//===-- AArch64BranchRelaxation.cpp - AArch64 branch relaxation -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64InstrInfo.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64Subtarget.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "aarch64-branch-relax" STATISTIC(NumSplit, "Number of basic blocks split"); STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed"); namespace llvm { void initializeAArch64BranchRelaxationPass(PassRegistry &); } #define AARCH64_BR_RELAX_NAME "AArch64 branch relaxation pass" namespace { class AArch64BranchRelaxation : public MachineFunctionPass { /// BasicBlockInfo - Information about the offset and size of a single /// basic block. struct BasicBlockInfo { /// Offset - Distance from the beginning of the function to the beginning /// of this basic block. /// /// The offset is always aligned as required by the basic block. unsigned Offset; /// Size - Size of the basic block in bytes. If the block contains /// inline assembly, this is a worst case estimate. /// /// The size does not include any alignment padding whether from the /// beginning of the block, or from an aligned jump table at the end. unsigned Size; BasicBlockInfo() : Offset(0), Size(0) {} /// Compute the offset immediately following this block. If LogAlign is /// specified, return the offset the successor block will get if it has /// this alignment. unsigned postOffset(unsigned LogAlign = 0) const { unsigned PO = Offset + Size; unsigned Align = 1 << LogAlign; return (PO + Align - 1) / Align * Align; } }; SmallVector BlockInfo; MachineFunction *MF; const AArch64InstrInfo *TII; bool relaxBranchInstructions(); void scanFunction(); MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); void adjustBlockOffsets(MachineBasicBlock &MBB); bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const; bool fixupConditionalBranch(MachineInstr &MI); void computeBlockSize(const MachineBasicBlock &MBB); unsigned getInstrOffset(const MachineInstr &MI) const; void dumpBBs(); void verify(); public: static char ID; AArch64BranchRelaxation() : MachineFunctionPass(ID) { initializeAArch64BranchRelaxationPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return AARCH64_BR_RELAX_NAME; } }; char AArch64BranchRelaxation::ID = 0; } INITIALIZE_PASS(AArch64BranchRelaxation, "aarch64-branch-relax", AARCH64_BR_RELAX_NAME, false, false) /// verify - check BBOffsets, BBSizes, alignment of islands void AArch64BranchRelaxation::verify() { #ifndef NDEBUG unsigned PrevNum = MF->begin()->getNumber(); for (MachineBasicBlock &MBB : *MF) { unsigned Align = MBB.getAlignment(); unsigned Num = MBB.getNumber(); assert(BlockInfo[Num].Offset % (1u << Align) == 0); assert(!Num || BlockInfo[PrevNum].postOffset() <= BlockInfo[Num].Offset); PrevNum = Num; } #endif } /// print block size and offset information - debugging void AArch64BranchRelaxation::dumpBBs() { for (auto &MBB : *MF) { const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()]; dbgs() << format("BB#%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset) << format("size=%#x\n", BBI.Size); } } /// scanFunction - Do the initial scan of the function, building up /// information about each block. void AArch64BranchRelaxation::scanFunction() { BlockInfo.clear(); BlockInfo.resize(MF->getNumBlockIDs()); // First thing, compute the size of all basic blocks, and see if the function // has any inline assembly in it. If so, we have to be conservative about // alignment assumptions, as we don't know for sure the size of any // instructions in the inline assembly. for (MachineBasicBlock &MBB : *MF) computeBlockSize(MBB); // Compute block offsets and known bits. adjustBlockOffsets(*MF->begin()); } /// computeBlockSize - Compute the size for MBB. /// This function updates BlockInfo directly. void AArch64BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) { unsigned Size = 0; for (const MachineInstr &MI : MBB) Size += TII->getInstSizeInBytes(MI); BlockInfo[MBB.getNumber()].Size = Size; } /// getInstrOffset - Return the current offset of the specified machine /// instruction from the start of the function. This offset changes as stuff is /// moved around inside the function. unsigned AArch64BranchRelaxation::getInstrOffset(const MachineInstr &MI) const { const MachineBasicBlock *MBB = MI.getParent(); // The offset is composed of two things: the sum of the sizes of all MBB's // before this instruction's block, and the offset from the start of the block // it is in. unsigned Offset = BlockInfo[MBB->getNumber()].Offset; // Sum instructions before MI in MBB. for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) { assert(I != MBB->end() && "Didn't find MI in its own basic block?"); Offset += TII->getInstSizeInBytes(*I); } return Offset; } void AArch64BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) { unsigned PrevNum = Start.getNumber(); for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) { unsigned Num = MBB.getNumber(); if (!Num) // block zero is never changed from offset zero. continue; // Get the offset and known bits at the end of the layout predecessor. // Include the alignment of the current block. unsigned LogAlign = MBB.getAlignment(); BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(LogAlign); PrevNum = Num; } } /// Split the basic block containing MI into two blocks, which are joined by /// an unconditional branch. Update data structures and renumber blocks to /// account for this change and returns the newly created block. /// NOTE: Successor list of the original BB is out of date after this function, /// and must be updated by the caller! Other transforms follow using this /// utility function, so no point updating now rather than waiting. MachineBasicBlock * AArch64BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI) { MachineBasicBlock *OrigBB = MI.getParent(); // Create a new MBB for the code after the OrigBB. MachineBasicBlock *NewBB = MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); MF->insert(++OrigBB->getIterator(), NewBB); // Splice the instructions starting with MI over to NewBB. NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end()); // Add an unconditional branch from OrigBB to NewBB. // Note the new unconditional branch is not being recorded. // There doesn't seem to be meaningful DebugInfo available; this doesn't // correspond to anything in the source. TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc()); // Insert an entry into BlockInfo to align it properly with the block numbers. BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); // Figure out how large the OrigBB is. As the first half of the original // block, it cannot contain a tablejump. The size includes // the new jump we added. (It should be possible to do this without // recounting everything, but it's very confusing, and this is rarely // executed.) computeBlockSize(*OrigBB); // Figure out how large the NewMBB is. As the second half of the original // block, it may contain a tablejump. computeBlockSize(*NewBB); // All BBOffsets following these blocks must be modified. adjustBlockOffsets(*OrigBB); ++NumSplit; return NewBB; } /// isBlockInRange - Returns true if the distance between specific MI and /// specific BB can fit in MI's displacement field. bool AArch64BranchRelaxation::isBlockInRange( const MachineInstr &MI, const MachineBasicBlock &DestBB) const { unsigned BrOffset = getInstrOffset(MI); unsigned DestOffset = BlockInfo[DestBB.getNumber()].Offset; if (TII->isBranchInRange(MI.getOpcode(), BrOffset, DestOffset)) return true; DEBUG( dbgs() << "Out of range branch to destination BB#" << DestBB.getNumber() << " from BB#" << MI.getParent()->getNumber() << " to " << DestOffset << " offset " << static_cast(DestOffset - BrOffset) << '\t' << MI ); return false; } static MachineBasicBlock *getDestBlock(const MachineInstr &MI) { switch (MI.getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case AArch64::B: return MI.getOperand(0).getMBB(); case AArch64::TBZW: case AArch64::TBNZW: case AArch64::TBZX: case AArch64::TBNZX: return MI.getOperand(2).getMBB(); case AArch64::CBZW: case AArch64::CBNZW: case AArch64::CBZX: case AArch64::CBNZX: case AArch64::Bcc: return MI.getOperand(1).getMBB(); } } /// fixupConditionalBranch - Fix up a conditional branch whose destination is /// too far away to fit in its displacement field. It is converted to an inverse /// conditional branch + an unconditional branch to the destination. bool AArch64BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) { DebugLoc DL = MI.getDebugLoc(); MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond); assert(!Fail && "branches to be relaxed must be analyzable"); (void)Fail; // Add an unconditional branch to the