//===----------------------- Dispatch.h -------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This file implements classes that are used to model register files, /// reorder buffers and the hardware dispatch logic. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TOOLS_LLVM_MCA_DISPATCH_H #define LLVM_TOOLS_LLVM_MCA_DISPATCH_H #include "Instruction.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include namespace mca { class WriteState; class DispatchUnit; class Scheduler; class Backend; /// \brief Manages hardware register files, and tracks data dependencies /// between registers. class RegisterFile { const llvm::MCRegisterInfo &MRI; // Each register file is described by an instance of RegisterMappingTracker. // RegisterMappingTracker tracks the number of register mappings dynamically // allocated during the execution. struct RegisterMappingTracker { // Total number of register mappings that are available for register // renaming. A value of zero for this field means: this register file has // an unbounded number of registers. const unsigned TotalMappings; // Number of mappings that are currently in use. unsigned NumUsedMappings; RegisterMappingTracker(unsigned NumMappings) : TotalMappings(NumMappings), NumUsedMappings(0) {} }; // This is where information related to the various register files is kept. // This set always contains at least one register file at index #0. That // register file "sees" all the physical registers declared by the target, and // (by default) it allows an unbounded number of mappings. // Users can limit the number of mappings that can be created by register file // #0 through the command line flag `-register-file-size`. llvm::SmallVector RegisterFiles; // This pair is used to identify the owner of a physical register, as well as // the cost of using that register file. using IndexPlusCostPairTy = std::pair; // RegisterMapping objects are mainly used to track physical register // definitions. A WriteState object describes a register definition, and it is // used to track RAW dependencies (see Instruction.h). A RegisterMapping // object also specifies the set of register files. The mapping between // physreg and register files is done using a "register file mask". // // A register file index identifies a user defined register file. // There is one index per RegisterMappingTracker, and index #0 is reserved to // the default unified register file. // // This implementation does not allow overlapping register files. The only // register file that is allowed to overlap with other register files is // register file #0. using RegisterMapping = std::pair; // This map contains one entry for each physical register defined by the // processor scheduling model. std::vector RegisterMappings; // This method creates a new RegisterMappingTracker for a register file that // contains all the physical registers specified by the register classes in // the 'RegisterClasses' set. // // The long term goal is to let scheduling models optionally describe register // files via tablegen definitions. This is still a work in progress. // For example, here is how a tablegen definition for a x86 FP register file // that features AVX might look like: // // def FPRegisterFile : RegisterFile<[VR128RegClass, VR256RegClass], 60> // // Here FPRegisterFile contains all the registers defined by register class // VR128RegClass and VR256RegClass. FPRegisterFile implements 60 // registers which can be used for register renaming purpose. // // The list of register classes is then converted by the tablegen backend into // a list of register class indices. That list, along with the number of // available mappings, is then used to create a new RegisterMappingTracker. void addRegisterFile(llvm::ArrayRef RegisterClasses, unsigned NumPhysRegs); // Allocates register mappings in register file specified by the // IndexPlusCostPairTy object. This method is called from addRegisterMapping. void createNewMappings(IndexPlusCostPairTy IPC, llvm::MutableArrayRef UsedPhysRegs); // Removes a previously allocated mapping from the register file referenced // by the IndexPlusCostPairTy object. This method is called from // invalidateRegisterMapping. void removeMappings(IndexPlusCostPairTy IPC, llvm::MutableArrayRef FreedPhysRegs); // Create an instance of RegisterMappingTracker for every register file // specified by the processor model. // If no register file is specified, then this method creates a single // register file with an unbounded number of registers. void initialize(const llvm::MCSchedModel &SM, unsigned NumRegs); public: RegisterFile(const llvm::MCSchedModel &SM, const llvm::MCRegisterInfo &mri, unsigned NumRegs = 0) : MRI(mri), RegisterMappings(mri.getNumRegs(), {nullptr, {0, 0}}) { initialize(SM, NumRegs); } // Creates a new register mapping for RegID. // This reserves a microarchitectural register in every register file that // contains RegID. void addRegisterMapping(WriteState &WS, llvm::MutableArrayRef UsedPhysRegs); // Invalidates register mappings associated to the input WriteState object. // This releases previously allocated mappings for the physical register // associated to the WriteState. void invalidateRegisterMapping(const WriteState &WS, llvm::MutableArrayRef FreedPhysRegs); // Checks if there are enough microarchitectural registers in the register // files. Returns a "response mask" where each bit is the response from a // RegisterMappingTracker. // For example: if all register files are available, then the response mask // is a bitmask of all zeroes. If Instead register file #1 is not available, // then the response mask is 0b10. unsigned isAvailable(llvm::ArrayRef Regs) const; void collectWrites(llvm::SmallVectorImpl &Writes, unsigned RegID) const; void updateOnRead(ReadState &RS, unsigned RegID); unsigned getNumRegisterFiles() const { return RegisterFiles.size(); } #ifndef NDEBUG void dump() const; #endif }; /// \brief tracks which instructions are in-flight (i.e. dispatched but not /// retired) in the OoO backend. /// /// This class checks on every cycle if/which instructions can be retired. /// Instructions are retired in program order. /// In the event of instruction retired, the DispatchUnit object that owns /// this RetireControlUnit gets notified. /// On instruction retired, register updates are all architecturally /// committed, and any temporary registers originally allocated for the /// retired instruction are freed. struct RetireControlUnit { // A "token" (object of class RUToken) is created by the retire unit for every // instruction dispatched to the schedulers. Flag 'Executed' is used to // quickly check if an instruction has reached the write-back stage. A token // also carries information related to the number of entries consumed by the // instruction in the reorder buffer. The idea is that those entries will // become available again once the instruction is retired. On every cycle, // the RCU (Retire Control Unit) scans every token starting to search for // instructions that are ready to retire. retired. Instructions are retired // in program order. Only 'Executed' instructions are eligible for retire. // Note that the size of the reorder buffer is defined by the scheduling model // via field 'NumMicroOpBufferSize'. struct RUToken { unsigned Index; // Instruction index. unsigned NumSlots; // Slots reserved to this instruction. bool Executed; // True if the instruction is past the WB stage. }; private: unsigned NextAvailableSlotIdx; unsigned CurrentInstructionSlotIdx; unsigned AvailableSlots; unsigned MaxRetirePerCycle; // 0 means no limit. std::vector Queue; DispatchUnit *Owner; public: RetireControlUnit(const llvm::MCSchedModel &SM, DispatchUnit *DU); bool isFull() const { return !AvailableSlots; } bool isEmpty() const { return AvailableSlots == Queue.size(); } bool isAvailable(unsigned Quantity = 1) const { // Some instructions may declare a number of uOps which exceedes the size // of the reorder buffer. To avoid problems, cap the amount of slots to // the size of the reorder buffer. Quantity = std::min(Quantity, static_cast(Queue.size())); return AvailableSlots >= Quantity; } // Reserves a number of slots, and returns a new token. unsigned reserveSlot(unsigned Index, unsigned NumMicroOps); /// Retires instructions in program order. void cycleEvent(); void onInstructionExecuted(unsigned TokenID); #ifndef NDEBUG void dump() const; #endif }; // \brief Implements the hardware dispatch logic. // // This class is responsible for the dispatch stage, in which instructions are // dispatched in groups to the Scheduler. An instruction can be dispatched if // functional units are available. // To be more specific, an instruction can be dispatched to the Scheduler if: // 1) There are enough entries in the reorder buffer (implemented by class // RetireControlUnit) to accomodate all opcodes. // 2) There are enough temporaries to rename output register operands. // 3) There are enough entries available in the used buffered resource(s). // // The number of micro opcodes that can be dispatched in one cycle is limited by // the value of field 'DispatchWidth'. A "dynamic dispatch stall" occurs when // processor resources are not available (i.e. at least one of the // abovementioned checks fails). Dispatch stall events are counted during the // entire execution of the code, and displayed by the performance report when // flag '-verbose' is specified. // // If the number of micro opcodes of an instruction is bigger than // DispatchWidth, then it can only be dispatched at the beginning of one cycle. // The DispatchUnit will still have to wait for a number of cycles (depending on // the DispatchWidth and the number of micro opcodes) before it can serve other // instructions. class DispatchUnit { unsigned DispatchWidth; unsigned AvailableEntries; unsigned CarryOver; Scheduler *SC; std::unique_ptr RAT; std::unique_ptr RCU; Backend *Owner; bool checkRAT(unsigned Index, const Instruction &Inst); bool checkRCU(unsigned Index, const InstrDesc &Desc); bool checkScheduler(unsigned Index, const InstrDesc &Desc); void updateRAWDependencies(ReadState &RS, const llvm::MCSubtargetInfo &STI); void notifyInstructionDispatched(unsigned IID, llvm::ArrayRef UsedPhysRegs); public: DispatchUnit(Backend *B, const llvm::MCSchedModel &SM, const llvm::MCRegisterInfo &MRI, unsigned RegisterFileSize, unsigned MaxDispatchWidth, Scheduler *Sched) : DispatchWidth(MaxDispatchWidth), AvailableEntries(MaxDispatchWidth), CarryOver(0U), SC(Sched), RAT(llvm::make_unique(SM, MRI, RegisterFileSize)), RCU(llvm::make_unique(SM, this)), Owner(B) {} unsigned getDispatchWidth() const { return DispatchWidth; } bool isAvailable(unsigned NumEntries) const { return NumEntries <= AvailableEntries || AvailableEntries == DispatchWidth; } bool isRCUEmpty() const { return RCU->isEmpty(); } bool canDispatch(unsigned Index, const Instruction &Inst) { const InstrDesc &Desc = Inst.getDesc(); assert(isAvailable(Desc.NumMicroOps)); return checkRCU(Index, Desc) && checkRAT(Index, Inst) && checkScheduler(Index, Desc); } void dispatch(unsigned IID, Instruction *I, const llvm::MCSubtargetInfo &STI); void collectWrites(llvm::SmallVectorImpl &Vec, unsigned RegID) const { return RAT->collectWrites(Vec, RegID); } void cycleEvent() { RCU->cycleEvent(); AvailableEntries = CarryOver >= DispatchWidth ? 0 : DispatchWidth - CarryOver; CarryOver = CarryOver >= DispatchWidth ? CarryOver - DispatchWidth : 0U; } void notifyInstructionRetired(unsigned Index); void notifyDispatchStall(unsigned Index, unsigned EventType); void onInstructionExecuted(unsigned TokenID) { RCU->onInstructionExecuted(TokenID); } #ifndef NDEBUG void dump() const; #endif }; } // namespace mca #endif