//===--------- X86InterleavedAccess.cpp ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===--------------------------------------------------------------------===// /// /// \file /// This file contains the X86 implementation of the interleaved accesses /// optimization generating X86-specific instructions/intrinsics for /// interleaved access groups. /// //===--------------------------------------------------------------------===// #include "X86TargetMachine.h" #include "llvm/Analysis/VectorUtils.h" using namespace llvm; namespace { /// \brief This class holds necessary information to represent an interleaved /// access group and supports utilities to lower the group into /// X86-specific instructions/intrinsics. /// E.g. A group of interleaving access loads (Factor = 2; accessing every /// other element) /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> class X86InterleavedAccessGroup { /// \brief Reference to the wide-load instruction of an interleaved access /// group. Instruction *const Inst; /// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. ArrayRef Shuffles; /// \brief Reference to the starting index of each user-shuffle. ArrayRef Indices; /// \brief Reference to the interleaving stride in terms of elements. const unsigned Factor; /// \brief Reference to the underlying target. const X86Subtarget &Subtarget; const DataLayout &DL; IRBuilder<> &Builder; /// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T, SmallVectorImpl &DecomposedVectors); /// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and /// returns the transposed-vectors in \p TransposedVectors. /// E.g. /// InputVectors: /// In-V0 = p1, p2, p3, p4 /// In-V1 = q1, q2, q3, q4 /// In-V2 = r1, r2, r3, r4 /// In-V3 = s1, s2, s3, s4 /// OutputVectors: /// Out-V0 = p1, q1, r1, s1 /// Out-V1 = p2, q2, r2, s2 /// Out-V2 = p3, q3, r3, s3 /// Out-V3 = P4, q4, r4, s4 void transpose_4x4(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix); void interleave8bitStride4(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix, unsigned NumSubVecElems); void deinterleave8bitStride3(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix, unsigned NumSubVecElems); public: /// In order to form an interleaved access group X86InterleavedAccessGroup /// requires a wide-load instruction \p 'I', a group of interleaved-vectors /// \p Shuffs, reference to the first indices of each interleaved-vector /// \p 'Ind' and the interleaving stride factor \p F. In order to generate /// X86-specific instructions/intrinsics it also requires the underlying /// target information \p STarget. explicit X86InterleavedAccessGroup(Instruction *I, ArrayRef Shuffs, ArrayRef Ind, const unsigned F, const X86Subtarget &STarget, IRBuilder<> &B) : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), DL(Inst->getModule()->getDataLayout()), Builder(B) {} /// \brief Returns true if this interleaved access group can be lowered into /// x86-specific instructions/intrinsics, false otherwise. bool isSupported() const; /// \brief Lowers this interleaved access group into X86-specific /// instructions/intrinsics. bool lowerIntoOptimizedSequence(); }; } // end anonymous namespace bool X86InterleavedAccessGroup::isSupported() const { VectorType *ShuffleVecTy = Shuffles[0]->getType(); Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType(); unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); unsigned WideInstSize; // Currently, lowering is supported for the following vectors: // Stride 4: // 1. Store and load of 4-element vectors of 64 bits on AVX. // 2. Store of 16/32-element vectors of 8 bits on AVX. // Stride 3: // 1. Load of 16/32-element vecotrs of 8 bits on AVX. if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) return false; if (isa(Inst)) { WideInstSize = DL.getTypeSizeInBits(Inst->getType()); } else WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType()); // We support shuffle represents stride 4 for byte type with size of // WideInstSize. if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) return true; if (ShuffleElemSize == 8 && isa(Inst) && Factor == 4 && (WideInstSize == 512 || WideInstSize == 1024)) return true; if (ShuffleElemSize == 8 && isa(Inst) && Factor == 3 && (WideInstSize == 384 || WideInstSize == 768)) return true; return false; } void X86InterleavedAccessGroup::decompose( Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy, SmallVectorImpl &DecomposedVectors) { assert((isa(VecInst) || isa(VecInst)) && "Expected Load or Shuffle"); Type *VecTy = VecInst->getType(); (void)VecTy; assert(VecTy->isVectorTy() && DL.getTypeSizeInBits(VecTy) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && "Invalid Inst-size!!!"); if (auto *SVI = dyn_cast(VecInst)) { Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. for (unsigned i = 0; i < NumSubVectors; ++i) DecomposedVectors.push_back( cast(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(Builder, Indices[i], SubVecTy->getVectorNumElements(), 0)))); return; } // Decompose the load instruction. LoadInst *LI = cast(VecInst); Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace()); Value *VecBasePtr; unsigned int NumLoads = NumSubVectors; // In the case of stride 3 with a vector of 32 elements load the information // in the following way: // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] if (DL.getTypeSizeInBits(VecTy) == 768) { Type *VecTran = VectorType::get(Type::getInt8Ty(LI->getContext()), 16)->getPointerTo(); VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTran); NumLoads = NumSubVectors * 2; } else VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); // Generate N loads of T type. for (unsigned i = 0; i < NumLoads; i++) { // TODO: Support inbounds GEP. Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i)); Instruction *NewLoad = Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment()); DecomposedVectors.push_back(NewLoad); } } // Create shuffle mask for concatenation of two half vectors. // Low = false: mask generated for the shuffle // shuffle(VEC1,VEC2,{NumElement/2, NumElement/2+1, NumElement/2+2..., // NumElement-1, NumElement+NumElement/2, // NumElement+NumElement/2+1..., 2*NumElement-1}) // = concat(high_half(VEC1),high_half(VEC2)) // Low = true: mask generated for the shuffle // shuffle(VEC1,VEC2,{0,1,2,...,NumElement/2-1,NumElement, // NumElement+1...,NumElement+NumElement/2-1}) // = concat(low_half(VEC1),low_half(VEC2)) static void createConcatShuffleMask(int NumElements, SmallVectorImpl &Mask, bool Low) { int NumHalfElements = NumElements / 2; int Offset = Low ? 0 : NumHalfElements; for (int i = 0; i < NumHalfElements; ++i) Mask.push_back(i + Offset); for (int i = 0; i < NumHalfElements; ++i) Mask.push_back(i + Offset + NumElements); } // Changing the scale of the vector type by reducing the number of elements and // doubling the scalar size. static MVT scaleVectorType(MVT VT) { unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), VT.getVectorNumElements() / 2); } void X86InterleavedAccessGroup::interleave8bitStride4( ArrayRef Matrix, SmallVectorImpl &TransposedMatrix, unsigned numberOfElement) { // Example: Assuming we start from the following vectors: // Matrix[0]= c0 c1 c2 c3 c4 ... c31 // Matrix[1]= m0 m1 m2 m3 m4 ... m31 // Matrix[2]= y0 y1 y2 y3 y4 ... y31 // Matrix[3]= k0 k1 k2 k3 k4 ... k31 MVT VT = MVT::getVectorVT(MVT::i8, numberOfElement); MVT HalfVT = scaleVectorType(VT); TransposedMatrix.resize(4); SmallVector MaskHigh; SmallVector MaskLow; SmallVector MaskHighTemp1; SmallVector MaskLowTemp1; SmallVector MaskHighWord; SmallVector MaskLowWord; SmallVector ConcatLow; SmallVector ConcatHigh; // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 // shuffle pattern. createUnpackShuffleMask(VT, MaskHigh, false, false); createUnpackShuffleMask(VT, MaskLow, true, false); // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 // shuffle pattern. createUnpackShuffleMask(HalfVT, MaskLowTemp1, true, false); createUnpackShuffleMask(HalfVT, MaskHighTemp1, false, false); scaleShuffleMask(2, MaskHighTemp1, MaskHighWord); scaleShuffleMask(2, MaskLowTemp1, MaskLowWord); // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 Value *IntrVec1Low = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); Value *IntrVec1High = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh); Value *IntrVec2Low = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); Value *IntrVec2High = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh); // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 Value *High = Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord); Value *High1 = Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskHighWord); Value *Low = Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord); Value *Low1 = Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskLowWord); if (VT == MVT::v16i8) { TransposedMatrix[0] = Low; TransposedMatrix[1] = High; TransposedMatrix[2] = Low1; TransposedMatrix[3] = High1; return; } // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 // ConcatHigh and ConcatLow built in the vperm2i128 and vinserti128 X86 // shuffle pattern. SmallVector ConcatHigh12, ConcatHigh13; createConcatShuffleMask(numberOfElement, ConcatLow, true); createConcatShuffleMask(numberOfElement, ConcatHigh, false); TransposedMatrix[0] = Builder.CreateShuffleVector(Low, High, ConcatLow); TransposedMatrix[1] = Builder.CreateShuffleVector(Low1, High1, ConcatLow); TransposedMatrix[2] = Builder.CreateShuffleVector(Low, High, ConcatHigh); TransposedMatrix[3] = Builder.CreateShuffleVector(Low1, High1, ConcatHigh); } // createShuffleStride returns shuffle mask of size N. // The shuffle pattern is as following : // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} // Where Lane is the # of lanes in a register: // VectorSize = 128 => Lane = 1 // VectorSize = 256 => Lane = 2 // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} static void createShuffleStride(MVT VT, int Stride, SmallVectorImpl &Mask) { int VectorSize = VT.getSizeInBits(); int VF = VT.getVectorNumElements(); int LaneCount = std::max(VectorSize / 128, 1); for (int Lane = 0; Lane < LaneCount; Lane++) for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane); } // setGroupSize sets 'SizeInfo' to the size(number of elements) of group // inside mask a shuffleMask. A mask contains exactly 3 groups, where // each group is a monotonically increasing sequence with stride 3. // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} static void setGroupSize(MVT VT, SmallVectorImpl &SizeInfo) { int VectorSize = VT.getSizeInBits(); int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1); for (int i = 0, FirstGroupElement = 0; i < 3; i++) { int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0); SizeInfo.push_back(GroupSize); FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; } } // DecodePALIGNRMask returns the shuffle mask of vpalign instruction. // vpalign works according to lanes // Where Lane is the # of lanes in a register: // VectorWide = 128 => Lane = 1 // VectorWide = 256 => Lane = 2 // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. // For Lane = 2 shuffle pattern is: // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. // Imm variable sets the offset amount. The result of the // function is stored inside ShuffleMask vector and it built as described in // the begin of the description. AlignDirection is a boolean that indecat the // direction of the alignment. (false - align to the "right" side while true - // align to the "left" side) static void DecodePALIGNRMask(MVT VT, unsigned Imm, SmallVectorImpl &ShuffleMask, bool AlignDirection = true, bool Unary = false) { unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1); unsigned NumLaneElts = NumElts / NumLanes; Imm = AlignDirection ? Imm : (NumLaneElts - Imm); unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { unsigned Base = i + Offset; // if i+offset is out of this lane then we actually need the other source // If Unary the other source is the first source. if (Base >= NumLaneElts) Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; ShuffleMask.push_back(Base + l); } } } void X86InterleavedAccessGroup::deinterleave8bitStride3( ArrayRef InVec, SmallVectorImpl &TransposedMatrix, unsigned VecElems) { // Example: Assuming we start from the following vectors: // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 TransposedMatrix.resize(3); SmallVector Concat; SmallVector VPShuf; SmallVector VPAlign[2]; SmallVector VPAlign2; SmallVector VPAlign3; SmallVector GroupSize; Value *Vec[3], *TempVector[3]; MVT VT = MVT::getVT(Shuffles[0]->getType()); for (unsigned i = 0; i < VecElems && VecElems == 32; ++i) Concat.push_back(i); createShuffleStride(VT, 3, VPShuf); setGroupSize(VT, GroupSize); for (int i = 0; i < 2; i++) DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false); DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true); DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true); for (int i = 0; i < 3; i++) Vec[i] = VecElems == 32 ? Builder.CreateShuffleVector(InVec[i], InVec[i + 3], Concat) : InVec[i]; // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 for (int i = 0; i < 