//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for AMD btver2 (Jaguar) to support // instruction scheduling and other instruction cost heuristics. Based off AMD Software // Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix. // //===----------------------------------------------------------------------===// def BtVer2Model : SchedMachineModel { // All x86 instructions are modeled as a single micro-op, and btver2 can // decode 2 instructions per cycle. let IssueWidth = 2; let MicroOpBufferSize = 64; // Retire Control Unit let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency) let HighLatency = 25; let MispredictPenalty = 14; // Minimum branch misdirection penalty let PostRAScheduler = 1; // FIXME: SSE4/AVX is unimplemented. This flag is set to allow // the scheduler to assign a default model to unrecognized opcodes. let CompleteModel = 0; } let SchedModel = BtVer2Model in { // Jaguar can issue up to 6 micro-ops in one cycle def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam) def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA) def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM // Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>; // Integer Pipe Scheduler def JALU01 : ProcResGroup<[JALU0, JALU1]> { let BufferSize=20; } // AGU Pipe Scheduler def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> { let BufferSize=12; } // Fpu Pipe Scheduler def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> { let BufferSize=18; } def JDiv : ProcResource<1>; // integer division def JMul : ProcResource<1>; // integer multiplication def JVALU0 : ProcResource<1>; // vector integer def JVALU1 : ProcResource<1>; // vector integer def JVIMUL : ProcResource<1>; // vector integer multiplication def JSTC : ProcResource<1>; // vector store/convert def JFPM : ProcResource<1>; // FP multiplication def JFPA : ProcResource<1>; // FP addition // Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 // cycles after the memory operand. def : ReadAdvance; // Many SchedWrites are defined in pairs with and without a folded load. // Instructions with folded loads are usually micro-fused, so they only appear // as two micro-ops when dispatched by the schedulers. // This multiclass defines the resource usage for variants with and without // folded loads. multiclass JWriteResIntPair { // Register variant is using a single cycle on ExePort. def : WriteRes { let Latency = Lat; } // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the // latency. def : WriteRes { let Latency = !add(Lat, 3); } } multiclass JWriteResFpuPair { // Register variant is using a single cycle on ExePort. def : WriteRes { let Latency = Lat; } // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the // latency. def : WriteRes { let Latency = !add(Lat, 5); } } // A folded store needs a cycle on the SAGU for the store data. def : WriteRes; //////////////////////////////////////////////////////////////////////////////// // Arithmetic. //////////////////////////////////////////////////////////////////////////////// defm : JWriteResIntPair; defm : JWriteResIntPair; def : WriteRes { let Latency = 6; let ResourceCycles = [4]; } // FIXME 8/16 bit divisions def : WriteRes { let Latency = 25; let ResourceCycles = [1, 25]; } def : WriteRes { let Latency = 41; let ResourceCycles = [1, 1, 25]; } // This is for simple LEAs with one or two input operands. // FIXME: SAGU 3-operand LEA def : WriteRes; //////////////////////////////////////////////////////////////////////////////// // Integer