//===- WasmObjectFile.cpp - Wasm object file implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/Triple.h" #include "llvm/BinaryFormat/Wasm.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Object/Binary.h" #include "llvm/Object/Error.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Object/Wasm.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include #include #include #include #include #define DEBUG_TYPE "wasm-object" using namespace llvm; using namespace object; void WasmSymbol::print(raw_ostream &Out) const { Out << "Name=" << Info.Name << ", Kind=" << toString(wasm::WasmSymbolType(Info.Kind)) << ", Flags=" << Info.Flags; if (!isTypeData()) { Out << ", ElemIndex=" << Info.ElementIndex; } else if (isDefined()) { Out << ", Segment=" << Info.DataRef.Segment; Out << ", Offset=" << Info.DataRef.Offset; Out << ", Size=" << Info.DataRef.Size; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void WasmSymbol::dump() const { print(dbgs()); } #endif Expected> ObjectFile::createWasmObjectFile(MemoryBufferRef Buffer) { Error Err = Error::success(); auto ObjectFile = llvm::make_unique(Buffer, Err); if (Err) return std::move(Err); return std::move(ObjectFile); } #define VARINT7_MAX ((1<<7)-1) #define VARINT7_MIN (-(1<<7)) #define VARUINT7_MAX (1<<7) #define VARUINT1_MAX (1) static uint8_t readUint8(WasmObjectFile::ReadContext &Ctx) { if (Ctx.Ptr == Ctx.End) report_fatal_error("EOF while reading uint8"); return *Ctx.Ptr++; } static uint32_t readUint32(WasmObjectFile::ReadContext &Ctx) { if (Ctx.Ptr + 4 > Ctx.End) report_fatal_error("EOF while reading uint32"); uint32_t Result = support::endian::read32le(Ctx.Ptr); Ctx.Ptr += 4; return Result; } static int32_t readFloat32(WasmObjectFile::ReadContext &Ctx) { int32_t Result = 0; memcpy(&Result, Ctx.Ptr, sizeof(Result)); Ctx.Ptr += sizeof(Result); return Result; } static int64_t readFloat64(WasmObjectFile::ReadContext &Ctx) { int64_t Result = 0; memcpy(&Result, Ctx.Ptr, sizeof(Result)); Ctx.Ptr += sizeof(Result); return Result; } static uint64_t readULEB128(WasmObjectFile::ReadContext &Ctx) { unsigned Count; const char* Error = nullptr; uint64_t Result = decodeULEB128(Ctx.Ptr, &Count, Ctx.End, &Error); if (Error) report_fatal_error(Error); Ctx.Ptr += Count; return Result; } static StringRef readString(WasmObjectFile::ReadContext &Ctx) { uint32_t StringLen = readULEB128(Ctx); if (Ctx.Ptr + StringLen > Ctx.End) report_fatal_error("EOF while reading string"); StringRef Return = StringRef(reinterpret_cast(Ctx.Ptr), StringLen); Ctx.Ptr += StringLen; return Return; } static int64_t readLEB128(WasmObjectFile::ReadContext &Ctx) { unsigned Count; const char* Error = nullptr; uint64_t Result = decodeSLEB128(Ctx.Ptr, &Count, Ctx.End, &Error); if (Error) report_fatal_error(Error); Ctx.Ptr += Count; return Result; } static uint8_t readVaruint1(WasmObjectFile::ReadContext &Ctx) { int64_t result = readLEB128(Ctx); if (result > VARUINT1_MAX || result < 0) report_fatal_error("LEB is outside Varuint1 range"); return result; } static int32_t readVarint32(WasmObjectFile::ReadContext &Ctx) { int64_t result = readLEB128(Ctx); if (result > INT32_MAX || result < INT32_MIN) report_fatal_error("LEB is outside Varint32 range"); return result; } static uint32_t readVaruint32(WasmObjectFile::ReadContext &Ctx) { uint64_t result = readULEB128(Ctx); if (result > UINT32_MAX) report_fatal_error("LEB is outside Varuint32 range"); return result; } static