//===- AArch64RegisterBankInfo.cpp -------------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the RegisterBankInfo class for /// AArch64. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AArch64RegisterBankInfo.h" #include "AArch64InstrInfo.h" // For XXXRegClassID. #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/GlobalISel/RegisterBank.h" #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" // This file will be TableGen'ed at some point. #include "AArch64GenRegisterBankInfo.def" using namespace llvm; #ifndef LLVM_BUILD_GLOBAL_ISEL #error "You shouldn't build this" #endif AArch64RegisterBankInfo::AArch64RegisterBankInfo(const TargetRegisterInfo &TRI) : RegisterBankInfo(AArch64::RegBanks, AArch64::NumRegisterBanks) { static bool AlreadyInit = false; // We have only one set of register banks, whatever the subtarget // is. Therefore, the initialization of the RegBanks table should be // done only once. Indeed the table of all register banks // (AArch64::RegBanks) is unique in the compiler. At some point, it // will get tablegen'ed and the whole constructor becomes empty. if (AlreadyInit) return; AlreadyInit = true; // Initialize the GPR bank. createRegisterBank(AArch64::GPRRegBankID, "GPR"); // The GPR register bank is fully defined by all the registers in // GR64all + its subclasses. addRegBankCoverage(AArch64::GPRRegBankID, AArch64::GPR64allRegClassID, TRI); const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID); (void)RBGPR; assert(&AArch64::GPRRegBank == &RBGPR && "The order in RegBanks is messed up"); assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) && "Subclass not added?"); assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit"); // Initialize the FPR bank. createRegisterBank(AArch64::FPRRegBankID, "FPR"); // The FPR register bank is fully defined by all the registers in // GR64all + its subclasses. addRegBankCoverage(AArch64::FPRRegBankID, AArch64::QQQQRegClassID, TRI); const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID); (void)RBFPR; assert(&AArch64::FPRRegBank == &RBFPR && "The order in RegBanks is messed up"); assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) && "Subclass not added?"); assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) && "Subclass not added?"); assert(RBFPR.getSize() == 512 && "FPRs should hold up to 512-bit via QQQQ sequence"); // Initialize the CCR bank. createRegisterBank(AArch64::CCRRegBankID, "CCR"); addRegBankCoverage(AArch64::CCRRegBankID, AArch64::CCRRegClassID, TRI); const RegisterBank &RBCCR = getRegBank(AArch64::CCRRegBankID); (void)RBCCR; assert(&AArch64::CCRRegBank == &RBCCR && "The order in RegBanks is messed up"); assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) && "Class not added?"); assert(RBCCR.getSize() == 32 && "CCR should hold up to 32-bit"); // Check that the TableGen'ed like file is in sync we our expectations. // First, the Idx. assert(AArch64::PartialMappingIdx::GPR32 == AArch64::PartialMappingIdx::FirstGPR && "GPR32 index not first in the GPR list"); assert(AArch64::PartialMappingIdx::GPR64 == AArch64::PartialMappingIdx::LastGPR && "GPR64 index not last in the GPR list"); assert(AArch64::PartialMappingIdx::FirstGPR <= AArch64::PartialMappingIdx::LastGPR && "GPR list is backward"); assert(AArch64::PartialMappingIdx::FPR32 == AArch64::PartialMappingIdx::FirstFPR && "FPR32 index not first in the FPR list"); assert(AArch64::PartialMappingIdx::FPR512 == AArch64::PartialMappingIdx::LastFPR && "FPR512 index not last in the FPR list"); assert(AArch64::PartialMappingIdx::FirstFPR <= AArch64::PartialMappingIdx::LastFPR && "FPR list is backward"); assert(AArch64::PartialMappingIdx::FPR32 + 1 == AArch64::PartialMappingIdx::FPR64 && AArch64::PartialMappingIdx::FPR64 + 1 == AArch64::PartialMappingIdx::FPR128 && AArch64::PartialMappingIdx::FPR128 + 1 == AArch64::PartialMappingIdx::FPR256 && AArch64::PartialMappingIdx::FPR256 + 1 == AArch64::PartialMappingIdx::FPR512 && "FPR indices not properly ordered"); // Now, the content. // Check partial mapping. #define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB) \ do { \ const PartialMapping &Map = \ AArch64::PartMappings[AArch64::PartialMappingIdx::Idx]; \ (void) Map; \ assert(Map.StartIdx == ValStartIdx && Map.Length == ValLength && \ Map.RegBank == &RB && #Idx " is incorrectly initialized"); \ } while (0) CHECK_PARTIALMAP(GPR32, 0, 32, RBGPR); CHECK_PARTIALMAP(GPR64, 0, 64, RBGPR); CHECK_PARTIALMAP(FPR32, 0, 32, RBFPR); CHECK_PARTIALMAP(FPR64, 0, 64, RBFPR); CHECK_PARTIALMAP(FPR128, 