3; i++) Vec[i] = Builder.CreateShuffleVector( Vec[i], UndefValue::get(Vec[0]->getType()), VPShuf); // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 for (int i = 0; i < 3; i++) TempVector[i] = Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]); // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 for (int i = 0; i < 3; i++) Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i], VPAlign[1]); // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 Value *TempVec = Builder.CreateShuffleVector( Vec[1], UndefValue::get(Vec[1]->getType()), VPAlign3); TransposedMatrix[0] = Builder.CreateShuffleVector( Vec[0], UndefValue::get(Vec[1]->getType()), VPAlign2); TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; return; } void X86InterleavedAccessGroup::transpose_4x4( ArrayRef Matrix, SmallVectorImpl &TransposedMatrix) { assert(Matrix.size() == 4 && "Invalid matrix size"); TransposedMatrix.resize(4); // dst = src1[0,1],src2[0,1] uint32_t IntMask1[] = {0, 1, 4, 5}; ArrayRef Mask = makeArrayRef(IntMask1, 4); Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[2,3],src2[2,3] uint32_t IntMask2[] = {2, 3, 6, 7}; Mask = makeArrayRef(IntMask2, 4); Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[0],src2[0],src1[2],src2[2] uint32_t IntMask3[] = {0, 4, 2, 6}; Mask = makeArrayRef(IntMask3, 4); TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); // dst = src1[1],src2[1],src1[3],src2[3] uint32_t IntMask4[] = {1, 5, 3, 7}; Mask = makeArrayRef(IntMask4, 4); TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); } // Lowers this interleaved access group into X86-specific // instructions/intrinsics. bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { SmallVector DecomposedVectors; SmallVector TransposedVectors; VectorType *ShuffleTy = Shuffles[0]->getType(); if (isa(Inst)) { // Try to generate target-sized register(/instruction). decompose(Inst, Factor, ShuffleTy, DecomposedVectors); Type *ShuffleEltTy = Inst->getType(); unsigned NumSubVecElems = ShuffleEltTy->getVectorNumElements() / Factor; // Perform matrix-transposition in order to compute interleaved // results by generating some sort of (optimized) target-specific // instructions. switch (NumSubVecElems) { default: return false; case 4: transpose_4x4(DecomposedVectors, TransposedVectors); break; case 8: case 16: case 32: deinterleave8bitStride3(DecomposedVectors, TransposedVectors, NumSubVecElems); break; } // Now replace the unoptimized-interleaved-vectors with the // transposed-interleaved vectors. for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); return true; } Type *ShuffleEltTy = ShuffleTy->getVectorElementType(); unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor; // Lower the interleaved stores: // 1. Decompose the interleaved wide shuffle into individual shuffle // vectors. decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems), DecomposedVectors); // 2. Transpose the interleaved-vectors into vectors of contiguous // elements. switch (NumSubVecElems) { case 4: transpose_4x4(DecomposedVectors, TransposedVectors); break; case 16: case 32: interleave8bitStride4(DecomposedVectors, TransposedVectors, NumSubVecElems); break; default: return false; } // 3. Concatenate the contiguous-vectors back into a wide vector. Value *WideVec = concatenateVectors(Builder, TransposedVectors); // 4. Generate a store instruction for wide-vec. StoreInst *SI = cast(Inst); Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlignment()); return true; } // Lower interleaved load(s) into target specific instructions/ // intrinsics. Lowering sequence varies depending on the vector-types, factor, // number of shuffles and ISA. // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. bool X86TargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); // Create an interleaved access group. IRBuilder<> Builder(LI); X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); } bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(SVI->getType()->getVectorNumElements() % Factor == 0 && "Invalid interleaved store"); // Holds the indices of SVI that correspond to the starting index of each // interleaved shuffle. SmallVector Indices; auto Mask = SVI->getShuffleMask(); for (unsigned i = 0; i < Factor; i++) Indices.push_back(Mask[i]); ArrayRef Shuffles = makeArrayRef(SVI); // Create an interleaved access group. IRBuilder<> Builder(SI); X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); }