int64_t readVarint64(WasmObjectFile::ReadContext &Ctx) { return readLEB128(Ctx); } static uint8_t readOpcode(WasmObjectFile::ReadContext &Ctx) { return readUint8(Ctx); } static Error readInitExpr(wasm::WasmInitExpr &Expr, WasmObjectFile::ReadContext &Ctx) { Expr.Opcode = readOpcode(Ctx); switch (Expr.Opcode) { case wasm::WASM_OPCODE_I32_CONST: Expr.Value.Int32 = readVarint32(Ctx); break; case wasm::WASM_OPCODE_I64_CONST: Expr.Value.Int64 = readVarint64(Ctx); break; case wasm::WASM_OPCODE_F32_CONST: Expr.Value.Float32 = readFloat32(Ctx); break; case wasm::WASM_OPCODE_F64_CONST: Expr.Value.Float64 = readFloat64(Ctx); break; case wasm::WASM_OPCODE_GET_GLOBAL: Expr.Value.Global = readULEB128(Ctx); break; default: return make_error("Invalid opcode in init_expr", object_error::parse_failed); } uint8_t EndOpcode = readOpcode(Ctx); if (EndOpcode != wasm::WASM_OPCODE_END) { return make_error("Invalid init_expr", object_error::parse_failed); } return Error::success(); } static wasm::WasmLimits readLimits(WasmObjectFile::ReadContext &Ctx) { wasm::WasmLimits Result; Result.Flags = readVaruint1(Ctx); Result.Initial = readVaruint32(Ctx); if (Result.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) Result.Maximum = readVaruint32(Ctx); return Result; } static wasm::WasmTable readTable(WasmObjectFile::ReadContext &Ctx) { wasm::WasmTable Table; Table.ElemType = readUint8(Ctx); Table.Limits = readLimits(Ctx); return Table; } static Error readSection(WasmSection &Section, WasmObjectFile::ReadContext &Ctx) { Section.Offset = Ctx.Ptr - Ctx.Start; Section.Type = readUint8(Ctx); LLVM_DEBUG(dbgs() << "readSection type=" << Section.Type << "\n"); uint32_t Size = readVaruint32(Ctx); if (Size == 0) return make_error("Zero length section", object_error::parse_failed); if (Ctx.Ptr + Size > Ctx.End) return make_error("Section too large", object_error::parse_failed); if (Section.Type == wasm::WASM_SEC_CUSTOM) { const uint8_t *NameStart = Ctx.Ptr; Section.Name = readString(Ctx); Size -= Ctx.Ptr - NameStart; } Section.Content = ArrayRef(Ctx.Ptr, Size); Ctx.Ptr += Size; return Error::success(); } WasmObjectFile::WasmObjectFile(MemoryBufferRef Buffer, Error &Err) : ObjectFile(Binary::ID_Wasm, Buffer) { ErrorAsOutParameter ErrAsOutParam(&Err); Header.Magic = getData().substr(0, 4); if (Header.Magic != StringRef("\0asm", 4)) { Err = make_error("Bad magic number", object_error::parse_failed); return; } ReadContext Ctx; Ctx.Start = getPtr(0); Ctx.Ptr = Ctx.Start + 4; Ctx.End = Ctx.Start + getData().size(); if (Ctx.Ptr + 4 > Ctx.End) { Err = make_error("Missing version number", object_error::parse_failed); return; } Header.Version = readUint32(Ctx); if (Header.Version != wasm::WasmVersion) { Err = make_error("Bad version number", object_error::parse_failed); return; } WasmSection Sec; while (Ctx.Ptr < Ctx.End) { if ((Err = readSection(Sec, Ctx))) return; if ((Err = parseSection(Sec))) return; Sections.push_back(Sec); } } Error WasmObjectFile::parseSection(WasmSection &Sec) { ReadContext Ctx; Ctx.Start = Sec.Content.data(); Ctx.End = Ctx.Start + Sec.Content.size(); Ctx.Ptr = Ctx.Start; switch (Sec.Type) { case wasm::WASM_SEC_CUSTOM: return parseCustomSection(Sec, Ctx); case wasm::WASM_SEC_TYPE: return parseTypeSection(Ctx); case wasm::WASM_SEC_IMPORT: return parseImportSection(Ctx); case wasm::WASM_SEC_FUNCTION: return parseFunctionSection(Ctx); case wasm::WASM_SEC_TABLE: return parseTableSection(Ctx); case