand. // The bulk of this code reads in the options, opens the required files, uses // those files to create a context for analysing the xray trace, then there is a // short loop which actually analyses the trace, generates the graph and then // outputs it as a DOT. // // FIXME: include additional filtering and annalysis passes to provide more // specific useful information. static CommandRegistration Unused(&Graph, []() -> Error { int Fd; auto EC = sys::fs::openFileForRead(GraphInput, Fd); if (EC) return make_error( Twine("Cannot open file '") + GraphInput + "'", EC); Error Err = Error::success(); xray::InstrumentationMapExtractor Extractor(GraphInstrMap, InstrMapFormat, Err); handleAllErrors(std::move(Err), [&](const ErrorInfoBase &E) { E.log(errs()); }); const auto &FunctionAddresses = Extractor.getFunctionAddresses(); symbolize::LLVMSymbolizer::Options Opts( symbolize::FunctionNameKind::LinkageName, true, true, false, ""); symbolize::LLVMSymbolizer Symbolizer(Opts); llvm::xray::FuncIdConversionHelper FuncIdHelper(GraphInstrMap, Symbolizer, FunctionAddresses); xray::GraphRenderer GR(FuncIdHelper, GraphDeduceSiblingCalls); raw_fd_ostream OS(GraphOutput, EC, sys::fs::OpenFlags::F_Text); if (EC) return make_error( Twine("Cannot open file '") + GraphOutput + "' for writing.", EC); auto TraceOrErr = loadTraceFile(GraphInput, true); if (!TraceOrErr) { return joinErrors( make_error(Twine("Failed loading input file '") + GraphInput + "'", make_error_code(llvm::errc::invalid_argument)), std::move(Err)); } auto &Trace = *TraceOrErr; const auto &Header = Trace.getFileHeader(); for (const auto &Record : Trace) { // Generate graph, FIXME: better error recovery. if (!GR.accountRecord(Record)) { return make_error( Twine("Failed accounting function calls in file '") + GraphInput + "'.", make_error_code(llvm::errc::invalid_argument)); } } GR.exportGraphAsDOT(OS, Header, GraphEdgeLabel); return Error::success(); });