; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instsimplify -S | FileCheck %s define <2 x float> @fsub_negzero_vec_undef_elts(<2 x float> %x) { ; CHECK-LABEL: @fsub_negzero_vec_undef_elts( ; CHECK-NEXT: ret <2 x float> [[X:%.*]] ; %r = fsub nsz <2 x float> %x, ret <2 x float> %r } ; fsub -0.0, (fsub -0.0, X) ==> X define float @fsub_-0_-0_x(float %a) { ; CHECK-LABEL: @fsub_-0_-0_x( ; CHECK-NEXT: ret float [[A:%.*]] ; %t1 = fsub float -0.0, %a %ret = fsub float -0.0, %t1 ret float %ret } define <2 x float> @fsub_-0_-0_x_vec(<2 x float> %a) { ; CHECK-LABEL: @fsub_-0_-0_x_vec( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fsub <2 x float> , %a %ret = fsub <2 x float> , %t1 ret <2 x float> %ret } define <2 x float> @fsub_-0_-0_x_vec_undef_elts(<2 x float> %a) { ; CHECK-LABEL: @fsub_-0_-0_x_vec_undef_elts( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fsub <2 x float> , %a %ret = fsub <2 x float> , %t1 ret <2 x float> %ret } ; fsub 0.0, (fsub -0.0, X) != X define float @fsub_0_-0_x(float %a) { ; CHECK-LABEL: @fsub_0_-0_x( ; CHECK-NEXT: [[T1:%.*]] = fsub float 0.000000e+00, [[A:%.*]] ; CHECK-NEXT: [[RET:%.*]] = fsub float -0.000000e+00, [[T1]] ; CHECK-NEXT: ret float [[RET]] ; %t1 = fsub float 0.0, %a %ret = fsub float -0.0, %t1 ret float %ret } ; fsub -0.0, (fsub 0.0, X) != X define float @fsub_-0_0_x(float %a) { ; CHECK-LABEL: @fsub_-0_0_x( ; CHECK-NEXT: [[T1:%.*]] = fsub float -0.000000e+00, [[A:%.*]] ; CHECK-NEXT: [[RET:%.*]] = fsub float 0.000000e+00, [[T1]] ; CHECK-NEXT: ret float [[RET]] ; %t1 = fsub float -0.0, %a %ret = fsub float 0.0, %t1 ret float %ret } ; fsub X, 0 ==> X define float @fsub_x_0(float %x) { ; CHECK-LABEL: @fsub_x_0( ; CHECK-NEXT: ret float [[X:%.*]] ; %r = fsub float %x, 0.0 ret float %r } define <2 x float> @fsub_x_0_vec_undef(<2 x float> %x) { ; CHECK-LABEL: @fsub_x_0_vec_undef( ; CHECK-NEXT: ret <2 x float> [[X:%.*]] ; %r = fsub <2 x float> %x, ret <2 x float> %r } ; fadd X, -0 ==> X define float @fadd_x_n0(float %a) { ; CHECK-LABEL: @fadd_x_n0( ; CHECK-NEXT: ret float [[A:%.*]] ; %ret = fadd float %a, -0.0 ret float %ret } define <2 x float> @fadd_x_n0_vec_undef_elt(<2 x float> %a) { ; CHECK-LABEL: @fadd_x_n0_vec_undef_elt( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %ret = fadd <2 x float> %a, ret <2 x float> %ret } ; fmul X, 1.0 ==> X define double @fmul_X_1(double %a) { ; CHECK-LABEL: @fmul_X_1( ; CHECK-NEXT: ret double [[A:%.*]] ; %b = fmul double 1.0, %a ret double %b } ; PR2642 define <4 x float> @fmul_X_1_vec(<4 x float> %x) { ; CHECK-LABEL: @fmul_X_1_vec( ; CHECK-NEXT: ret <4 x float> [[X:%.*]] ; %m = fmul <4 x float> %x, ret <4 x float> %m } ; fdiv X, 1.0 ==> X define float @fdiv_x_1(float %a) { ; CHECK-LABEL: @fdiv_x_1( ; CHECK-NEXT: ret float [[A:%.*]] ; %ret = fdiv float %a, 1.0 ret float %ret } ; We can't optimize away the fadd in this test because the input ; value to the function and subsequently to the fadd may be -0.0. ; In that one special case, the result of the fadd should be +0.0 ; rather than the first parameter of the fadd. ; Fragile test warning: We need 6 sqrt calls to trigger the bug ; because the internal logic has a magic recursion limit of 6. ; This is presented without any explanation or ability to customize. declare float @sqrtf(float) define float @PR22688(float %x) { ; CHECK-LABEL: @PR22688( ; CHECK-NEXT: [[TMP1:%.*]] = call float @sqrtf(float [[X:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = call float @sqrtf(float [[TMP1]]) ; CHECK-NEXT: [[TMP3:%.*]] = call float @sqrtf(float [[TMP2]]) ; CHECK-NEXT: [[TMP4:%.*]] = call float @sqrtf(float [[TMP3]]) ; CHECK-NEXT: [[TMP5:%.*]] = call float @sqrtf(float [[TMP4]]) ; CHECK-NEXT: [[TMP6:%.*]] = call float @sqrtf(float [[TMP5]]) ; CHECK-NEXT: [[TMP7:%.