wasm::WASM_SEC_MEMORY: return parseMemorySection(Ctx); case wasm::WASM_SEC_GLOBAL: return parseGlobalSection(Ctx); case wasm::WASM_SEC_EXPORT: return parseExportSection(Ctx); case wasm::WASM_SEC_START: return parseStartSection(Ctx); case wasm::WASM_SEC_ELEM: return parseElemSection(Ctx); case wasm::WASM_SEC_CODE: return parseCodeSection(Ctx); case wasm::WASM_SEC_DATA: return parseDataSection(Ctx); default: return make_error("Bad section type", object_error::parse_failed); } } Error WasmObjectFile::parseNameSection(ReadContext &Ctx) { llvm::DenseSet Seen; if (Functions.size() != FunctionTypes.size()) { return make_error("Names must come after code section", object_error::parse_failed); } while (Ctx.Ptr < Ctx.End) { uint8_t Type = readUint8(Ctx); uint32_t Size = readVaruint32(Ctx); const uint8_t *SubSectionEnd = Ctx.Ptr + Size; switch (Type) { case wasm::WASM_NAMES_FUNCTION: { uint32_t Count = readVaruint32(Ctx); while (Count--) { uint32_t Index = readVaruint32(Ctx); if (!Seen.insert(Index).second) return make_error("Function named more than once", object_error::parse_failed); StringRef Name = readString(Ctx); if (!isValidFunctionIndex(Index) || Name.empty()) return make_error("Invalid name entry", object_error::parse_failed); DebugNames.push_back(wasm::WasmFunctionName{Index, Name}); if (isDefinedFunctionIndex(Index)) getDefinedFunction(Index).DebugName = Name; } break; } // Ignore local names for now case wasm::WASM_NAMES_LOCAL: default: Ctx.Ptr += Size; break; } if (Ctx.Ptr != SubSectionEnd) return make_error("Name sub-section ended prematurely", object_error::parse_failed); } if (Ctx.Ptr != Ctx.End) return make_error("Name section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseLinkingSection(ReadContext &Ctx) { HasLinkingSection = true; if (Functions.size() != FunctionTypes.size()) { return make_error( "Linking data must come after code section", object_error::parse_failed); } LinkingData.Version = readVaruint32(Ctx); if (LinkingData.Version != wasm::WasmMetadataVersion) { return make_error( "Unexpected metadata version: " + Twine(LinkingData.Version) + " (Expected: " + Twine(wasm::WasmMetadataVersion) + ")", object_error::parse_failed); } const uint8_t *OrigEnd = Ctx.End; while (Ctx.Ptr < OrigEnd) { Ctx.End = OrigEnd; uint8_t Type = readUint8(Ctx); uint32_t Size = readVaruint32(Ctx); LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Size << "\n"); Ctx.End = Ctx.Ptr + Size; switch (Type) { case wasm::WASM_SYMBOL_TABLE: if (Error Err = parseLinkingSectionSymtab(Ctx)) return Err; break; case wasm::WASM_SEGMENT_INFO: { uint32_t Count = readVaruint32(Ctx); if (Count > DataSegments.size()) return make_error("Too many segment names", object_error::parse_failed); for (uint32_t i = 0; i < Count; i++) { DataSegments[i].Data.Name = readString(Ctx); DataSegments[i].Data.Alignment = readVaruint32(Ctx); DataSegments[i].Data.Flags = readVaruint32(Ctx); } break; } case wasm::WASM_INIT_FUNCS: { uint32_t Count = readVaruint32(Ctx); LinkingData.InitFunctions.reserve(Count); for (uint32_t i = 0; i < Count; i++) { wasm::WasmInitFunc Init; Init.Priority = readVaruint32(Ctx); Init.Symbol = readVaruint32(Ctx); if (!isValidFunctionSymbol(Init.Symbol)) return make_error("Invalid function symbol: " + Twine(Init.Symbol), object_error::parse_failed); LinkingData.InitFunctions.emplace_back(Init); } break; } case wasm::WASM_COMDAT_INFO: if (Error Err = parseLinkingSectionComdat(Ctx)) return