//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Armv6 introduced instructions to perform 32-bit SIMD operations. The /// purpose of this pass is do some IR pattern matching to create ACLE /// DSP intrinsics, which map on these 32-bit SIMD operations. /// This pass runs only when unaligned accesses is supported/enabled. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/NoFolder.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/PassSupport.h" #include "llvm/Support/Debug.h" #include "llvm/IR/PatternMatch.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "ARM.h" #include "ARMSubtarget.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "arm-parallel-dsp" STATISTIC(NumSMLAD , "Number of smlad instructions generated"); static cl::opt DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), cl::desc("Disable the ARM Parallel DSP pass")); namespace { struct OpChain; struct BinOpChain; struct Reduction; using OpChainList = SmallVector, 8>; using ReductionList = SmallVector; using ValueList = SmallVector; using MemInstList = SmallVector; using PMACPair = std::pair; using PMACPairList = SmallVector; using Instructions = SmallVector; using MemLocList = SmallVector; struct OpChain { Instruction *Root; ValueList AllValues; MemInstList VecLd; // List of all load instructions. MemInstList Loads; bool ReadOnly = true; OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } virtual ~OpChain() = default; void PopulateLoads() { for (auto *V : AllValues) { if (auto *Ld = dyn_cast(V)) Loads.push_back(Ld); } } unsigned size() const { return AllValues.size(); } }; // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. // 'Reduction' contains the phi-node and accumulator statement from where we // start pattern matching, and 'BinOpChain' the multiplication // instructions that are candidates for parallel execution. struct BinOpChain : public OpChain { ValueList LHS; // List of all (narrow) left hand operands. ValueList RHS; // List of all (narrow) right hand operands. bool Exchange = false; BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : OpChain(I, lhs), LHS(lhs), RHS(rhs) { for (auto *V : RHS) AllValues.push_back(V); } bool AreSymmetrical(BinOpChain *Other); }; struct Reduction { PHINode *Phi; // The Phi-node from where we start // pattern matching. Instruction *AccIntAdd; // The accumulating integer add statement, // i.e, the reduction statement. OpChainList MACCandidates; // The MAC candidates associated with // this reduction statement. PMACPairList PMACPairs; Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; }; class WidenedLoad { LoadInst *NewLd = nullptr; SmallVector Loads; public: WidenedLoad(SmallVectorImpl &Lds, LoadInst *Wide) : NewLd(Wide) { for (auto *I : Lds) Loads.push_back(I); } LoadInst *getLoad() { return NewLd; } }; class ARMParallelDSP : public LoopPass { ScalarEvolution *SE; AliasAnalysis *AA; TargetLibraryInfo *TLI; DominatorTree *DT; LoopInfo *LI; Loop *L; const DataLayout *DL; Module *M; std::map LoadPairs; std::map> WideLoads; bool RecordMemoryOps(BasicBlock *BB); bool InsertParallelMACs(Reduction &Reduction); bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); LoadInst* CreateWideLoad(SmallVectorImpl &Loads, IntegerType *LoadTy); void CreateParallelMACPairs(Reduction &R); Instruction *CreateSMLADCall(SmallVectorImpl &VecLd0, SmallVectorImpl &VecLd1, Instruction *Acc, bool Exchange, Instruction *InsertAfter); /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate /// Dual performs two signed 16x16-bit multiplications. It adds the /// products to a 32-bit accumulate operand. Optionally, the instruction can /// exchange the halfwords of the second operand before performing the /// arithmetic. bool MatchSMLAD(Function &F); public: static char ID; ARMParallelDSP() : LoopPass(ID) { } bool doInitialization(Loop *L, LPPassManager &LPM) override { LoadPairs.clear(); WideLoads.clear(); return true; } void getAnalysisUsage(AnalysisUsage &AU) const override { LoopPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.setPreservesCFG(); } bool runOnLoop(Loop *TheLoop, LPPassManager &) override { if (DisableParallelDSP) return false; L = TheLoop; SE = &getAnalysis().getSE(); AA = &getAnalysis().getAAResults(); TLI = &getAnalysis().getTLI(); DT = &getAnalysis().getDomTree(); LI = &getAnalysis().getLoopInfo(); auto &TPC = getAnalysis(); BasicBlock *Header = TheLoop->getHeader(); if (!Header) return false; // TODO: We assume the loop header and latch to be the same block. // This is not a fundamental restriction, but lifting this would just // require more work to do the transformation and then patch up the CFG. if (Header != TheLoop->getLoopLatch()) { LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " "running pass