0, 128, RBFPR); CHECK_PARTIALMAP(FPR256, 0, 256, RBFPR); CHECK_PARTIALMAP(FPR512, 0, 512, RBFPR); // Check value mapping. #define CHECK_VALUEMAP_IMPL(RBName, Size, Offset) \ do { \ AArch64::PartialMappingIdx PartialMapBaseIdx = \ AArch64::PartialMappingIdx::RBName##Size; \ (void) PartialMapBaseIdx; \ const ValueMapping &Map = \ AArch64::getValueMapping(AArch64::First##RBName, Size)[Offset]; \ (void) Map; \ assert(Map.BreakDown == &AArch64::PartMappings[PartialMapBaseIdx] && \ Map.NumBreakDowns == 1 && #RBName #Size \ " " #Offset " is incorrectly initialized"); \ } while (0) #define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0) CHECK_VALUEMAP(GPR, 32); CHECK_VALUEMAP(GPR, 64); CHECK_VALUEMAP(FPR, 32); CHECK_VALUEMAP(FPR, 64); CHECK_VALUEMAP(FPR, 128); CHECK_VALUEMAP(FPR, 256); CHECK_VALUEMAP(FPR, 512); // Check the value mapping for 3-operands instructions where all the operands // map to the same value mapping. #define CHECK_VALUEMAP_3OPS(RBName, Size) \ do { \ CHECK_VALUEMAP_IMPL(RBName, Size, 0); \ CHECK_VALUEMAP_IMPL(RBName, Size, 1); \ CHECK_VALUEMAP_IMPL(RBName, Size, 2); \ } while (0) CHECK_VALUEMAP_3OPS(GPR, 32); CHECK_VALUEMAP_3OPS(GPR, 64); CHECK_VALUEMAP_3OPS(FPR, 32); CHECK_VALUEMAP_3OPS(FPR, 64); CHECK_VALUEMAP_3OPS(FPR, 128); CHECK_VALUEMAP_3OPS(FPR, 256); CHECK_VALUEMAP_3OPS(FPR, 512); assert(verify(TRI) && "Invalid register bank information"); } unsigned AArch64RegisterBankInfo::copyCost(const RegisterBank &A, const RegisterBank &B, unsigned Size) const { // What do we do with different size? // copy are same size. // Will introduce other hooks for different size: // * extract cost. // * build_sequence cost. // TODO: Add more accurate cost for FPR to/from GPR. return RegisterBankInfo::copyCost(A, B, Size); } const RegisterBank &AArch64RegisterBankInfo::getRegBankFromRegClass( const TargetRegisterClass &RC) const { switch (RC.getID()) { case AArch64::FPR8RegClassID: case AArch64::FPR16RegClassID: case AArch64::FPR32RegClassID: case AArch64::FPR64RegClassID: case AArch64::FPR128RegClassID: case AArch64::FPR128_loRegClassID: case AArch64::DDRegClassID: case AArch64::DDDRegClassID: case AArch64::DDDDRegClassID: case AArch64::QQRegClassID: case AArch64::QQQRegClassID: case AArch64::QQQQRegClassID: return getRegBank(AArch64::FPRRegBankID); case AArch64::GPR32commonRegClassID: case AArch64::GPR32RegClassID: case AArch64::GPR32spRegClassID: case AArch64::GPR32sponlyRegClassID: case AArch64::GPR32allRegClassID: case AArch64::GPR64commonRegClassID: case AArch64::GPR64RegClassID: case AArch64::GPR64spRegClassID: case AArch64::GPR64sponlyRegClassID: case AArch64::GPR64allRegClassID: case AArch64::tcGPR64RegClassID: case AArch64::WSeqPairsClassRegClassID: case AArch64::XSeqPairsClassRegClassID: return getRegBank(AArch64::GPRRegBankID); case AArch64::CCRRegClassID: return getRegBank(AArch64::CCRRegBankID); default: llvm_unreachable("Register class not supported"); } } RegisterBankInfo::InstructionMappings AArch64RegisterBankInfo::getInstrAlternativeMappings( const MachineInstr &MI) const { switch (MI.getOpcode()) { case TargetOpcode::G_OR: { // 32 and 64-bit or can be mapped on either FPR or // GPR for the same cost. const MachineFunction &MF = *MI.getParent()->getParent(); const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI); if (Size != 32 && Size != 64) break; // If the instruction has any implicit-defs or uses, // do not mess with it. if (MI.getNumOperands() != 3) break; InstructionMappings AltMappings; InstructionMapping GPRMapping( /*ID*/ 1, /*Cost*/ 1, AArch64::getValueMapping(AArch64::FirstGPR, Size), /*NumOperands*/ 3); InstructionMapping FPRMapping( /*ID*/ 2, /*Cost*/ 1, AArch64::getValueMapping(AArch64::FirstFPR, Size), /*NumOperands*/ 3); AltMappings.emplace_back(std::move(GPRMapping)); AltMappings.emplace_back(std::move(FPRMapping)); return AltMappings; } default: break; } return RegisterBankInfo::getInstrAlternativeMappings(MI); } void AArch64RegisterBankInfo::applyMappingImpl( const OperandsMapper &OpdMapper) const { switch (OpdMapper.getMI().getOpcode()) { case TargetOpcode::G_OR: { // Those ID must match getInstrAlternativeMappings. assert((OpdMapper.getInstrMapping().getID() == 1 || OpdMapper.getInstrMapping().getID() == 2) && "Don't know how to handle that ID"); return applyDefaultMapping(OpdMapper); } default: llvm_unreachable("Don't know how to handle that operation"); } } /// Returns whether opcode \p Opc is a pre-isel generic floating-point opcode, /// having only floating-point