Err; break; default: Ctx.Ptr += Size; break; } if (Ctx.Ptr != Ctx.End) return make_error( "Linking sub-section ended prematurely", object_error::parse_failed); } if (Ctx.Ptr != OrigEnd) return make_error("Linking section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseLinkingSectionSymtab(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); LinkingData.SymbolTable.reserve(Count); Symbols.reserve(Count); StringSet<> SymbolNames; std::vector ImportedGlobals; std::vector ImportedFunctions; ImportedGlobals.reserve(Imports.size()); ImportedFunctions.reserve(Imports.size()); for (auto &I : Imports) { if (I.Kind == wasm::WASM_EXTERNAL_FUNCTION) ImportedFunctions.emplace_back(&I); else if (I.Kind == wasm::WASM_EXTERNAL_GLOBAL) ImportedGlobals.emplace_back(&I); } while (Count--) { wasm::WasmSymbolInfo Info; const wasm::WasmSignature *FunctionType = nullptr; const wasm::WasmGlobalType *GlobalType = nullptr; Info.Kind = readUint8(Ctx); Info.Flags = readVaruint32(Ctx); bool IsDefined = (Info.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0; switch (Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: Info.ElementIndex = readVaruint32(Ctx); if (!isValidFunctionIndex(Info.ElementIndex) || IsDefined != isDefinedFunctionIndex(Info.ElementIndex)) return make_error("invalid function symbol index", object_error::parse_failed); if (IsDefined) { Info.Name = readString(Ctx); unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions; FunctionType = &Signatures[FunctionTypes[FuncIndex]]; wasm::WasmFunction &Function = Functions[FuncIndex]; if (Function.SymbolName.empty()) Function.SymbolName = Info.Name; } else { wasm::WasmImport &Import = *ImportedFunctions[Info.ElementIndex]; FunctionType = &Signatures[Import.SigIndex]; Info.Name = Import.Field; Info.Module = Import.Module; } break; case wasm::WASM_SYMBOL_TYPE_GLOBAL: Info.ElementIndex = readVaruint32(Ctx); if (!isValidGlobalIndex(Info.ElementIndex) || IsDefined != isDefinedGlobalIndex(Info.ElementIndex)) return make_error("invalid global symbol index", object_error::parse_failed); if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) == wasm::WASM_SYMBOL_BINDING_WEAK) return make_error("undefined weak global symbol", object_error::parse_failed); if (IsDefined) { Info.Name = readString(Ctx); unsigned GlobalIndex = Info.ElementIndex - NumImportedGlobals; wasm::WasmGlobal &Global = Globals[GlobalIndex]; GlobalType = &Global.Type; if (Global.SymbolName.empty()) Global.SymbolName = Info.Name; } else { wasm::WasmImport &Import = *ImportedGlobals[Info.ElementIndex]; Info.Name = Import.Field; GlobalType = &Import.Global; } break; case wasm::WASM_SYMBOL_TYPE_DATA: Info.Name = readString(Ctx); if (IsDefined) { uint32_t Index = readVaruint32(Ctx); if (Index >= DataSegments.size()) return make_error("invalid data symbol index", object_error::parse_failed); uint32_t Offset = readVaruint32(Ctx); uint32_t Size = readVaruint32(Ctx); if (Offset + Size > DataSegments[Index].Data.Content.size()) return make_error("invalid data symbol offset", object_error::parse_failed); Info.DataRef = wasm::WasmDataReference{Index, Offset, Size}; } break; case wasm::WASM_SYMBOL_TYPE_SECTION: { if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) != wasm::WASM_SYMBOL_BINDING_LOCAL) return make_error( "Section symbols must have local binding", object_error::parse_failed); Info.ElementIndex = readVaruint32(Ctx); // Use somewhat unique section