//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for /// AMDGPU. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPULegalizerInfo.h" #include "AMDGPUTargetMachine.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" using namespace llvm; using namespace LegalizeActions; using namespace LegalityPredicates; AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST, const GCNTargetMachine &TM) { using namespace TargetOpcode; auto scalarize = [=](const LegalityQuery &Query, unsigned TypeIdx) { const LLT &Ty = Query.Types[TypeIdx]; return std::make_pair(TypeIdx, Ty.getElementType()); }; auto GetAddrSpacePtr = [&TM](unsigned AS) { return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); }; const LLT S1 = LLT::scalar(1); const LLT S16 = LLT::scalar(16); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); const LLT S256 = LLT::scalar(256); const LLT S512 = LLT::scalar(512); const LLT V2S16 = LLT::vector(2, 16); const LLT V4S16 = LLT::vector(4, 16); const LLT V8S16 = LLT::vector(8, 16); const LLT V2S32 = LLT::vector(2, 32); const LLT V3S32 = LLT::vector(3, 32); const LLT V4S32 = LLT::vector(4, 32); const LLT V5S32 = LLT::vector(5, 32); const LLT V6S32 = LLT::vector(6, 32); const LLT V7S32 = LLT::vector(7, 32); const LLT V8S32 = LLT::vector(8, 32); const LLT V9S32 = LLT::vector(9, 32); const LLT V10S32 = LLT::vector(10, 32); const LLT V11S32 = LLT::vector(11, 32); const LLT V12S32 = LLT::vector(12, 32); const LLT V13S32 = LLT::vector(13, 32); const LLT V14S32 = LLT::vector(14, 32); const LLT V15S32 = LLT::vector(15, 32); const LLT V16S32 = LLT::vector(16, 32); const LLT V2S64 = LLT::vector(2, 64); const LLT V3S64 = LLT::vector(3, 64); const LLT V4S64 = LLT::vector(4, 64); const LLT V5S64 = LLT::vector(5, 64); const LLT V6S64 = LLT::vector(6, 64); const LLT V7S64 = LLT::vector(7, 64); const LLT V8S64 = LLT::vector(8, 64); std::initializer_list AllS32Vectors = {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32}; std::initializer_list AllS64Vectors = {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64}; const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); const LLT CodePtr = FlatPtr; const LLT AddrSpaces[] = { GlobalPtr, ConstantPtr, LocalPtr, FlatPtr, PrivatePtr }; setAction({G_BRCOND, S1}, Legal); setAction({G_ADD, S32}, Legal); setAction({G_ASHR, S32}, Legal); setAction({G_ASHR, 1, S32}, Legal); setAction({G_SUB, S32}, Legal); setAction({G_MUL, S32}, Legal); // FIXME: 64-bit ones only legal for scalar getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) .legalFor({S32, S1, S64, V2S32}); getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) .legalFor({{S32, S1}}); getActionDefinitionsBuilder(G_BITCAST) .legalForCartesianProduct({S32, V2S16}) .legalForCartesianProduct({S64, V2S32, V4S16}) .legalForCartesianProduct({V2S64, V4S32}) // Don't worry about the size constraint. .legalIf(all(isPointer(0), isPointer(1))); getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64, S16}); // G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that // can fit in a register. // FIXME: We need to legalize several more operations before we can add // a test case for size > 512. getActionDefinitionsBuilder(G_IMPLICIT_DEF) .legalIf([=](const LegalityQuery &Query) { return Query.Types[0].getSizeInBits() <= 512; }) .clampScalar(0, S1, S512); // FIXME: i1 operands to intrinsics should always be legal, but other i1 // values may not be legal. We need to figure out how to distinguish // between these two scenarios. // FIXME: Pointer types getActionDefinitionsBuilder(G_CONSTANT) .legalFor({S1, S32, S64}) .clampScalar(0, S32, S64) .widenScalarToNextPow2(0); setAction({G_FRAME_INDEX, PrivatePtr}, Legal); getActionDefinitionsBuilder({G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA}) .legalFor({S32, S64}) .fewerElementsIf( [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); }, [=](const LegalityQuery &Query) { return scalarize(Query, 