//===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This file defines a register mapping file class. This class is responsible /// for managing hardware register files and the tracking of data dependencies /// between registers. /// //===----------------------------------------------------------------------===// #include "RegisterFile.h" #include "Instruction.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "llvm-mca" namespace mca { RegisterFile::RegisterFile(const llvm::MCSchedModel &SM, const llvm::MCRegisterInfo &mri, unsigned NumRegs) : MRI(mri), RegisterMappings(mri.getNumRegs(), {WriteRef(), {0, 0}}) { initialize(SM, NumRegs); } void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) { // Create a default register file that "sees" all the machine registers // declared by the target. The number of physical registers in the default // register file is set equal to `NumRegs`. A value of zero for `NumRegs` // means: this register file has an unbounded number of physical registers. addRegisterFile({} /* all registers */, NumRegs); if (!SM.hasExtraProcessorInfo()) return; // For each user defined register file, allocate a RegisterMappingTracker // object. The size of every register file, as well as the mapping between // register files and register classes is specified via tablegen. const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo(); for (unsigned I = 0, E = Info.NumRegisterFiles; I < E; ++I) { const MCRegisterFileDesc &RF = Info.RegisterFiles[I]; // Skip invalid register files with zero physical registers. unsigned Length = RF.NumRegisterCostEntries; if (!RF.NumPhysRegs) continue; // The cost of a register definition is equivalent to the number of // physical registers that are allocated at register renaming stage. const MCRegisterCostEntry *FirstElt = &Info.RegisterCostTable[RF.RegisterCostEntryIdx]; addRegisterFile(ArrayRef(FirstElt, Length), RF.NumPhysRegs); } } void RegisterFile::addRegisterFile(ArrayRef Entries, unsigned NumPhysRegs) { // A default register file is always allocated at index #0. That register file // is mainly used to count the total number of mappings created by all // register files at runtime. Users can limit the number of available physical // registers in register file #0 through the command line flag // `-register-file-size`. unsigned RegisterFileIndex = RegisterFiles.size(); RegisterFiles.emplace_back(NumPhysRegs); // Special case where there is no register class identifier in the set. // An empty set of register classes means: this register file contains all // the physical registers specified by the target. if (Entries.empty()) { for (std::pair &Mapping : RegisterMappings) Mapping.second = std::make_pair(RegisterFileIndex, 1U); return; } // Now update the cost of individual registers. for (const MCRegisterCostEntry &RCE : Entries) { const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID); for (const MCPhysReg Reg : RC) { IndexPlusCostPairTy &Entry = RegisterMappings[Reg].second; if (Entry.first) { // The only register file that is allowed to overlap is the default // register file at index #0. The analysis is inaccurate if register // files overlap. errs() << "warning: register " << MRI.getName(Reg) << " defined in multiple register files."; } Entry.first = RegisterFileIndex; Entry.second = RCE.Cost; } } } void RegisterFile::allocatePhysRegs(IndexPlusCostPairTy Entry, MutableArrayRef UsedPhysRegs) { unsigned RegisterFileIndex = Entry.first; unsigned Cost = Entry.second; if (RegisterFileIndex) { RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; RMT.NumUsedPhysRegs += Cost; UsedPhysRegs[RegisterFileIndex] += Cost; } // Now update the default register mapping tracker. RegisterFiles[0].NumUsedPhysRegs += Cost; UsedPhysRegs[0] += Cost; } void RegisterFile::freePhysRegs(IndexPlusCostPairTy Entry, MutableArrayRef FreedPhysRegs) { unsigned RegisterFileIndex = Entry.first; unsigned Cost = Entry.second; if (RegisterFileIndex) { RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; RMT.NumUsedPhysRegs -= Cost; FreedPhysRegs[RegisterFileIndex] += Cost; } // Now update the default register mapping tracker. RegisterFiles[0].NumUsedPhysRegs -= Cost; FreedPhysRegs[0] += Cost; } void RegisterFile::addRegisterWrite(WriteRef Write, MutableArrayRef UsedPhysRegs, bool ShouldAllocatePhysRegs) { const WriteState &WS = *Write.getWriteState(); unsigned RegID = WS.getRegisterID(); assert(RegID && "Adding an invalid register