; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -instcombine < %s | FileCheck %s ; (-0.0 - X) * C => X * -C define float @neg_constant(float %x) { ; CHECK-LABEL: @neg_constant( ; CHECK-NEXT: [[MUL:%.*]] = fmul ninf float [[X:%.*]], -2.000000e+01 ; CHECK-NEXT: ret float [[MUL]] ; %sub = fsub float -0.000000e+00, %x %mul = fmul ninf float %sub, 2.0e+1 ret float %mul } ; (0.0 - X) * C => X * -C define float @neg_nsz_constant(float %x) { ; CHECK-LABEL: @neg_nsz_constant( ; CHECK-NEXT: [[MUL:%.*]] = fmul nnan float [[X:%.*]], -2.000000e+01 ; CHECK-NEXT: ret float [[MUL]] ; %sub = fsub nsz float 0.000000e+00, %x %mul = fmul nnan float %sub, 2.0e+1 ret float %mul } ; (-0.0 - X) * (-0.0 - Y) => X * Y define float @neg_neg(float %x, float %y) { ; CHECK-LABEL: @neg_neg( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub float -0.000000e+00, %x %sub2 = fsub float -0.000000e+00, %y %mul = fmul arcp float %sub1, %sub2 ret float %mul } ; (0.0 - X) * (0.0 - Y) => X * Y define float @neg_neg_nsz(float %x, float %y) { ; CHECK-LABEL: @neg_neg_nsz( ; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub nsz float 0.000000e+00, %x %sub2 = fsub nsz float 0.000000e+00, %y %mul = fmul afn float %sub1, %sub2 ret float %mul } declare void @use_f32(float) define float @neg_neg_multi_use(float %x, float %y) { ; CHECK-LABEL: @neg_neg_multi_use( ; CHECK-NEXT: [[NX:%.*]] = fsub float -0.000000e+00, [[X:%.*]] ; CHECK-NEXT: [[NY:%.*]] = fsub float -0.000000e+00, [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] ; CHECK-NEXT: call void @use_f32(float [[NX]]) ; CHECK-NEXT: call void @use_f32(float [[NY]]) ; CHECK-NEXT: ret float [[MUL]] ; %nx = fsub float -0.000000e+00, %x %ny = fsub float -0.000000e+00, %y %mul = fmul afn float %nx, %ny call void @use_f32(float %nx) call void @use_f32(float %ny) ret float %mul } ; (-0.0 - X) * Y => -0.0 - (X * Y) define float @neg_sink(float %x, float %y) { ; CHECK-LABEL: @neg_sink( ; CHECK-NEXT: [[TMP1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fsub float -0.000000e+00, [[TMP1]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub float -0.000000e+00, %x %mul = fmul float %sub1, %y ret float %mul } ; (0.0 - X) * Y => 0.0 - (X * Y) define float @neg_sink_nsz(float %x, float %y) { ; CHECK-LABEL: @neg_sink_nsz( ; CHECK-NEXT: [[TMP1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fsub float -0.000000e+00, [[TMP1]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub nsz float 0.000000e+00, %x %mul = fmul float %sub1, %y ret float %mul } ; "(-0.0 - X) * Y => -0.0 - (X * Y)" is disabled if expression "-0.0 - X" ; has multiple uses. define float @neg_sink_multi_use(float %x, float %y) { ; CHECK-LABEL: @neg_sink_multi_use( ; CHECK-NEXT: [[SUB1:%.*]] = fsub float -0.000000e+00, [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[SUB1]], [[Y:%.*]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul float [[MUL]], [[SUB1]] ; CHECK-NEXT: ret float [[MUL2]] ; %sub1 = fsub float -0.000000e+00, %x %mul = fmul float %sub1, %y %mul2 = fmul float %mul, %sub1 ret float %mul2 } ; Don't crash when attempting to cast a constant FMul to an instruction. define void @test8(i32* %inout) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_COND:%.*]] ; CHECK: for.cond: ; CHECK-NEXT: [[LOCAL_VAR_7_0:%.*]] = phi <4 x float> [ , [[ENTRY:%.*]] ], [ [[TMP0:%.*]], [[FOR_BODY:%.*]] ] ; CHECK-NEXT: br i1 undef, label [[FOR_BODY]], label [[FOR_END:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[TMP0]] = insertelement <4 x float> [[LOCAL_VAR_7_0]], float 0.000000e+00, i32 2 ; CHECK-NEXT: br label [[FOR_COND]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; entry: %0 = load i32, i32* %inout, align 4 %conv = uitofp i32 %0 to float %vecinit = insertelement <4 x float> , float %conv, i32 3 %sub = fsub <4 x float> , %vecinit %1 = shufflevector <4 x float> %sub, <4 x float> undef, <4 x i32> %mul = fmul <4 x float> zeroinitializer, %1 br label %for.cond for.cond: ; preds = %for.body, %entry %local_var_7.0 = phi <4 x float> [ %mul, %entry ], [ %2, %for.body ] br i1 undef, label %for.body, label %for.end for.body: ; preds = %for.cond %2 = insertelement <4 x float> %local_var_7.0, float 0.000000e+00, i32 2 br label %for.cond for.end: ; preds = %for.cond ret void } ; X * -1.0 => -0.0 - X define float @test9(float %x) { ; CHECK-LABEL: @test9( ; CHECK-NEXT: [[MUL:%.*]] = fsub float -0.000000e+00, [[X:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %mul = fmul float %x, -1.0 ret float %mul } ; PR18532 define <4 x float> @test10(<4 x float> %x) { ; CHECK-LABEL: @test10( ; CHECK-NEXT: [[MUL:%.*]] = fsub arcp afn <4 x float> , [[X:%.*]] ; CHECK-NEXT: ret <4 x float> [[MUL]] ; %mul = fmul arcp afn <4 x float> %x, ret <4 x float> %mul } define float @test11(float %x, float %y) { ; CHECK-LABEL: @test11( ; CHECK-NEXT: [[B:%.*]] = fadd fast float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[C:%.*]] = fadd fast float [[B]], 3.000000e+00 ; CHECK-NEXT: ret float [[C]] ; %a = fadd fast float %x, 1.0 %b = fadd fast float %y, 2.0 %c = fadd fast float %a, %b ret float %c } declare double @llvm.sqrt.f64(double) ; With unsafe/fast math, sqrt(X) * sqrt(X) is just X, ; but make sure another use of the sqrt is intact. ; Note that the remaining fmul is altered but is not 'fast' ; itself because it was not marked 'fast' originally. ; Thus, we have an overall fast result, but no more indication of ; 'fast'ness in the code. define double @sqrt_squared2(double %f) { ; CHECK-LABEL: @sqrt_squared2( ; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[F:%.*]]) ; CHECK-NEXT: [[MUL2:%.*]] = fmul double [[SQRT]], [[F]] ; CHECK-NEXT: ret double [[MUL2]] ; %sqrt = call double @llvm.sqrt.f64(double %f) %mul1 = fmul fast double %sqrt, %sqrt %mul2 = fmul double %mul1, %sqrt ret double %mul2 } declare float @llvm.fabs.f32(float) nounwind readnone define float @fabs_squared(float %x) { ; CHECK-LABEL: @fabs_squared( ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) %mul = fmul float %x.fabs, %x.fabs ret float %mul } define float @fabs_squared_fast(float %x) { ; CHECK-LABEL: @fabs_squared_fast( ; CHECK-NEXT: [[MUL:%.*]] = fmul fast float [[X:%.*]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) %mul = fmul fast float %x.fabs, %x.fabs ret float %mul } define float @fabs_x_fabs(float %x, float %y) { ; CHECK-LABEL: @fabs_x_fabs( ; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: [[Y_FABS:%.*]] = call float @llvm.fabs.f32(float [[Y:%.*]]) ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X_FABS]], [[Y_FABS]] ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) %y.fabs = call float @llvm.fabs.f32(float %y) %mul = fmul float %x.fabs, %y.fabs ret float %mul } ; (X*Y) * X => (X*X) * Y ; The transform only requires 'reassoc', but test other FMF in ; the commuted variants to make sure FMF propagates as expected. define float @reassoc_common_operand1(float %x, float %y) { ; CHECK-LABEL: @reassoc_common_operand1( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %mul1 = fmul float %x, %y %mul2 = fmul reassoc float %mul1, %x ret float %mul2 } ; (Y*X) * X => (X*X) * Y define float @reassoc_common_operand2(float %x, float %y) { ; CHECK-LABEL: @reassoc_common_operand2( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul fast float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %mul1 = fmul float %y, %x %mul2 = fmul fast float %mul1, %x ret float %mul2 } ; X * (X*Y) => (X*X) * Y define float @reassoc_common_operand3(float %x1, float %y) { ; CHECK-LABEL: @reassoc_common_operand3( ; CHECK-NEXT: [[X:%.*]] = fdiv float [[X1:%.*]], 3.000000e+00 ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan float [[X]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc nnan float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %x = fdiv float %x1, 3.0 ; thwart complexity-based canonicalization %mul1 = fmul float %x, %y %mul2 = fmul reassoc nnan float %x, %mul1 ret float %mul2 } ; X * (Y*X) => (X*X) * Y define float @reassoc_common_operand4(float %x1, float %y) { ; CHECK-LABEL: @reassoc_common_operand4( ; CHECK-NEXT: [[X:%.*]] = fdiv float [[X1:%.*]], 3.000000e+00 ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc ninf float [[X]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc ninf float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %x = fdiv float %x1, 3.0 ; thwart complexity-based canonicalization %mul1 = fmul float %y, %x %mul2 = fmul reassoc ninf float %x, %mul1 ret float %mul2 } ; No change if the first fmul has another use. define float @reassoc_common_operand_multi_use(float %x, float %y) { ; CHECK-LABEL: @reassoc_common_operand_multi_use( ; CHECK-NEXT: [[MUL1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul fast float [[MUL1]], [[X]] ; CHECK-NEXT: call void @use_f32(float [[MUL1]]) ; CHECK-NEXT: ret float [[MUL2]] ; %mul1 = fmul float %x, %y %mul2 = fmul fast float %mul1, %x call void @use_f32(float %mul1) ret float %mul2 } declare float @llvm.log2.f32(float) ; log2(Y * 0.5) * X = log2(Y) * X - X define float @log2half(float %x, float %y) { ; CHECK-LABEL: @log2half( ; CHECK-NEXT: [[LOG2:%.*]] = call fast float @llvm.log2.f32(float [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[LOG2]], [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fsub fast float [[TMP1]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %halfy = fmul float %y, 0.5 %log2 = call float @llvm.log2.f32(float %halfy) %mul = fmul fast float %log2, %x ret float %mul } define float @log2half_commute(float %x1, float %y) { ; CHECK-LABEL: @log2half_commute( ; CHECK-NEXT: [[X:%.*]] = fdiv float [[X1:%.*]], 7.000000e+00 ; CHECK-NEXT: [[LOG2:%.*]] = call fast float @llvm.log2.f32(float [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[LOG2]], [[X]] ; CHECK-NEXT: [[MUL:%.*]] = fsub fast float [[TMP1]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %x = fdiv float %x1, 7.0 ; thwart complexity-based canonicalization %halfy = fmul float %y, 0.5 %log2 = call float @llvm.log2.f32(float %halfy) %mul = fmul fast float %x, %log2 ret float %mul }