0); }) .clampScalar(0, S32, S64); getActionDefinitionsBuilder(G_FPTRUNC) .legalFor({{S32, S64}, {S16, S32}}); getActionDefinitionsBuilder(G_FPEXT) .legalFor({{S64, S32}, {S32, S16}}) .lowerFor({{S64, S16}}); // FIXME: Implement getActionDefinitionsBuilder(G_FSUB) // Use actual fsub instruction .legalFor({S32}) // Must use fadd + fneg .lowerFor({S64, S16, V2S16}) .fewerElementsIf( [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); }, [=](const LegalityQuery &Query) { return scalarize(Query, 0); }) .clampScalar(0, S32, S64); setAction({G_FCMP, S1}, Legal); setAction({G_FCMP, 1, S32}, Legal); setAction({G_FCMP, 1, S64}, Legal); getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, {S32, S1}, {S64, S1}, {S16, S1}}); getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) .legalFor({{S32, S32}, {S64, S32}}); getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) .legalFor({{S32, S32}, {S32, S64}}); setAction({G_FPOW, S32}, Legal); setAction({G_FEXP2, S32}, Legal); setAction({G_FLOG2, S32}, Legal); getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND}) .legalFor({S32, S64}); for (LLT PtrTy : AddrSpaces) { LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits()); setAction({G_GEP, PtrTy}, Legal); setAction({G_GEP, 1, IdxTy}, Legal); } setAction({G_BLOCK_ADDR, CodePtr}, Legal); setAction({G_ICMP, S1}, Legal); setAction({G_ICMP, 1, S32}, Legal); setAction({G_CTLZ, S32}, Legal); setAction({G_CTLZ_ZERO_UNDEF, S32}, Legal); setAction({G_CTTZ, S32}, Legal); setAction({G_CTTZ_ZERO_UNDEF, S32}, Legal); setAction({G_BSWAP, S32}, Legal); setAction({G_CTPOP, S32}, Legal); getActionDefinitionsBuilder(G_INTTOPTR) .legalIf([](const LegalityQuery &Query) { return true; }); getActionDefinitionsBuilder(G_PTRTOINT) .legalIf([](const LegalityQuery &Query) { return true; }); getActionDefinitionsBuilder({G_LOAD, G_STORE}) .legalIf([=, &ST](const LegalityQuery &Query) { const LLT &Ty0 = Query.Types[0]; // TODO: Decompose private loads into 4-byte components. // TODO: Illegal flat loads on SI switch (Ty0.getSizeInBits()) { case 32: case 64: case 128: return true; case 96: // XXX hasLoadX3 return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS); case 256: case 512: // TODO: constant loads default: return false; } }); auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) .legalForTypesWithMemSize({ {S32, GlobalPtr, 8}, {S32, GlobalPtr, 16}, {S32, LocalPtr, 8}, {S32, LocalPtr, 16}, {S32, PrivatePtr, 8}, {S32, PrivatePtr, 16}}); if (ST.hasFlatAddressSpace()) { ExtLoads.legalForTypesWithMemSize({{S32, FlatPtr, 8}, {S32, FlatPtr, 16}}); } ExtLoads.clampScalar(0, S32, S32) .widenScalarToNextPow2(0) .unsupportedIfMemSizeNotPow2() .lower(); auto &Atomics = getActionDefinitionsBuilder( {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG}) .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, {S64, GlobalPtr}, {S64, LocalPtr}}); if (ST.hasFlatAddressSpace()) { Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); } // TODO: Pointer types, any 32-bit or 64-bit vector getActionDefinitionsBuilder(G_SELECT) .legalFor({{S32, S1}, {S64, S1}, {V2S32, S1}, {V2S16, S1}}) .clampScalar(0, S32, S64); // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can // be more flexible with the shift amount type. auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) .legalFor({{S32, S32}, {S64, S32}}); if (ST.has16BitInsts()) Shifts.legalFor({{S16, S32}, {S16, S16}}); else Shifts.clampScalar(0, S32, S64); Shifts.clampScalar(1, S32, S32); // FIXME: When RegBankSelect inserts copies, it will only create new // registers with scalar types. This means we can end up with // G_LOAD/G_STORE/G_GEP instruction with scalar types for their pointer // operands. In assert builds, the instruction selector will assert // if it sees a generic instruction which isn't legal, so we need to // tell it that scalar types are legal for pointer operands setAction({G_GEP, S64}, Legal); for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; unsigned IdxTypeIdx = 2; getActionDefinitionsBuilder(Op) .legalIf([=](const LegalityQuery &Query) { const LLT &VecTy = Query.Types[VecTypeIdx]; const LLT &IdxTy = Query.Types[IdxTypeIdx]; return VecTy.getSizeInBits() % 32 == 0 && VecTy.getSizeInBits() <= 512 && IdxTy.getSizeInBits() == 32; }) .clampScalar(EltTypeIdx, S32, S64) .clampScalar(VecTypeIdx, S32, S64) .clampScalar(IdxTypeIdx, S32, S32); } getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) .unsupportedIf([=](const LegalityQuery &Query) { const LLT &EltTy = Query.Types[1].getElementType(); return Query.Types[0] != EltTy; }); // FIXME: Doesn't handle extract of illegal sizes. getActionDefinitionsBuilder({G_EXTRACT, G_INSERT}) .legalIf([=](const LegalityQuery &Query) { const LLT &Ty0 = Query.Types[0]; const LLT &Ty1 = Query.Types[1]; return (Ty0.getSizeInBits() % 32 == 0) && (Ty1.getSizeInBits() % 32 == 0); }); getActionDefinitionsBuilder(G_BUILD_VECTOR) .legalForCartesianProduct(AllS32Vectors, {S32}) .legalForCartesianProduct(AllS64Vectors, {S64}) .clampNumElements(0, V16S32, V16S32) .clampNumElements(0, V2S64, V8S64) .minScalarSameAs(1, 0) // FIXME: Sort of a hack to make progress on other legalizations. .legalIf([=](const LegalityQuery &Query) { return Query.Types[0].getScalarSizeInBits() < 32; }); // TODO: Support any combination of v2s32 getActionDefinitionsBuilder(G_CONCAT_VECTORS) .legalFor({{V4S32, V2S32}, {V8S32, V2S32}, {V8S32, V4S32}, {V4S64, V2S64}, {V4S16, V2S16}, {V8S16, V2S16}, {V8S16, V4S16}}); // Merge/Unmerge for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { const LLT &Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const LLT &EltTy = Ty.getElementType(); if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64) return true; if (!isPowerOf2_32(EltTy.getSizeInBits())) return true; } return false; }; getActionDefinitionsBuilder(Op) // Break up vectors with weird elements into scalars .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 0); }, [=](const LegalityQuery &Query) { return scalarize(Query, 0); }) .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 1); }, [=](const LegalityQuery &Query) { return scalarize(Query, 1); }) .clampScalar(BigTyIdx, S32, S512) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT &Ty = Query.Types[BigTyIdx]; return !isPowerOf2_32(Ty.getSizeInBits()) && Ty.getSizeInBits() % 16 != 0; }, [=](const LegalityQuery &Query) { // Pick the next power of 2, or a multiple of 64 over 128. // Whichever is smaller. const LLT &Ty = Query.Types[BigTyIdx]; unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); if (NewSizeInBits >= 256) { unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); if (RoundedTo < NewSizeInBits) NewSizeInBits = RoundedTo; } return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); }) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) // Clamp the little scalar to s8-s256 and make it a power of 2. It's not // worth considering the multiples of 64 since 2*192 and 2*384 are not // valid. .clampScalar(LitTyIdx, S16, S256) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) .legalIf([=](const LegalityQuery &Query) { const LLT &BigTy = Query.Types[BigTyIdx]; const LLT &LitTy = Query.Types[LitTyIdx]; if (BigTy.isVector() && BigTy.getSizeInBits() < 32) return false; if (LitTy.isVector() && LitTy.getSizeInBits() < 32) return false; return BigTy.getSizeInBits() % 16 == 0 && LitTy.getSizeInBits() % 16 == 0 && BigTy.getSizeInBits() <= 512; }) // Any vectors left are the wrong size. Scalarize them. .fewerElementsIf([](const LegalityQuery &Query) { return Query.Types[0].isVector(); }, [](const LegalityQuery &Query) { return std::make_pair( 0, Query.Types[0].getElementType()); }) .fewerElementsIf([](const LegalityQuery &Query) { return Query.Types[1].isVector(); }, [](const LegalityQuery &Query) { return std::make_pair( 1, Query.Types[1].getElementType()); }); } computeTables(); verify(*ST.getInstrInfo()); }