definition?"); RegisterMapping &Mapping = RegisterMappings[RegID]; Mapping.first = Write; for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) RegisterMappings[*I].first = Write; // No physical registers are allocated for instructions that are optimized in // hardware. For example, zero-latency data-dependency breaking instructions // don't consume physical registers. if (ShouldAllocatePhysRegs) allocatePhysRegs(Mapping.second, UsedPhysRegs); // If this is a partial update, then we are done. if (!WS.clearsSuperRegisters()) return; for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) RegisterMappings[*I].first = Write; } void RegisterFile::removeRegisterWrite(const WriteState &WS, MutableArrayRef FreedPhysRegs, bool ShouldFreePhysRegs) { unsigned RegID = WS.getRegisterID(); bool ShouldInvalidateSuperRegs = WS.clearsSuperRegisters(); assert(RegID != 0 && "Invalidating an already invalid register?"); assert(WS.getCyclesLeft() != -512 && "Invalidating a write of unknown cycles!"); assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!"); RegisterMapping &Mapping = RegisterMappings[RegID]; WriteRef &WR = Mapping.first; if (!WR.isValid()) return; if (ShouldFreePhysRegs) freePhysRegs(Mapping.second, FreedPhysRegs); if (WR.getWriteState() == &WS) WR.invalidate(); for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { WR = RegisterMappings[*I].first; if (WR.getWriteState() == &WS) WR.invalidate(); } if (!ShouldInvalidateSuperRegs) return; for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) { WR = RegisterMappings[*I].first; if (WR.getWriteState() == &WS) WR.invalidate(); } } void RegisterFile::collectWrites(SmallVectorImpl &Writes, unsigned RegID) const { assert(RegID && RegID < RegisterMappings.size()); const WriteRef &WR = RegisterMappings[RegID].first; if (WR.isValid()) Writes.push_back(WR); // Handle potential partial register updates. for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { const WriteRef &WR = RegisterMappings[*I].first; if (WR.isValid()) Writes.push_back(WR); } // Remove duplicate entries and resize the input vector. llvm::sort(Writes.begin(), Writes.end(), [](const WriteRef &Lhs, const WriteRef &Rhs) { return Lhs.getWriteState() < Rhs.getWriteState(); }); auto It = std::unique(Writes.begin(), Writes.end()); Writes.resize(std::distance(Writes.begin(), It)); LLVM_DEBUG({ for (const WriteRef &WR : Writes) { const WriteState &WS = *WR.getWriteState(); dbgs() << "[PRF] Found a dependent use of Register " << MRI.getName(WS.getRegisterID()) << " (defined by intruction #" << WR.getSourceIndex() << ")\n"; } }); } unsigned RegisterFile::isAvailable(ArrayRef Regs) const { SmallVector NumPhysRegs(getNumRegisterFiles()); // Find how many new mappings must be created for each register file. for (const unsigned RegID : Regs) { const IndexPlusCostPairTy &Entry = RegisterMappings[RegID].second; if (Entry.first) NumPhysRegs[Entry.first] += Entry.second; NumPhysRegs[0] += Entry.second; } unsigned Response = 0; for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { unsigned NumRegs = NumPhysRegs[I]; if (!NumRegs) continue; const RegisterMappingTracker &RMT = RegisterFiles[I]; if (!RMT.NumPhysRegs) { // The register file has an unbounded number of microarchitectural // registers. continue; } if (RMT.NumPhysRegs < NumRegs) { // The current register file is too small. This may occur if the number of // microarchitectural registers in register file #0 was changed by the // users via flag -reg-file-size. Alternatively, the scheduling model // specified a too small number of registers for this register file. report_fatal_error( "Not enough microarchitectural registers in the register file"); } if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs)) Response |= (1U << I); } return Response; } #ifndef NDEBUG void RegisterFile::dump() const { for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) { const RegisterMapping &RM = RegisterMappings[I]; if (!RM.first.getWriteState()) continue; const std::pair &IndexPlusCost = RM.second; dbgs() << MRI.getName(I) << ", " << I << ", PRF=" << IndexPlusCost.first << ", Cost=" << IndexPlusCost.second << ", "; RM.first.dump(); dbgs() << '\n'; } for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { dbgs() << "Register File #" << I; const RegisterMappingTracker &RMT = RegisterFiles[I]; dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs << "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n'; } } #endif } // namespace mca