shifts and rotates. //////////////////////////////////////////////////////////////////////////////// defm : JWriteResIntPair; def WriteSHLDrri : SchedWriteRes<[JALU01]> { let Latency = 3; let ResourceCycles = [6]; let NumMicroOps = 6; } def: InstRW<[WriteSHLDrri], (instrs SHLD16rri8, SHLD32rri8, SHLD64rri8, SHRD16rri8, SHRD32rri8, SHRD64rri8)>; def WriteSHLDrrCL : SchedWriteRes<[JALU01]> { let Latency = 4; let ResourceCycles = [8]; let NumMicroOps = 7; } def: InstRW<[WriteSHLDrrCL], (instrs SHLD16rrCL, SHLD32rrCL, SHLD64rrCL, SHRD16rrCL, SHRD32rrCL, SHRD64rrCL)>; def WriteSHLDm : SchedWriteRes<[JLAGU, JALU01]> { let Latency = 9; let ResourceCycles = [1, 22]; let NumMicroOps = 8; } def: InstRW<[WriteSHLDm],(instrs SHLD16mri8, SHLD32mri8, SHLD64mri8, SHLD16mrCL, SHLD32mrCL, SHLD64mrCL, SHRD16mri8, SHRD32mri8, SHRD64mri8, SHRD16mrCL, SHRD32mrCL, SHRD64mrCL)>; //////////////////////////////////////////////////////////////////////////////// // Loads, stores, and moves, not folded with other operations. // FIXME: Split x86 and SSE load/store/moves //////////////////////////////////////////////////////////////////////////////// def : WriteRes { let Latency = 5; } def : WriteRes; def : WriteRes; // Treat misc copies as a move. def : InstRW<[WriteMove], (instrs COPY)>; //////////////////////////////////////////////////////////////////////////////// // Idioms that clear a register, like xorps %xmm0, %xmm0. // These can often bypass execution ports completely. //////////////////////////////////////////////////////////////////////////////// def : WriteRes; //////////////////////////////////////////////////////////////////////////////// // Branches don't produce values, so they have no latency, but they still // consume resources. Indirect branches can fold loads. //////////////////////////////////////////////////////////////////////////////// defm : JWriteResIntPair; //////////////////////////////////////////////////////////////////////////////// // Floating point. This covers both scalar and vector operations. // FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions? // FIXME: Double precision latencies // FIXME: SS vs PS latencies // FIXME: ymm latencies //////////////////////////////////////////////////////////////////////////////// defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; // NOTE: Doesn't exist on Jaguar. defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; def : WriteRes { let Latency = 21; let ResourceCycles = [1, 1, 21]; } def : WriteRes { let Latency = 26; let ResourceCycles = [1, 1, 21]; } def : WriteRes { let Latency = 19; let ResourceCycles = [1, 1, 19]; } def : WriteRes { let Latency = 24; let ResourceCycles = [1, 1, 19]; } // FIXME: integer pipes defm : JWriteResFpuPair; // Float -> Integer. defm : JWriteResFpuPair; // Integer -> Float. defm : JWriteResFpuPair; // Float -> Float size conversion. def : WriteRes { let Latency = 2; let ResourceCycles = [4]; let NumMicroOps = 3; } def : WriteRes { let Latency = 7; let ResourceCycles = [1, 4]; let NumMicroOps = 3; } // Vector integer operations. defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; defm : JWriteResFpuPair; def : WriteRes { let Latency = 2; let ResourceCycles = [4]; let NumMicroOps = 3; } def : WriteRes { let Latency = 7; let ResourceCycles = [1, 4]; let NumMicroOps = 3; } // FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2? def : WriteRes {} def : WriteRes { let Latency = 6; let ResourceCycles = [1, 2]; } def : WriteRes { let Latency = 