//===-- EfficiencySanitizer.cpp - performance tuner -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of EfficiencySanitizer, a family of performance tuners // that detects multiple performance issues via separate sub-tools. // // The instrumentation phase is straightforward: // - Take action on every memory access: either inlined instrumentation, // or Inserted calls to our run-time library. // - Optimizations may apply to avoid instrumenting some of the accesses. // - Turn mem{set,cpy,move} instrinsics into library calls. // The rest is handled by the run-time library. //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; #define DEBUG_TYPE "esan" // The tool type must be just one of these ClTool* options, as the tools // cannot be combined due to shadow memory constraints. static cl::opt ClToolCacheFrag("esan-cache-frag", cl::init(false), cl::desc("Detect data cache fragmentation"), cl::Hidden); // Each new tool will get its own opt flag here. // These are converted to EfficiencySanitizerOptions for use // in the code. static cl::opt ClInstrumentLoadsAndStores( "esan-instrument-loads-and-stores", cl::init(true), cl::desc("Instrument loads and stores"), cl::Hidden); static cl::opt ClInstrumentMemIntrinsics( "esan-instrument-memintrinsics", cl::init(true), cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); STATISTIC(NumInstrumentedLoads, "Number of instrumented loads"); STATISTIC(NumInstrumentedStores, "Number of instrumented stores"); STATISTIC(NumFastpaths, "Number of instrumented fastpaths"); STATISTIC(NumAccessesWithIrregularSize, "Number of accesses with a size outside our targeted callout sizes"); static const char *const EsanModuleCtorName = "esan.module_ctor"; static const char *const EsanInitName = "__esan_init"; namespace { static EfficiencySanitizerOptions OverrideOptionsFromCL(EfficiencySanitizerOptions Options) { if (ClToolCacheFrag) Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; // Direct opt invocation with no params will have the default ESAN_None. // We run the default tool in that case. if (Options.ToolType == EfficiencySanitizerOptions::ESAN_None) Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; return Options; } /// EfficiencySanitizer: instrument each module to find performance issues. class EfficiencySanitizer : public FunctionPass { public: EfficiencySanitizer( const EfficiencySanitizerOptions &Opts = EfficiencySanitizerOptions()) : FunctionPass(ID), Options(OverrideOptionsFromCL(Opts)) {} const char *getPassName() const override; bool runOnFunction(Function &F) override; bool doInitialization(Module &M) override; static char ID; private: void initializeCallbacks(Module &M); bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); bool instrumentMemIntrinsic(MemIntrinsic *MI); bool shouldIgnoreMemoryAccess(Instruction *I); int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); bool instrumentFastpath(Instruction *I, const DataLayout &DL, bool IsStore, Value *Addr, unsigned Alignment); // Each tool has its own fastpath routine: bool instrumentFastpathCacheFrag(Instruction *I, const DataLayout &DL, Value *Addr, unsigned Alignment); EfficiencySanitizerOptions Options; LLVMContext *Ctx; Type *IntptrTy; // Our slowpath involves callouts to the runtime library. // Access sizes are powers of two: 1, 2, 4, 8, 16. static const size_t NumberOfAccessSizes = 5; Function *EsanAlignedLoad[NumberOfAccessSizes]; Function *EsanAlignedStore[NumberOfAccessSizes]; Function *EsanUnalignedLoad[NumberOfAccessSizes]; Function *EsanUnalignedStore[NumberOfAccessSizes]; // For irregular sizes of any alignment: Function *EsanUnalignedLoadN, *EsanUnalignedStoreN; Function *MemmoveFn, *MemcpyFn, *MemsetFn; Function *EsanCtorFunction; }; } // namespace char EfficiencySanitizer::ID = 0; INITIALIZE_PASS(EfficiencySanitizer, "esan", "EfficiencySanitizer: finds performance issues.", false, false) const char *EfficiencySanitizer::getPassName() const { return "EfficiencySanitizer"; } FunctionPass * llvm::createEfficiencySanitizerPass(const EfficiencySanitizerOptions &Options) { return new EfficiencySanitizer(Options); } void EfficiencySanitizer::initializeCallbacks(Module &M) { IRBuilder<> IRB(M.getContext()); // Initialize the callbacks. for (size_t Idx = 0; Idx < NumberOfAccessSizes; ++Idx) { const unsigned ByteSize = 1U << Idx; std::string ByteSizeStr = utostr(ByteSize); // We'll inline the most common (i.e., aligned and frequent sizes) // load + store instrumentation: these callouts are for the slowpath. SmallString<32> AlignedLoadName("__esan_aligned_load" + ByteSizeStr); EsanAlignedLoad[Idx] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( AlignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); SmallString<32> AlignedStoreName("__esan_aligned_store" + ByteSizeStr); EsanAlignedStore[Idx] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( AlignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); SmallString<32> UnalignedLoadName("__esan_unaligned_load" + ByteSizeStr); EsanUnalignedLoad[Idx] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( UnalignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); SmallString<32> UnalignedStoreName("__esan_unaligned_store" + ByteSizeStr); EsanUnalignedStore[Idx] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( UnalignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); } EsanUnalignedLoadN = checkSanitizerInterfaceFunction( M.getOrInsertFunction("__esan_unaligned_loadN", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); EsanUnalignedStoreN = checkSanitizerInterfaceFunction( M.getOrInsertFunction("__esan_unaligned_storeN", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); MemmoveFn = checkSanitizerInterfaceFunction( M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); MemcpyFn = checkSanitizerInterfaceFunction( M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); MemsetFn = checkSanitizerInterfaceFunction( M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); } bool EfficiencySanitizer::doInitialization(Module &M) { Ctx = &M.getContext(); const DataLayout &DL = M.getDataLayout(); IRBuilder<> IRB(M.getContext()); IntegerType *OrdTy = IRB.getInt32Ty(); IntptrTy = DL.getIntPtrType(M.getContext()); std::tie(EsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( M, EsanModuleCtorName, EsanInitName, /*InitArgTypes=*/{OrdTy}, /*InitArgs=*/{ ConstantInt::get(OrdTy, static_cast(Options.ToolType))}); appendToGlobalCtors(M, EsanCtorFunction, 0); return true; } bool EfficiencySanitizer::shouldIgnoreMemoryAccess(Instruction *I) { if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) { // We'd like to know about cache fragmentation in vtable accesses and // constant data references, so we do not currently ignore anything. return false; } // TODO(bruening): future tools will be returning true for some cases. return false; } bool EfficiencySanitizer::runOnFunction(Function &F) { // This is required to prevent instrumenting the call to __esan_init from // within the module constructor. if (&F == EsanCtorFunction) return false; // As a function pass, we must re-initialize every time. initializeCallbacks(*F.getParent()); SmallVector LoadsAndStores; SmallVector MemIntrinCalls; bool Res = false; const DataLayout &DL = F.getParent()->getDataLayout(); for (auto &BB : F) { for (auto &Inst : BB) { if ((isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst)) && !shouldIgnoreMemoryAccess(&Inst)) LoadsAndStores.push_back(&Inst); else if (isa(Inst)) MemIntrinCalls.push_back(&Inst); } } if (ClInstrumentLoadsAndStores) { for (auto Inst : LoadsAndStores) { Res |= instrumentLoadOrStore(Inst, DL); } } if (ClInstrumentMemIntrinsics) { for (auto Inst : MemIntrinCalls) { Res |= instrumentMemIntrinsic(cast(Inst)); } } return Res; } bool EfficiencySanitizer::instrumentLoadOrStore(Instruction *I, const DataLayout &DL) { IRBuilder<> IRB(I); bool IsStore; Value *Addr; unsigned Alignment; if (LoadInst *Load = dyn_cast(I)) { IsStore = false; Alignment = Load->getAlignment(); Addr = Load->getPointerOperand(); } else if (StoreInst *Store = dyn_cast(I)) { IsStore = true; Alignment = Store->getAlignment(); Addr = Store->getPointerOperand(); } else if (AtomicRMWInst *RMW = dyn_cast(I)) { IsStore = true; Alignment = 0; Addr = RMW->getPointerOperand(); } else if (AtomicCmpXchgInst *Xchg = dyn_cast(I)) { IsStore = true; Alignment = 0; Addr = Xchg->getPointerOperand(); } else llvm_unreachable("Unsupported mem access type"); Type *OrigTy = cast(Addr->getType())->getElementType(); const uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8; Value *OnAccessFunc = nullptr; if (IsStore) NumInstrumentedStores++; else NumInstrumentedLoads++; int Idx = getMemoryAccessFuncIndex(Addr, DL); if (Idx < 0) { OnAccessFunc = IsStore ? EsanUnalignedStoreN : EsanUnalignedLoadN; IRB.CreateCall(OnAccessFunc, {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), ConstantInt::get(IntptrTy, TypeSizeBytes)}); } else { if (instrumentFastpath(I, DL, IsStore, Addr, Alignment)) { NumFastpaths++; return true; } if (Alignment == 0 || Alignment >= 8 || (Alignment % TypeSizeBytes) == 0) OnAccessFunc = IsStore ? EsanAlignedStore[Idx] : EsanAlignedLoad[Idx]; else OnAccessFunc = IsStore ? EsanUnalignedStore[Idx] : EsanUnalignedLoad[Idx]; IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); } return true; } // It's simplest to replace the memset/memmove/memcpy intrinsics with // calls that the runtime library intercepts. // Our pass is late enough that calls should not turn back into intrinsics. bool EfficiencySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { IRBuilder<> IRB(MI); bool Res = false; if (isa(MI)) { IRB.CreateCall( MemsetFn, {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()), IRB.CreateIntCast(MI->getArgOperand(1), IRB.getInt32Ty(), false), IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)}); MI->eraseFromParent(); Res = true; } else if (isa(MI)) { IRB.CreateCall( isa(MI) ? MemcpyFn : MemmoveFn, {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()), IRB.CreatePointerCast(MI->getArgOperand(1), IRB.getInt8PtrTy()), IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)}); MI->eraseFromParent(); Res = true; } else llvm_unreachable("Unsupported mem intrinsic type"); return Res; } int EfficiencySanitizer::getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL) { Type *OrigPtrTy = Addr->getType(); Type *OrigTy = cast(OrigPtrTy)->getElementType(); assert(OrigTy->isSized()); // The size is always a multiple of 8. uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8; if (TypeSizeBytes != 1 && TypeSizeBytes != 2 && TypeSizeBytes != 4 && TypeSizeBytes != 8 && TypeSizeBytes != 16) { // Irregular sizes do not have per-size call targets. NumAccessesWithIrregularSize++; return -1; } size_t Idx = countTrailingZeros(TypeSizeBytes); assert(Idx < NumberOfAccessSizes); return Idx; } bool EfficiencySanitizer::instrumentFastpath(Instruction *I, const DataLayout &DL, bool IsStore, Value *Addr, unsigned Alignment) { if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) { return instrumentFastpathCacheFrag(I, DL, Addr, Alignment); } return false; } bool EfficiencySanitizer::instrumentFastpathCacheFrag(Instruction *I, const DataLayout &DL, Value *Addr, unsigned Alignment) { // TODO(bruening): implement a fastpath for aligned accesses return false; }