operands. static bool isPreISelGenericFloatingPointOpcode(unsigned Opc) { switch (Opc) { case TargetOpcode::G_FADD: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMUL: case TargetOpcode::G_FDIV: case TargetOpcode::G_FCONSTANT: case TargetOpcode::G_FPEXT: case TargetOpcode::G_FPTRUNC: return true; } return false; } RegisterBankInfo::InstructionMapping AArch64RegisterBankInfo::getSameKindOfOperandsMapping(const MachineInstr &MI) { const unsigned Opc = MI.getOpcode(); const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned NumOperands = MI.getNumOperands(); assert(NumOperands <= 3 && "This code is for instructions with 3 or less operands"); LLT Ty = MRI.getType(MI.getOperand(0).getReg()); unsigned Size = Ty.getSizeInBits(); bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc); #ifndef NDEBUG // Make sure all the operands are using similar size and type. // Should probably be checked by the machine verifier. // This code won't catch cases where the number of lanes is // different between the operands. // If we want to go to that level of details, it is probably // best to check that the types are the same, period. // Currently, we just check that the register banks are the same // for each types. for (unsigned Idx = 1; Idx != NumOperands; ++Idx) { LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg()); assert(AArch64::getRegBankBaseIdxOffset(OpTy.getSizeInBits()) == AArch64::getRegBankBaseIdxOffset(Size) && "Operand has incompatible size"); bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc); (void)OpIsFPR; assert(IsFPR == OpIsFPR && "Operand has incompatible type"); } #endif // End NDEBUG. AArch64::PartialMappingIdx RBIdx = IsFPR ? AArch64::FirstFPR : AArch64::FirstGPR; return InstructionMapping{DefaultMappingID, 1, AArch64::getValueMapping(RBIdx, Size), NumOperands}; } RegisterBankInfo::InstructionMapping AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { const unsigned Opc = MI.getOpcode(); const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); // Try the default logic for non-generic instructions that are either copies // or already have some operands assigned to banks. if (!isPreISelGenericOpcode(Opc)) { RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI); if (Mapping.isValid()) return Mapping; } switch (Opc) { // G_{F|S|U}REM are not listed because they are not legal. // Arithmetic ops. case TargetOpcode::G_ADD: case TargetOpcode::G_SUB: case TargetOpcode::G_GEP: case TargetOpcode::G_MUL: case TargetOpcode::G_SDIV: case TargetOpcode::G_UDIV: // Bitwise ops. case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: // Shifts. case TargetOpcode::G_SHL: case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: // Floating point ops. case TargetOpcode::G_FADD: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMUL: case TargetOpcode::G_FDIV: return getSameKindOfOperandsMapping(MI); default: break; } unsigned NumOperands = MI.getNumOperands(); RegisterBankInfo::InstructionMapping Mapping = InstructionMapping{DefaultMappingID, 1, nullptr, NumOperands}; // Track the size and bank of each register. We don't do partial mappings. SmallVector OpSize(NumOperands); SmallVector OpRegBankIdx(NumOperands); for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { auto &MO = MI.getOperand(Idx); if (!MO.isReg()) continue; LLT Ty = MRI.getType(MO.getReg()); OpSize[Idx] = Ty.getSizeInBits(); // As a top-level guess, vectors go in FPRs, scalars and pointers in GPRs. // For floating-point instructions, scalars go in FPRs. if (Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc)) OpRegBankIdx[Idx] = AArch64::FirstFPR; else OpRegBankIdx[Idx] = AArch64::FirstGPR; } // Some of the floating-point instructions have mixed GPR and FPR operands: // fine-tune the computed mapping. switch (Opc) { case TargetOpcode::G_SITOFP: case TargetOpcode::G_UITOFP: { OpRegBankIdx = {AArch64::FirstFPR, AArch64::FirstGPR}; break; } case TargetOpcode::G_FPTOSI: case TargetOpcode::G_FPTOUI: { OpRegBankIdx = {AArch64::FirstGPR, AArch64::FirstFPR}; break; } case TargetOpcode::G_FCMP: { OpRegBankIdx = {AArch64::FirstGPR, /* Predicate */ AArch64::PartialMappingIdx::None, AArch64::FirstFPR, AArch64::FirstFPR}; break; } } // Finally construct the computed mapping. SmallVector OpdsMapping(NumOperands); for (unsigned Idx = 0; Idx < NumOperands; ++Idx) if (MI.getOperand(Idx).isReg()) OpdsMapping[Idx] = AArch64::getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]); Mapping.setOperandsMapping(getOperandsMapping(OpdsMapping)); return Mapping; }