*]] = fadd float [[TMP6]], 0.000000e+00 ; CHECK-NEXT: ret float [[TMP7]] ; %1 = call float @sqrtf(float %x) %2 = call float @sqrtf(float %1) %3 = call float @sqrtf(float %2) %4 = call float @sqrtf(float %3) %5 = call float @sqrtf(float %4) %6 = call float @sqrtf(float %5) %7 = fadd float %6, 0.0 ret float %7 } declare float @llvm.fabs.f32(float) declare <2 x float> @llvm.fabs.v2f32(<2 x float>) declare float @llvm.sqrt.f32(float) define float @fabs_select_positive_constants(i32 %c) { ; CHECK-LABEL: @fabs_select_positive_constants( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 1.0, float 2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_positive_constants_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_positive_constants_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: ret <2 x float> [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_constant_variable(i32 %c, float %x) { ; CHECK-LABEL: @fabs_select_constant_variable( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 1.000000e+00, float [[X:%.*]] ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 1.0, float %x %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_constant_variable_vector(i32 %c, <2 x float> %x) { ; CHECK-LABEL: @fabs_select_constant_variable_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> [[X:%.*]] ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %x %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_neg0_pos0(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_pos0( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float -0.000000e+00, float 0.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -0.0, float 0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_neg0_pos0_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_pos0_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> zeroinitializer ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_neg0_neg1(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_neg1( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float -0.000000e+00, float -1.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -0.0, float -1.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_neg0_neg1_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_neg1_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_nan_nan(i32 %c) { ; CHECK-LABEL: @fabs_select_nan_nan( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0x7FF8000000000000, float 0x7FF8000100000000 ; CHECK-NEXT: ret float [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0x7FF8000000000000, float 0x7FF8000100000000 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_nan_nan_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_nan_nan_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: ret <2 x float> [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_nan(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_nan( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float 0x7FF8000000000000 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float 0x7FF8000000000000 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_nan_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_nan_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_negnan(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negnan( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float 0x7FF8000100000000 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float 0x7FF8000100000000 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_negnan_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negnan_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_negzero(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negzero( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float -0.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float -0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_negzero_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negzero_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_zero(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_zero( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float 0.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float 0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_zero_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_zero_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> zeroinitializer ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } ; The fabs can't be eliminated because llvm.sqrt.f32 may return -0 or NaN with ; an arbitrary sign bit. define float @fabs_sqrt(float %a) { ; CHECK-LABEL: @fabs_sqrt( ; CHECK-NEXT: [[SQRT:%.*]] = call float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SQRT]]) ; CHECK-NEXT: ret float [[FABS]] ; %sqrt = call float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The fabs can't be eliminated because the nnan sqrt may still return -0. define float @fabs_sqrt_nnan(float %a) { ; CHECK-LABEL: @fabs_sqrt_nnan( ; CHECK-NEXT: [[SQRT:%.*]] = call nnan float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SQRT]]) ; CHECK-NEXT: ret float [[FABS]] ; %sqrt = call nnan float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The fabs can't be eliminated because the nsz sqrt may still return NaN. define float @fabs_sqrt_nsz(float %a) { ; CHECK-LABEL: @fabs_sqrt_nsz( ; CHECK-NEXT: [[SQRT:%.*]] = call nsz float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SQRT]]) ; CHECK-NEXT: ret float [[FABS]] ; %sqrt = call nsz float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The fabs can be eliminated because we're nsz and nnan. define float @fabs_sqrt_nnan_nsz(float %a) { ; CHECK-LABEL: @fabs_sqrt_nnan_nsz( ; CHECK-NEXT: [[SQRT:%.*]] = call nnan nsz float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: ret float [[SQRT]] ; %sqrt = call nnan nsz float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The second fabs can be eliminated because the operand to sqrt cannot be -0. define float @fabs_sqrt_nnan_fabs(float %a) { ; CHECK-LABEL: @fabs_sqrt_nnan_fabs( ; CHECK-NEXT: [[B:%.*]] = call float @llvm.fabs.f32(float [[A:%.*]]) ; CHECK-NEXT: [[SQRT:%.*]] = call nnan float @llvm.sqrt.f32(float [[B]]) ; CHECK-NEXT: ret float [[SQRT]] ; %b = call float @llvm.fabs.f32(float %a) %sqrt = call nnan float @llvm.sqrt.f32(float %b) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } define float @fabs_select_positive_constants_vector_extract(i32 %c) { ; CHECK-LABEL: @fabs_select_positive_constants_vector_extract( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[EXTRACT:%.*]] = extractelement <2 x float> [[SELECT]], i32 0 ; CHECK-NEXT: ret float [[EXTRACT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %extract = extractelement <2 x float> %select, i32 0 %fabs = call float @llvm.fabs.f32(float %extract) ret float %fabs } declare double @llvm.minnum.f64(double, double) declare double @llvm.maxnum.f64(double, double) declare <2 x double> @llvm.minnum.v2f64(<2 x double>, <2 x double>) declare <2 x double> @llvm.maxnum.v2f64(<2 x double>, <2 x double>) ; From the LangRef for minnum/maxnum: ; "follows the IEEE-754 semantics for maxNum, which also match for libm’s fmax. ; If either operand is a NaN, returns the other non-NaN operand." define double @maxnum_nan_op0(double %x) { ; CHECK-LABEL: @maxnum_nan_op0( ; CHECK-NEXT: ret double [[X:%.*]] ; %r = call double @llvm.maxnum.f64(double 0x7ff8000000000000, double %x) ret double %r } define double @maxnum_nan_op1(double %x) { ; CHECK-LABEL: @maxnum_nan_op1( ; CHECK-NEXT: ret double [[X:%.*]] ; %r = call double @llvm.maxnum.f64(double %x, double 0x7ff800000000dead) ret double %r } define double @minnum_nan_op0(double %x) { ; CHECK-LABEL: @minnum_nan_op0( ; CHECK-NEXT: ret double [[X:%.*]] ; %r = call double @llvm.minnum.f64(double 0x7ff8000dead00000, double %x) ret double %r } define double @minnum_nan_op1(double %x) { ; CHECK-LABEL: @minnum_nan_op1( ; CHECK-NEXT: ret double [[X:%.*]] ; %r = call double @llvm.minnum.f64(double %x, double 0x7ff800dead00dead) ret double %r } define <2 x double> @maxnum_nan_op0_vec(<2 x double> %x) { ; CHECK-LABEL: @maxnum_nan_op0_vec( ; CHECK-NEXT: ret <2 x double> [[X:%.*]] ; %r = call <2 x double> @llvm.maxnum.v2f64(<2 x double> , <2 x double> %x) ret <2 x double> %r } define <2 x double> @maxnum_nan_op1_vec(<2 x double> %x) { ; CHECK-LABEL: @maxnum_nan_op1_vec( ; CHECK-NEXT: ret <2 x double> [[X:%.*]] ; %r = call <2 x double> @llvm.maxnum.v2f64(<2 x double> %x, <2 x double> ) ret <2 x double> %r } define <2 x double> @minnum_nan_op0_vec(<2 x double> %x) { ; CHECK-LABEL: @minnum_nan_op0_vec( ; CHECK-NEXT: ret <2 x double> [[X:%.*]] ; %r = call <2 x double> @llvm.minnum.v2f64(<2 x double> , <2 x double> %x) ret <2 x double> %r } define <2 x double> @minnum_nan_op1_vec(<2 x double> %x) { ; CHECK-LABEL: @minnum_nan_op1_vec( ; CHECK-NEXT: ret <2 x double> [[X:%.*]] ; %r = call <2 x double> @llvm.minnum.v2f64(<2 x double> %x, <2 x double> ) ret <2 x double> %r }