destination and invert the branch // condition to jump over it: // tbz L1 // => // tbnz L2 // b L1 // L2: if (FBB && isBlockInRange(MI, *FBB)) { // Last MI in the BB is an unconditional branch. We can simply invert the // condition and swap destinations: // beq L1 // b L2 // => // bne L2 // b L1 DEBUG(dbgs() << " Invert condition and swap " "its destination with " << MBB->back()); TII->reverseBranchCondition(Cond); int OldSize = 0, NewSize = 0; TII->removeBranch(*MBB, &OldSize); TII->insertBranch(*MBB, FBB, TBB, Cond, DL, &NewSize); BlockInfo[MBB->getNumber()].Size += (NewSize - OldSize); return true; } else if (FBB) { // We need to split the basic block here to obtain two long-range // unconditional branches. auto &NewBB = *MF->CreateMachineBasicBlock(MBB->getBasicBlock()); MF->insert(++MBB->getIterator(), &NewBB); // Insert an entry into BlockInfo to align it properly with the block // numbers. BlockInfo.insert(BlockInfo.begin() + NewBB.getNumber(), BasicBlockInfo()); unsigned &NewBBSize = BlockInfo[NewBB.getNumber()].Size; int NewBrSize; TII->insertUnconditionalBranch(NewBB, FBB, DL, &NewBrSize); NewBBSize += NewBrSize; // Update the successor lists according to the transformation to follow. // Do it here since if there's no split, no update is needed. MBB->replaceSuccessor(FBB, &NewBB); NewBB.addSuccessor(FBB); } // We now have an appropriate fall-through block in place (either naturally or // just created), so we can invert the condition. MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB)); DEBUG(dbgs() << " Insert B to BB#" << TBB->getNumber() << ", invert condition and change dest. to BB#" << NextBB.getNumber() << '\n'); unsigned &MBBSize = BlockInfo[MBB->getNumber()].Size; // Insert a new conditional branch and a new unconditional branch. int RemovedSize = 0; TII->reverseBranchCondition(Cond); TII->removeBranch(*MBB, &RemovedSize); MBBSize -= RemovedSize; int AddedSize = 0; TII->insertBranch(*MBB, &NextBB, TBB, Cond, DL, &AddedSize); MBBSize += AddedSize; // Finally, keep the block offsets up to date. adjustBlockOffsets(*MBB); return true; } bool AArch64BranchRelaxation::relaxBranchInstructions() { bool Changed = false; // Relaxing branches involves creating new basic blocks, so re-eval // end() for termination. for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) { MachineBasicBlock &MBB = *I; MachineBasicBlock::iterator J = MBB.getFirstTerminator(); if (J == MBB.end()) continue; MachineBasicBlock::iterator Next; for (MachineBasicBlock::iterator J = MBB.getFirstTerminator(); J != MBB.end(); J = Next) { Next = std::next(J); MachineInstr &MI = *J; if (MI.isConditionalBranch()) { MachineBasicBlock *DestBB = getDestBlock(MI); if (!isBlockInRange(MI, *DestBB)) { if (Next != MBB.end() && Next->isConditionalBranch()) { // If there are multiple conditional branches, this isn't an // analyzable block. Split later terminators into a new block so // each one will be analyzable. MachineBasicBlock *NewBB = splitBlockBeforeInstr(*Next); NewBB->transferSuccessors(&MBB); MBB.addSuccessor(NewBB); MBB.addSuccessor(DestBB); // Cleanup potential unconditional branch to successor block. NewBB->updateTerminator(); MBB.updateTerminator(); } else { fixupConditionalBranch(MI); ++NumConditionalRelaxed; } Changed = true; // This may have modified all of the terminators, so start over. Next = MBB.getFirstTerminator(); } } } } return Changed; } bool AArch64BranchRelaxation::runOnMachineFunction(MachineFunction &mf) { MF = &mf; DEBUG(dbgs() << "***** AArch64BranchRelaxation *****\n"); TII = MF->getSubtarget().getInstrInfo(); // Renumber all of the machine basic blocks in the function, guaranteeing that // the numbers agree with the position of the block in the function. MF->RenumberBlocks(); // Do the initial scan of the function, building up information about the // sizes of each block. scanFunction(); DEBUG(dbgs() << " Basic blocks before relaxation\n"; dumpBBs();); bool MadeChange = false; while (relaxBranchInstructions()) MadeChange = true; // After a while, this might be made debug-only, but it is not expensive. verify(); DEBUG(dbgs() << " Basic blocks after relaxation\n\n"; dumpBBs()); BlockInfo.clear(); return MadeChange; } /// Returns an instance of the AArch64 Branch Relaxation pass. FunctionPass *llvm::createAArch64BranchRelaxation() { return new AArch64BranchRelaxation(); }