ARMParallelDSP\n"); return false; } // We need a preheader as getIncomingValueForBlock assumes there is one. if (!TheLoop->getLoopPreheader()) { LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); return false; } Function &F = *Header->getParent(); M = F.getParent(); DL = &M->getDataLayout(); auto &TM = TPC.getTM(); auto *ST = &TM.getSubtarget(F); if (!ST->allowsUnalignedMem()) { LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " "running pass ARMParallelDSP\n"); return false; } if (!ST->hasDSP()) { LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " "ARMParallelDSP\n"); return false; } if (!ST->isLittle()) { LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " << "ARMParallelDSP\n"); return false; } LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); if (!RecordMemoryOps(Header)) { LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); return false; } bool Changes = MatchSMLAD(F); return Changes; } }; } template static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, const DataLayout &DL, ScalarEvolution &SE) { if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) return true; return false; } bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem) { if (!Ld0 || !Ld1) return false; if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) return false; LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; dbgs() << "Ld0:"; Ld0->dump(); dbgs() << "Ld1:"; Ld1->dump(); ); VecMem.clear(); VecMem.push_back(Ld0); VecMem.push_back(Ld1); return true; } /// Iterate through the block and record base, offset pairs of loads which can /// be widened into a single load. bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { SmallVector Loads; SmallVector Writes; // Collect loads and instruction that may write to memory. For now we only // record loads which are simple, sign-extended and have a single user. // TODO: Allow zero-extended loads. for (auto &I : *BB) { if (I.mayWriteToMemory()) Writes.push_back(&I); auto *Ld = dyn_cast(&I); if (!Ld || !Ld->isSimple() || !Ld->hasOneUse() || !isa(Ld->user_back())) continue; Loads.push_back(Ld); } using InstSet = std::set; using DepMap = std::map; DepMap RAWDeps; // Record any writes that may alias a load. const auto Size = LocationSize::unknown(); for (auto Read : Loads) { for (auto Write : Writes) { MemoryLocation ReadLoc = MemoryLocation(Read->getPointerOperand(), Size); if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), ModRefInfo::ModRef))) continue; if (DT->dominates(Write, Read)) RAWDeps[Read].insert(Write); } } // Check whether there's not a write between the two loads which would // prevent them from being safely merged. auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; if (RAWDeps.count(Dominated)) { InstSet &WritesBefore = RAWDeps[Dominated]; for (auto Before : WritesBefore) { // We can't move the second load backward, past a write, to merge // with the first load. if (DT->dominates(Dominator, Before)) return false; } } return true; }; // Record base, offset load pairs. for (auto *Base : Loads) { for (auto *Offset : Loads) { if (Base == Offset) continue; if (AreSequentialAccesses(Base, Offset, *DL, *SE) && SafeToPair(Base, Offset)) { LoadPairs[Base] = Offset; break; } } } LLVM_DEBUG(if (!LoadPairs.empty()) { dbgs() << "Consecutive load pairs:\n"; for (auto &MapIt : LoadPairs) { LLVM_DEBUG(dbgs() << *MapIt.first << ", " << *MapIt.second << "\n"); } }); return LoadPairs.size() > 1; } void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { OpChainList &Candidates = R.MACCandidates; PMACPairList &PMACPairs = R.PMACPairs; const unsigned Elems = Candidates.size(); if (Elems < 2) return; auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { if (!PMul0->AreSymmetrical(PMul1)) return false; // The first elements of each vector should be loads with sexts. If we // find that its two pairs of consecutive loads, then these can be // transformed into two wider loads and the users can be replaced with // DSP intrinsics. for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { auto *Ld0 = dyn_cast(PMul0->LHS[x]); auto *Ld1 = dyn_cast(PMul1->LHS[x]); auto *Ld2 = dyn_cast(PMul0->RHS[x]); auto *Ld3 = dyn_cast(PMul1->RHS[x]); if (!Ld0 || !Ld1 || !Ld2 || !Ld3) return false; LLVM_DEBUG(dbgs() << "Loads:\n" << " - " << *Ld0 << "\n" << " - " << *Ld1 << "\n" << " - " << *Ld2 << "\n" << " - " << *Ld3 << "\n"); if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); PMACPairs.push_back(std::make_pair(PMul0, PMul1)); return true; } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); PMul1->Exchange = true; PMACPairs.push_back(std::make_pair(PMul0, PMul1)); return true; } } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); LLVM_DEBUG(dbgs() << " and swapping muls\n"); PMul0->Exchange = true; // Only the second operand can be exchanged, so swap the muls. PMACPairs.push_back(std::make_pair(PMul1, PMul0)); return true; } } return false; }; SmallPtrSet Paired; for (unsigned i = 0; i < Elems; ++i) { BinOpChain *PMul0 = static_cast(Candidates[i].get()); if (Paired.count(PMul0->Root)) continue; for (unsigned j = 0; j < Elems; ++j) { if (i == j) continue; BinOpChain *PMul1 = static_cast(Candidates[j].get()); if (Paired.count(PMul1->Root)) continue; const Instruction *Mul0 = PMul0->Root; const Instruction *Mul1 = PMul1->Root; if (Mul0 == Mul1) continue; assert(PMul0 != PMul1 && "expected different chains"); if (CanPair(PMul0, PMul1)) { Paired.insert(Mul0); Paired.insert(Mul1); break; } } } } bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { Instruction *Acc = Reduction.Phi; Instruction *InsertAfter = Reduction.AccIntAdd; for (auto &Pair : Reduction.PMACPairs) { BinOpChain *PMul0 = Pair.first; BinOpChain *PMul1 = Pair.second; LLVM_DEBUG(dbgs() << "Found parallel MACs:\n" << "- " << *PMul0->Root << "\n" << "- " << *PMul1->Root << "\n"); Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, InsertAfter); InsertAfter = Acc; } if (Acc != Reduction.Phi) { LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); Reduction.AccIntAdd->replaceAllUsesWith(Acc); return true; } return false; } template bool IsExtendingLoad(Value *V) { auto *I = dyn_cast(V); if (!I) return false; if (I->getSrcTy()->getIntegerBitWidth() != BitWidth) return false; return isa(I->getOperand(0)); } static void MatchParallelMACSequences(Reduction &R, OpChainList &Candidates) { Instruction *Acc = R.AccIntAdd; LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n"); // Returns false to signal the search should be stopped. std::function Match = [&Candidates, &Match](Value *V) -> bool { auto *I = dyn_cast(V); if (!I) return false; switch (I->getOpcode()) { case Instruction::Add: if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) return true; break; case Instruction::Mul: { Value *Op0 = I->getOperand(0); Value *Op1 = I->getOperand(1); if (IsExtendingLoad(Op0) && IsExtendingLoad(Op1)) { ValueList LHS = { cast(Op0)->getOperand(0), Op0 }; ValueList RHS = { cast(Op1)->getOperand(0), Op1 }; Candidates.push_back(make_unique(I, LHS, RHS)); } return false; } case Instruction::SExt: return Match(I->getOperand(0)); } return false; }; while (Match (Acc)); LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " << Candidates.size() << " candidates.\n"); } static bool CheckMACMemory(OpChainList &Candidates) { for (auto &C : Candidates) { // A mul has 2 operands, and a narrow op consist of sext and a load; thus // we expect at least 4 items in this operand value list. if (C->size() < 4) { LLVM_DEBUG(dbgs() << "Operand list too short.\n"); return false; } C->PopulateLoads(); ValueList &LHS = static_cast(C.get())->LHS; ValueList &RHS = static_cast(C.get())->RHS; // Use +=2 to skip over the expected extend instructions. for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { if (!isa(LHS[i]) || !isa(RHS[i])) return false; } } return true; } // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector // multiplications. // To use SMLAD: // 1) we first need to find integer add reduction PHIs, // 2) then from the PHI, look for this pattern: // // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] // ld0 = load i16 // sext0 = sext i16 %ld0 to i32 // ld1 = load i16 // sext1 = sext i16 %ld1 to i32 // mul0 = mul %sext0, %sext1 // ld2 = load i16 // sext2 = sext i16 %ld2 to i32 // ld3 = load i16 // sext3 = sext i16 %ld3 to i32 // mul1 = mul i32 %sext2, %sext3 // add0 = add i32 %mul0, %acc0 // acc1 = add i32 %add0, %mul1 // // Which can be selected to: // // ldr.h r0 // ldr.h r1 // smlad r2, r0, r1, r2 // // If constants are used instead of loads, these will need to be hoisted // out and into a register. // // If loop invariants are used instead of loads, these need to be packed // before the loop begins. // bool ARMParallelDSP::MatchSMLAD(Function &F) { auto FindReductions = [&](ReductionList &Reductions) { RecurrenceDescriptor RecDesc; const bool HasFnNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; BasicBlock *Latch = L->getLoopLatch(); for (PHINode &Phi : Latch->phis()) { const auto *Ty = Phi.getType(); if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) continue; const bool IsReduction = RecurrenceDescriptor::AddReductionVar( &Phi, RecurrenceDescriptor::RK_IntegerAdd, L, HasFnNoNaNAttr, RecDesc); if (!IsReduction) continue; Instruction *Acc = dyn_cast(Phi.getIncomingValueForBlock(Latch)); if (!Acc) continue; Reductions.push_back(Reduction(&Phi, Acc)); } return !Reductions.empty(); }; ReductionList Reductions; if (!FindReductions(Reductions)) return false; for (auto &R : Reductions) { OpChainList MACCandidates; MatchParallelMACSequences(R, MACCandidates); if (!CheckMACMemory(MACCandidates)) continue; R.MACCandidates = std::move(MACCandidates); LLVM_DEBUG(dbgs() << "MAC candidates:\n"; for (auto &M : R.MACCandidates) M->Root->dump(); dbgs() << "\n";); } bool Changed = false; // Check whether statements in the basic block that write to memory alias // with the memory locations accessed by the MAC-chains. for (auto &R : Reductions) { CreateParallelMACPairs(R); Changed |= InsertParallelMACs(R); } return Changed; } LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl &Loads, IntegerType *LoadTy) { assert(Loads.size() == 2 && "currently only support widening two loads"); LoadInst *Base = Loads[0]; LoadInst *Offset = Loads[1]; Instruction *BaseSExt = dyn_cast(Base->user_back()); Instruction *OffsetSExt = dyn_cast(Offset->user_back()); assert((BaseSExt && OffsetSExt) && "Loads should have a single, extending, user"); std::function MoveBefore = [&](Value *A, Value *B) -> void { if (!isa(A) || !isa(B)) return; auto *Source = cast(A); auto *Sink = cast(B); if (DT->dominates(Source, Sink) || Source->getParent() != Sink->getParent() || isa(Source) || isa(Sink)) return; Source->moveBefore(Sink); for (auto &U : Source->uses()) MoveBefore(Source, U.getUser()); }; // Insert the load at the point of the original dominating load. LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; IRBuilder IRB(DomLoad->getParent(), ++BasicBlock::iterator(DomLoad)); // Bitcast the pointer to a wider type and create the wide load, while making // sure to maintain the original alignment as this prevents ldrd from being // generated when it could be illegal due to memory alignment. const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), LoadTy->getPointerTo(AddrSpace)); LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlignment()); // Make sure everything is in the correct order in the basic block. MoveBefore(Base->getPointerOperand(), VecPtr); MoveBefore(VecPtr, WideLoad); // From the wide load, create two values that equal the original two loads. // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. // TODO: Support big-endian as well. Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); BaseSExt->setOperand(0, Bottom); IntegerType *OffsetTy = cast(Offset->getType()); Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); OffsetSExt->setOperand(0, Trunc); WideLoads.emplace(std::make_pair(Base, make_unique(Loads, WideLoad))); return WideLoad; } Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl &VecLd0, SmallVectorImpl &VecLd1, Instruction *Acc, bool Exchange, Instruction *InsertAfter) { LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" << "- " << *VecLd0[0] << "\n" << "- " << *VecLd0[1] << "\n" << "- " << *VecLd1[0] << "\n" << "- " << *VecLd1[1] << "\n" << "- " << *Acc << "\n" << "- Exchange: " << Exchange << "\n"); // Replace the reduction chain with an intrinsic call IntegerType *Ty = IntegerType::get(M->getContext(), 32); LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty); LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty); Value* Args[] = { WideLd0, WideLd1, Acc }; Function *SMLAD = nullptr; if (Exchange) SMLAD = Acc->getType()->isIntegerTy(32) ? Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); else SMLAD = Acc->getType()->isIntegerTy(32) ? Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); IRBuilder Builder(InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); CallInst *Call = Builder.CreateCall(SMLAD, Args); NumSMLAD++; return Call; } // Compare the value lists in Other to this chain. bool BinOpChain::AreSymmetrical(BinOpChain *Other) { // Element-by-element comparison of Value lists returning true if they are // instructions with the same opcode or constants with the same value. auto CompareValueList = [](const ValueList &VL0, const ValueList &VL1) { if (VL0.size() != VL1.size()) { LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " << VL0.size() << " != " << VL1.size() << "\n"); return false; } const unsigned Pairs = VL0.size(); for (unsigned i = 0; i < Pairs; ++i) { const Value *V0 = VL0[i]; const Value *V1 = VL1[i]; const auto *Inst0 = dyn_cast(V0); const auto *Inst1 = dyn_cast(V1); if (!Inst0 || !Inst1) return false; if (Inst0->isSameOperationAs(Inst1)) continue; const APInt *C0, *C1; if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) return false; } return true; }; return CompareValueList(LHS, Other->LHS) && CompareValueList(RHS, Other->RHS); } Pass *llvm::createARMParallelDSPPass() { return new ARMParallelDSP(); } char ARMParallelDSP::ID = 0; INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false) INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false)