3; let ResourceCycles = [2]; } def : WriteRes { let Latency = 8; let ResourceCycles = [1, 2]; } //////////////////////////////////////////////////////////////////////////////// // String instructions. // Packed Compare Implicit Length Strings, Return Mask // FIXME: approximate latencies + pipe dependencies //////////////////////////////////////////////////////////////////////////////// def : WriteRes { let Latency = 8; let ResourceCycles = [2, 2]; let NumMicroOps = 3; } def : WriteRes { let Latency = 13; let ResourceCycles = [1, 2, 2]; let NumMicroOps = 3; } // Packed Compare Explicit Length Strings, Return Mask def : WriteRes { let Latency = 14; let ResourceCycles = [5, 5, 5, 5, 5]; let NumMicroOps = 9; } def : WriteRes { let Latency = 19; let ResourceCycles = [1, 5, 5, 5, 5, 5]; let NumMicroOps = 9; } // Packed Compare Implicit Length Strings, Return Index def : WriteRes { let Latency = 7; let ResourceCycles = [2, 2]; } def : WriteRes { let Latency = 12; let ResourceCycles = [1, 2, 2]; } // Packed Compare Explicit Length Strings, Return Index def : WriteRes { let Latency = 14; let ResourceCycles = [5, 5, 5, 5, 5]; let NumMicroOps = 9; } def : WriteRes { let Latency = 19; let ResourceCycles = [1, 5, 5, 5, 5, 5]; let NumMicroOps = 9; } //////////////////////////////////////////////////////////////////////////////// // AES Instructions. //////////////////////////////////////////////////////////////////////////////// def : WriteRes { let Latency = 3; let ResourceCycles = [1, 1]; } def : WriteRes { let Latency = 8; let ResourceCycles = [1, 1, 1]; } def : WriteRes { let Latency = 2; let ResourceCycles = [1]; } def : WriteRes { let Latency = 7; let ResourceCycles = [1, 1]; } def : WriteRes { let Latency = 2; let ResourceCycles = [1]; } def : WriteRes { let Latency = 7; let ResourceCycles = [1, 1]; } //////////////////////////////////////////////////////////////////////////////// // Horizontal add/sub instructions. //////////////////////////////////////////////////////////////////////////////// def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 8; } def : WriteRes { let ResourceCycles = [1]; } def : WriteRes { let Latency = 6; let ResourceCycles = [1, 1]; } def WriteFHAddY: SchedWriteRes<[JFPU0]> { let Latency = 3; let ResourceCycles = [2]; } def : InstRW<[WriteFHAddY], (instrs VHADDPDYrr, VHADDPSYrr, VHSUBPDYrr, VHSUBPSYrr)>; def WriteFHAddYLd: SchedWriteRes<[JLAGU, JFPU0]> { let Latency = 8; let ResourceCycles = [1, 2]; } def : InstRW<[WriteFHAddYLd], (instrs VHADDPDYrm, VHADDPSYrm, VHSUBPDYrm, VHSUBPSYrm)>; //////////////////////////////////////////////////////////////////////////////// // Carry-less multiplication instructions. //////////////////////////////////////////////////////////////////////////////// def : WriteRes { let Latency = 2; let ResourceCycles = [1]; } def : WriteRes { let Latency = 7; let ResourceCycles = [1, 1]; } // FIXME: pipe for system/microcode? def : WriteRes { let Latency = 100; } def : WriteRes { let Latency = 100; } def : WriteRes; def : WriteRes; //////////////////////////////////////////////////////////////////////////////// // SSE4.1 instructions. //////////////////////////////////////////////////////////////////////////////// def WriteDPPS: SchedWriteRes<[JFPU0, JFPU1]> { let Latency = 11; let ResourceCycles = [3,3]; let NumMicroOps = 5; } def : InstRW<[WriteDPPS], (instrs DPPSrri, VDPPSrri)>; def WriteDPPSLd: SchedWriteRes<[JLAGU, JFPU0, JFPU1]> { let Latency = 16; let ResourceCycles = [1,3,3]; let NumMicroOps = 