; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=aarch64-unknown-linux-gnu < %s | FileCheck %s ;------------------------------------------------------------------------------; ; Odd divisors ;------------------------------------------------------------------------------; ; This tests the BuildREMEqFold optimization with UREM, i32, odd divisor, SETEQ. ; The corresponding pseudocode is: ; Q <- [N * multInv(5, 2^32)] <=> [N * 0xCCCCCCCD] <=> [N * (-858993459)] ; res <- [Q <= (2^32 - 1) / 5] <=> [Q <= 858993459] <=> [Q < 858993460] define i32 @test_urem_odd(i32 %X) nounwind { ; CHECK-LABEL: test_urem_odd: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #52429 ; CHECK-NEXT: movk w8, #52428, lsl #16 ; CHECK-NEXT: mov w9, #13108 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: movk w9, #13107, lsl #16 ; CHECK-NEXT: cmp w8, w9 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 5 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } define i32 @test_urem_odd_25(i32 %X) nounwind { ; CHECK-LABEL: test_urem_odd_25: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #23593 ; CHECK-NEXT: movk w8, #49807, lsl #16 ; CHECK-NEXT: mov w9, #28836 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: movk w9, #2621, lsl #16 ; CHECK-NEXT: cmp w8, w9 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 25 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_odd, except the divisor has bit 30 set. define i32 @test_urem_odd_bit30(i32 %X) nounwind { ; CHECK-LABEL: test_urem_odd_bit30: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #43691 ; CHECK-NEXT: movk w8, #27306, lsl #16 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: cmp w8, #4 // =4 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 1073741827 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_odd, except the divisor has bit 31 set. define i32 @test_urem_odd_bit31(i32 %X) nounwind { ; CHECK-LABEL: test_urem_odd_bit31: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #43691 ; CHECK-NEXT: movk w8, #10922, lsl #16 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: cmp w8, #2 // =2 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 2147483651 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ;------------------------------------------------------------------------------; ; Even divisors ;------------------------------------------------------------------------------; ; This tests the BuildREMEqFold optimization with UREM, i16, even divisor, SETNE. ; In this case, D <=> 14 <=> 7 * 2^1, so D0 = 7 and K = 1. ; The corresponding pseudocode is: ; Q <- [N * multInv(D0, 2^16)] <=> [N * multInv(7, 2^16)] <=> [N * 28087] ; Q <- [Q >>rot K] <=> [Q >>rot 1] ; res <- ![Q <= (2^16 - 1) / 7] <=> ![Q <= 9362] <=> [Q > 9362] define i16 @test_urem_even(i16 %X) nounwind { ; CHECK-LABEL: test_urem_even: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w9, #28087 ; CHECK-NEXT: and w8, w0, #0xffff ; CHECK-NEXT: movk w9, #46811, lsl #16 ; CHECK-NEXT: mul w8, w8, w9 ; CHECK-NEXT: mov w9, #9362 ; CHECK-NEXT: ror w8, w8, #1 ; CHECK-NEXT: movk w9, #4681, lsl #16 ; CHECK-NEXT: cmp w8, w9 ; CHECK-NEXT: cset w0, hi ; CHECK-NEXT: ret %urem = urem i16 %X, 14 %cmp = icmp ne i16 %urem, 0 %ret = zext i1 %cmp to i16 ret i16 %ret } define i32 @test_urem_even_100(i32 %X) nounwind { ; CHECK-LABEL: test_urem_even_100: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #23593 ; CHECK-NEXT: movk w8, #49807, lsl #16 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: mov w9, #23593 ; CHECK-NEXT: ror w8, w8, #2 ; CHECK-NEXT: movk w9, #655, lsl #16 ; CHECK-NEXT: cmp w8, w9 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 100 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_even, except the divisor has bit 30 set. define i32 @test_urem_even_bit30(i32 %X) nounwind { ; CHECK-LABEL: test_urem_even_bit30: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #20165 ; CHECK-NEXT: movk w8, #64748, lsl #16 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: ror w8, w8, #3 ; CHECK-NEXT: cmp w8, #4 // =4 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 1073741928 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_odd, except the divisor has bit 31 set. define i32 @test_urem_even_bit31(i32 %X) nounwind { ; CHECK-LABEL: test_urem_even_bit31: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #64251 ; CHECK-NEXT: movk w8, #47866, lsl #16 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: ror w8, w8, #1 ; CHECK-NEXT: cmp w8, #2 // =2 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 2147483750 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ;------------------------------------------------------------------------------; ; Special case ;------------------------------------------------------------------------------; ; 'NE' predicate is fine too. define i32 @test_urem_odd_setne(i32 %X) nounwind { ; CHECK-LABEL: test_urem_odd_setne: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, #52429 ; CHECK-NEXT: movk w8, #52428, lsl #16 ; CHECK-NEXT: mul w8, w0, w8 ; CHECK-NEXT: mov w9, #858993459 ; CHECK-NEXT: cmp w8, w9 ; CHECK-NEXT: cset w0, hi ; CHECK-NEXT: ret %urem = urem i32 %X, 5 %cmp = icmp ne i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ;------------------------------------------------------------------------------; ; Negative tests ;------------------------------------------------------------------------------; ; The fold is invalid if divisor is 1. define i32 @test_urem_one(i32 %X) nounwind { ; CHECK-LABEL: test_urem_one: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #1 ; CHECK-NEXT: ret %urem = urem i32 %X, 1 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; We can lower remainder of division by all-ones much better elsewhere. define i32 @test_urem_allones(i32 %X) nounwind { ; CHECK-LABEL: test_urem_allones: ; CHECK: // %bb.0: ; CHECK-NEXT: neg w8, w0 ; CHECK-NEXT: cmp w8, #2 // =2 ; CHECK-NEXT: cset w0, lo ; CHECK-NEXT: ret %urem = urem i32 %X, 4294967295 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; We can lower remainder of division by powers of two much better elsewhere. define i32 @test_urem_pow2(i32 %X) nounwind { ; CHECK-LABEL: test_urem_pow2: ; CHECK: // %bb.0: ; CHECK-NEXT: tst w0, #0xf ; CHECK-NEXT: cset w0, eq ; CHECK-NEXT: ret %urem = urem i32 %X, 16 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret }