//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // This file implements a TargetTransformInfo analysis pass specific to the // AMDGPU target machine. It uses the target's detailed information to provide // more precise answers to certain TTI queries, while letting the target // independent and default TTI implementations handle the rest. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUTargetMachine.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; #define DEBUG_TYPE "AMDGPUtti" namespace { class AMDGPUTTIImpl : public BasicTTIImplBase { typedef BasicTTIImplBase BaseT; typedef TargetTransformInfo TTI; const AMDGPUSubtarget *ST; public: explicit AMDGPUTTIImpl(const AMDGPUTargetMachine *TM = nullptr) : BaseT(TM), ST(TM->getSubtargetImpl()) {} // Provide value semantics. MSVC requires that we spell all of these out. AMDGPUTTIImpl(const AMDGPUTTIImpl &Arg) : BaseT(static_cast(Arg)), ST(Arg.ST) {} AMDGPUTTIImpl(AMDGPUTTIImpl &&Arg) : BaseT(std::move(static_cast(Arg))), ST(std::move(Arg.ST)) {} AMDGPUTTIImpl &operator=(const AMDGPUTTIImpl &RHS) { BaseT::operator=(static_cast(RHS)); ST = RHS.ST; return *this; } AMDGPUTTIImpl &operator=(AMDGPUTTIImpl &&RHS) { BaseT::operator=(std::move(static_cast(RHS))); ST = std::move(RHS.ST); return *this; } bool hasBranchDivergence() { return true; } void getUnrollingPreferences(const Function *F, Loop *L, TTI::UnrollingPreferences &UP); TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth) { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); return ST->hasBCNT(TyWidth) ? TTI::PSK_FastHardware : TTI::PSK_Software; } unsigned getNumberOfRegisters(bool Vector); unsigned getRegisterBitWidth(bool Vector); unsigned getMaxInterleaveFactor(); }; } // end anonymous namespace ImmutablePass * llvm::createAMDGPUTargetTransformInfoPass(const AMDGPUTargetMachine *TM) { return new TargetTransformInfoWrapperPass(AMDGPUTTIImpl(TM)); } void AMDGPUTTIImpl::getUnrollingPreferences(const Function *, Loop *L, TTI::UnrollingPreferences &UP) { UP.Threshold = 300; // Twice the default. UP.Count = UINT_MAX; UP.Partial = true; // TODO: Do we want runtime unrolling? for (const BasicBlock *BB : L->getBlocks()) { for (const Instruction &I : *BB) { const GetElementPtrInst *GEP = dyn_cast(&I); if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) continue; const Value *Ptr = GEP->getPointerOperand(); const AllocaInst *Alloca = dyn_cast(GetUnderlyingObject(Ptr)); if (Alloca) { // We want to do whatever we can to limit the number of alloca // instructions that make it through to the code generator. allocas // require us to use indirect addressing, which is slow and prone to // compiler bugs. If this loop does an address calculation on an // alloca ptr, then we want to use a higher than normal loop unroll // threshold. This will give SROA a better chance to eliminate these // allocas. // // Don't use the maximum allowed value here as it will make some // programs way too big. UP.Threshold = 800; } } } } unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) { if (Vec) return 0; // Number of VGPRs on SI. if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) return 256; return 4 * 128; // XXX - 4 channels. Should these count as vector instead? } unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool) { return 32; } unsigned AMDGPUTTIImpl::getMaxInterleaveFactor() { // Semi-arbitrary large amount. return 64; }