6; } def : InstRW<[WriteDPPSLd], (instrs DPPSrmi, VDPPSrmi)>; def WriteDPPD: SchedWriteRes<[JFPU0, JFPU1]> { let Latency = 9; let ResourceCycles = [3,3]; let NumMicroOps = 3; } def : InstRW<[WriteDPPD], (instrs DPPDrri, VDPPDrri)>; def WriteDPPDLd: SchedWriteRes<[JLAGU, JFPU0, JFPU1]> { let Latency = 14; let ResourceCycles = [1,3,3]; let NumMicroOps = 3; } def : InstRW<[WriteDPPDLd], (instrs DPPDrmi, VDPPDrmi)>; //////////////////////////////////////////////////////////////////////////////// // SSE4A instructions. //////////////////////////////////////////////////////////////////////////////// def WriteEXTRQ: SchedWriteRes<[JFPU01]> { let Latency = 1; let ResourceCycles = [1]; } def : InstRW<[WriteEXTRQ], (instrs EXTRQ, EXTRQI)>; def WriteINSERTQ: SchedWriteRes<[JFPU01]> { let Latency = 2; let ResourceCycles = [4]; } def : InstRW<[WriteINSERTQ], (instrs INSERTQ, INSERTQI)>; //////////////////////////////////////////////////////////////////////////////// // F16C instructions. //////////////////////////////////////////////////////////////////////////////// def WriteCVT3: SchedWriteRes<[JFPU1]> { let Latency = 3; } def : InstRW<[WriteCVT3], (instrs VCVTPS2PHrr, VCVTPH2PSrr)>; def WriteCVT3St: SchedWriteRes<[JFPU1, JSAGU]> { let Latency = 3; let ResourceCycles = [1, 1]; } def : InstRW<[WriteCVT3St], (instrs VCVTPS2PHmr)>; def WriteCVT3Ld: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 8; let ResourceCycles = [1, 1]; } def : InstRW<[WriteCVT3Ld], (instrs VCVTPH2PSrm)>; def WriteCVTPS2PHY: SchedWriteRes<[JFPU1, JFPU01]> { let Latency = 6; let ResourceCycles = [2,2]; let NumMicroOps = 3; } def : InstRW<[WriteCVTPS2PHY], (instrs VCVTPS2PHYrr)>; def WriteCVTPS2PHYSt: SchedWriteRes<[JFPU1, JFPU01, JSAGU]> { let Latency = 11; let ResourceCycles = [2,2,1]; let NumMicroOps = 3; } def : InstRW<[WriteCVTPS2PHYSt], (instrs VCVTPS2PHYmr)>; def WriteCVTPH2PSY: SchedWriteRes<[JFPU1]> { let Latency = 3; let ResourceCycles = [2]; let NumMicroOps = 2; } def : InstRW<[WriteCVTPH2PSY], (instrs VCVTPH2PSYrr)>; def WriteCVTPH2PSYLd: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 8; let ResourceCycles = [1,2]; let NumMicroOps = 2; } def : InstRW<[WriteCVTPH2PSYLd], (instrs VCVTPH2PSYrm)>; //////////////////////////////////////////////////////////////////////////////// // AVX instructions. //////////////////////////////////////////////////////////////////////////////// def WriteVDPPSY: SchedWriteRes<[JFPU1, JFPU0]> { let Latency = 12; let ResourceCycles = [6, 6]; let NumMicroOps = 10; } def : InstRW<[WriteVDPPSY], (instrs VDPPSYrri)>; def WriteVDPPSYLd: SchedWriteRes<[JLAGU, JFPU1, JFPU0]> { let Latency = 17; let ResourceCycles = [1, 6, 6]; let NumMicroOps = 11; } def : InstRW<[WriteVDPPSYLd, ReadAfterLd], (instrs VDPPSYrmi)>; def WriteFAddY: SchedWriteRes<[JFPU0]> { let Latency = 3; let ResourceCycles = [2]; } def : InstRW<[WriteFAddY], (instrs VADDPDYrr, VADDPSYrr, VSUBPDYrr, VSUBPSYrr, VADDSUBPDYrr, VADDSUBPSYrr)>; def WriteFAddYLd: SchedWriteRes<[JLAGU, JFPU0]> { let Latency = 8; let ResourceCycles = [1, 2]; } def : InstRW<[WriteFAddYLd, ReadAfterLd], (instrs VADDPDYrm, VADDPSYrm, VSUBPDYrm, VSUBPSYrm, VADDSUBPDYrm, VADDSUBPSYrm)>; def WriteFDivY: SchedWriteRes<[JFPU1]> { let Latency = 38; let ResourceCycles = [38]; } def : InstRW<[WriteFDivY], (instrs VDIVPDYrr, VDIVPSYrr)>; def WriteFDivYLd: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 43; let ResourceCycles = [1, 38]; } def : InstRW<[WriteFDivYLd, ReadAfterLd], (instrs VDIVPDYrm, VDIVPSYrm)>; def WriteVMULYPD: SchedWriteRes<[JFPU1]> { let Latency = 4; let ResourceCycles = [4]; } def : InstRW<[WriteVMULYPD], (instrs VMULPDYrr)>; def WriteVMULYPDLd: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 9; let ResourceCycles = [1, 4]; } def : InstRW<[WriteVMULYPDLd, ReadAfterLd], (instrs VMULPDYrm)>; def WriteVMULYPS: SchedWriteRes<[JFPU1]> { let Latency = 2; let ResourceCycles = [2]; } def : InstRW<[WriteVMULYPS], (instrs VMULPSYrr, VRCPPSYr, VRSQRTPSYr)>; def WriteVMULYPSLd: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 7; let ResourceCycles = [1, 2]; } def : InstRW<[WriteVMULYPSLd, ReadAfterLd], (instrs VMULPSYrm, VRCPPSYm, VRSQRTPSYm)>; def WriteVMULPD: SchedWriteRes<[JFPU1]> { let Latency = 4; let ResourceCycles = [2]; } def : InstRW<[WriteVMULPD], (instrs MULPDrr, MULSDrr, VMULPDrr, VMULSDrr)>; def WriteVMULPDLd: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 9; let ResourceCycles = [1, 2]; } def : InstRW<[WriteVMULPDLd], (instrs MULPDrm, MULSDrm, VMULPDrm, VMULSDrm)>; def WriteVCVTY: SchedWriteRes<[JSTC]> { let Latency = 3; let ResourceCycles = [2]; } def : InstRW<[WriteVCVTY], (instrs VCVTDQ2PDYrr, VCVTDQ2PSYrr, VCVTPS2DQYrr, VCVTTPS2DQYrr, VROUNDYPDr, VROUNDYPSr)>; def WriteVCVTYLd: SchedWriteRes<[JLAGU, JSTC]> { let Latency = 8; let ResourceCycles = [1, 2]; } def : InstRW<[WriteVCVTYLd, ReadAfterLd], (instrs VCVTDQ2PDYrm, VCVTDQ2PSYrm, VCVTPS2DQYrm, VCVTTPS2DQYrm, VROUNDYPDm, VROUNDYPSm)>; def WriteVMOVNTDQSt: SchedWriteRes<[JSTC, JSAGU]> { let Latency = 2; } def : InstRW<[WriteVMOVNTDQSt], (instrs MOVNTDQmr, VMOVNTDQmr)>; def WriteMOVNTSt: SchedWriteRes<[JSTC, JSAGU]> { let Latency = 3; } def : InstRW<[WriteMOVNTSt], (instrs MOVNTPDmr, MOVNTPSmr, MOVNTSD, MOVNTSS, VMOVNTPDmr, VMOVNTPSmr)>; def WriteVMOVNTPYSt: SchedWriteRes<[JSTC, JSAGU]> { let Latency = 3; let ResourceCycles = [2,1]; } def : InstRW<[WriteVMOVNTPYSt], (instrs VMOVNTDQYmr, VMOVNTPDYmr, VMOVNTPSYmr)>; def WriteFCmp: SchedWriteRes<[JFPU0]> { let Latency = 2; } def : InstRW<[WriteFCmp], (instregex "(V)?M(AX|IN)(P|S)(D|S)rr", "(V)?CMPP(S|D)rri", "(V)?CMPS(S|D)rr")>; def WriteFCmpLd: SchedWriteRes<[JLAGU, JFPU0]> { let Latency = 7; } def : InstRW<[WriteFCmpLd], (instregex "(V)?M(AX|IN)(P|S)(D|S)rm", "(V)?CMPP(S|D)rmi", "(V)?CMPS(S|D)rm")>; def WriteVCVTPDY: SchedWriteRes<[JSTC, JFPU01]> { let Latency = 6; let ResourceCycles = [2, 4]; } def : InstRW<[WriteVCVTPDY], (instrs VCVTPD2DQYrr, VCVTTPD2DQYrr, VCVTPD2PSYrr)>; def WriteVCVTPDYLd: SchedWriteRes<[JLAGU, JSTC, JFPU01]> { let Latency = 11; let ResourceCycles = [1, 2, 4]; } def : InstRW<[WriteVCVTPDYLd, ReadAfterLd], (instrs VCVTPD2DQYrm, VCVTTPD2DQYrm, VCVTPD2PSYrm)>; def WriteVBlendVPY: SchedWriteRes<[JFPU01]> { let Latency = 3; let ResourceCycles = [6]; } def : InstRW<[WriteVBlendVPY], (instrs VBLENDVPDYrr, VBLENDVPSYrr, VPERMILPDYrr, VPERMILPSYrr)>; def WriteVBlendVPYLd: SchedWriteRes<[JLAGU, JFPU01]> { let Latency = 8; let ResourceCycles = [1, 6]; } def : InstRW<[WriteVBlendVPYLd, ReadAfterLd], (instrs VBLENDVPDYrm, VBLENDVPSYrm)>; def WriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01]> { let Latency = 6; let ResourceCycles = [1, 4]; } def : InstRW<[WriteVBROADCASTYLd, ReadAfterLd], (instrs VBROADCASTSDYrm, VBROADCASTSSYrm)>; def WriteFPAY22: SchedWriteRes<[JFPU0]> { let Latency = 2; let ResourceCycles = [2]; } def : InstRW<[WriteFPAY22], (instregex "VCMPP(S|D)Yrri", "VM(AX|IN)P(D|S)Yrr")>; def WriteFPAY22Ld: SchedWriteRes<[JLAGU, JFPU0]> { let Latency = 7; let ResourceCycles = [1, 2]; } def : InstRW<[WriteFPAY22Ld, ReadAfterLd], (instregex "VCMPP(S|D)Yrmi", "VM(AX|IN)P(D|S)Yrm")>; def WriteVHAddSubY: SchedWriteRes<[JFPU0]> { let Latency = 3; let ResourceCycles = [2]; } def : InstRW<[WriteVHAddSubY], (instrs VHADDPDYrr, VHADDPSYrr, VHSUBPDYrr, VHSUBPSYrr)>; def WriteVHAddSubYLd: SchedWriteRes<[JLAGU, JFPU0]> { let Latency = 8; let ResourceCycles = [1, 2]; } def : InstRW<[WriteVHAddSubYLd], (instrs VHADDPDYrm, VHADDPSYrm, VHSUBPDYrm, VHSUBPSYrm)>; def WriteVMaskMovLd: SchedWriteRes<[JLAGU,JFPU01]> { let Latency = 6; let ResourceCycles = [1, 2]; } def : InstRW<[WriteVMaskMovLd], (instrs VMASKMOVPDrm, VMASKMOVPSrm)>; def WriteVMaskMovYLd: SchedWriteRes<[JLAGU,JFPU01]> { let Latency = 6; let ResourceCycles = [1, 4]; } def : InstRW<[WriteVMaskMovYLd], (instrs VMASKMOVPDYrm, VMASKMOVPSYrm)>; def WriteVMaskMovSt: SchedWriteRes<[JFPU01,JSAGU]> { let Latency = 6; let ResourceCycles = [4, 1]; } def : InstRW<[WriteVMaskMovSt], (instrs VMASKMOVPDmr, VMASKMOVPSmr)>; def WriteVMaskMovYSt: SchedWriteRes<[JFPU01,JSAGU]> { let Latency = 6; let ResourceCycles = [4, 1]; } def : InstRW<[WriteVMaskMovYSt], (instrs VMASKMOVPDYmr, VMASKMOVPSYmr)>; // TODO: In fact we have latency '2+i'. The +i represents an additional 1 cycle transfer // operation which moves the floating point result to the integer unit. During this // additional cycle the floating point unit execution resources are not occupied // and ALU0 in the integer unit is occupied instead. def WriteVMOVMSK: SchedWriteRes<[JFPU0]> { let Latency = 3; } def : InstRW<[WriteVMOVMSK], (instrs VMOVMSKPDrr, VMOVMSKPDYrr, VMOVMSKPSrr, VMOVMSKPSYrr)>; // TODO: In fact we have latency '3+i'. The +i represents an additional 1 cycle transfer // operation which moves the floating point result to the integer unit. During this // additional cycle the floating point unit execution resources are not occupied // and ALU0 in the integer unit is occupied instead. def WriteVTESTY: SchedWriteRes<[JFPU01, JFPU0]> { let Latency = 4; let ResourceCycles = [2, 2]; let NumMicroOps = 3; } def : InstRW<[WriteVTESTY], (instrs VPTESTYrr, VTESTPDYrr, VTESTPSYrr)>; def WriteVTESTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPU0]> { let Latency = 9; let ResourceCycles = [1, 2, 2]; let NumMicroOps = 3; } def : InstRW<[WriteVTESTYLd], (instrs VPTESTYrm, VTESTPDYrm, VTESTPSYrm)>; def WriteVTEST: SchedWriteRes<[JFPU0]> { let Latency = 3; } def : InstRW<[WriteVTEST], (instrs PTESTrr, VPTESTrr, VTESTPDrr, VTESTPSrr)>; def WriteVTESTLd: SchedWriteRes<[JLAGU, JFPU0]> { let Latency = 8; } def : InstRW<[WriteVTESTLd], (instrs PTESTrm, VPTESTrm, VTESTPDrm, VTESTPSrm)>; def WriteVSQRTYPD: SchedWriteRes<[JFPU1]> { let Latency = 54; let ResourceCycles = [54]; } def : InstRW<[WriteVSQRTYPD], (instrs VSQRTPDYr)>; def WriteVSQRTYPDLd: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 59; let ResourceCycles = [1, 54]; } def : InstRW<[WriteVSQRTYPDLd], (instrs VSQRTPDYm)>; def WriteVSQRTYPS: SchedWriteRes<[JFPU1]> { let Latency = 42; let ResourceCycles = [42]; } def : InstRW<[WriteVSQRTYPS], (instrs VSQRTPSYr)>; def WriteVSQRTYPSLd: SchedWriteRes<[JLAGU, JFPU1]> { let Latency = 47; let ResourceCycles = [1, 42]; } def : InstRW<[WriteVSQRTYPSLd], (instrs VSQRTPSYm)>; def WriteJVZEROALL: SchedWriteRes<[]> { let Latency = 90; let NumMicroOps = 73; } def : InstRW<[WriteJVZEROALL], (instrs VZEROALL)>; def WriteJVZEROUPPER: SchedWriteRes<[]> { let Latency = 46; let NumMicroOps = 37; } def : InstRW<[WriteJVZEROUPPER], (instrs VZEROUPPER)>; } // SchedModel