name as symbol name. StringRef SectionName = Sections[Info.ElementIndex].Name; Info.Name = SectionName; break; } default: return make_error("Invalid symbol type", object_error::parse_failed); } if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) != wasm::WASM_SYMBOL_BINDING_LOCAL && !SymbolNames.insert(Info.Name).second) return make_error("Duplicate symbol name " + Twine(Info.Name), object_error::parse_failed); LinkingData.SymbolTable.emplace_back(Info); Symbols.emplace_back(LinkingData.SymbolTable.back(), FunctionType, GlobalType); LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n"); } return Error::success(); } Error WasmObjectFile::parseLinkingSectionComdat(ReadContext &Ctx) { uint32_t ComdatCount = readVaruint32(Ctx); StringSet<> ComdatSet; for (unsigned ComdatIndex = 0; ComdatIndex < ComdatCount; ++ComdatIndex) { StringRef Name = readString(Ctx); if (Name.empty() || !ComdatSet.insert(Name).second) return make_error("Bad/duplicate COMDAT name " + Twine(Name), object_error::parse_failed); LinkingData.Comdats.emplace_back(Name); uint32_t Flags = readVaruint32(Ctx); if (Flags != 0) return make_error("Unsupported COMDAT flags", object_error::parse_failed); uint32_t EntryCount = readVaruint32(Ctx); while (EntryCount--) { unsigned Kind = readVaruint32(Ctx); unsigned Index = readVaruint32(Ctx); switch (Kind) { default: return make_error("Invalid COMDAT entry type", object_error::parse_failed); case wasm::WASM_COMDAT_DATA: if (Index >= DataSegments.size()) return make_error("COMDAT data index out of range", object_error::parse_failed); if (DataSegments[Index].Data.Comdat != UINT32_MAX) return make_error("Data segment in two COMDATs", object_error::parse_failed); DataSegments[Index].Data.Comdat = ComdatIndex; break; case wasm::WASM_COMDAT_FUNCTION: if (!isDefinedFunctionIndex(Index)) return make_error("COMDAT function index out of range", object_error::parse_failed); if (getDefinedFunction(Index).Comdat != UINT32_MAX) return make_error("Function in two COMDATs", object_error::parse_failed); getDefinedFunction(Index).Comdat = ComdatIndex; break; } } } return Error::success(); } Error WasmObjectFile::parseRelocSection(StringRef Name, ReadContext &Ctx) { uint32_t SectionIndex = readVaruint32(Ctx); if (SectionIndex >= Sections.size()) return make_error("Invalid section index", object_error::parse_failed); WasmSection& Section = Sections[SectionIndex]; uint32_t RelocCount = readVaruint32(Ctx); uint32_t EndOffset = Section.Content.size(); while (RelocCount--) { wasm::WasmRelocation Reloc = {}; Reloc.Type = readVaruint32(Ctx); Reloc.Offset = readVaruint32(Ctx); Reloc.Index = readVaruint32(Ctx); switch (Reloc.Type) { case wasm::R_WEBASSEMBLY_FUNCTION_INDEX_LEB: case wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB: case wasm::R_WEBASSEMBLY_TABLE_INDEX_I32: if (!isValidFunctionSymbol(Reloc.Index)) return make_error("Bad relocation function index", object_error::parse_failed); break; case wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB: if (Reloc.Index >= Signatures.size()) return make_error("Bad relocation type index", object_error::parse_failed); break; case wasm::R_WEBASSEMBLY_GLOBAL_INDEX_LEB: if (!isValidGlobalSymbol(Reloc.Index)) return make_error("Bad relocation global index", object_error::parse_failed); break; case wasm::R_WEBASSEMBLY_MEMORY_ADDR_LEB: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_SLEB: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_I32: if (!isValidDataSymbol(Reloc.Index)) return make_error("Bad relocation data index", object_error::parse_failed); Reloc.Addend = readVarint32(Ctx); break; case wasm::R_WEBASSEMBLY_FUNCTION_OFFSET_I32: if (!isValidFunctionSymbol(Reloc.Index)) return make_error("Bad relocation function index", object_error::parse_failed); Reloc.Addend = readVarint32(Ctx); break; case wasm::R_WEBASSEMBLY_SECTION_OFFSET_I32: if (!isValidSectionSymbol(Reloc.Index)) return make_error("Bad relocation section index", object_error::parse_failed); Reloc.Addend = readVarint32(Ctx); break; default: return make_error("Bad relocation type: " + Twine(Reloc.Type), object_error::parse_failed); } // Relocations must fit inside the section, and must appear in order. They // also shouldn't overlap a function/element boundary, but we don't bother // to check that. uint64_t Size = 5; if (Reloc.Type == wasm::R_WEBASSEMBLY_TABLE_INDEX_I32 || Reloc.Type == wasm::R_WEBASSEMBLY_MEMORY_ADDR_I32 || Reloc.Type == wasm::R_WEBASSEMBLY_SECTION_OFFSET_I32 || Reloc.Type == wasm::R_WEBASSEMBLY_FUNCTION_OFFSET_I32) Size = 4; if (Reloc.Offset + Size > EndOffset) return make_error("Bad relocation offset", object_error::parse_failed); Section.Relocations.push_back(Reloc); } if (Ctx.Ptr != Ctx.End) return make_error("Reloc section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseCustomSection(WasmSection &Sec, ReadContext &Ctx) { if (Sec.Name == "name") { if (Error Err = parseNameSection(Ctx)) return Err; } else if (Sec.Name == "linking") { if (Error Err = parseLinkingSection(Ctx)) return Err; } else if (Sec.Name.startswith("reloc.")) { if (Error Err = parseRelocSection(Sec.Name, Ctx)) return Err; } return Error::success(); } Error WasmObjectFile::parseTypeSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Signatures.reserve(Count); while (Count--) { wasm::WasmSignature Sig; Sig.ReturnType = wasm::WASM_TYPE_NORESULT; uint8_t Form = readUint8(Ctx); if (Form != wasm::WASM_TYPE_FUNC) { return make_error("Invalid signature type", object_error::parse_failed); } uint32_t ParamCount = readVaruint32(Ctx); Sig.ParamTypes.reserve(ParamCount); while (ParamCount--) { uint32_t ParamType = readUint8(Ctx); Sig.ParamTypes.push_back(ParamType); } uint32_t ReturnCount = readVaruint32(Ctx); if (ReturnCount) { if (ReturnCount != 1) { return make_error( "Multiple return types not supported", object_error::parse_failed); } Sig.ReturnType = readUint8(Ctx); } Signatures.push_back(Sig); } if (Ctx.Ptr != Ctx.End) return make_error("Type section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseImportSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Imports.reserve(Count); for (uint32_t i = 0; i < Count; i++) { wasm::WasmImport Im; Im.Module = readString(Ctx); Im.Field = readString(Ctx); Im.Kind = readUint8(Ctx); switch (Im.Kind) { case wasm::WASM_EXTERNAL_FUNCTION: NumImportedFunctions++; Im.SigIndex = readVaruint32(Ctx); break; case wasm::WASM_EXTERNAL_GLOBAL: NumImportedGlobals++; Im.Global.Type = readUint8(Ctx); Im.Global.Mutable = readVaruint1(Ctx); break; case wasm::WASM_EXTERNAL_MEMORY: Im.Memory = readLimits(Ctx); break; case wasm::WASM_EXTERNAL_TABLE: Im.Table = readTable(Ctx); if (Im.Table.ElemType != wasm::WASM_TYPE_ANYFUNC) return make_error("Invalid table element type", object_error::parse_failed); break; default: return make_error( "Unexpected import kind", object_error::parse_failed); } Imports.push_back(Im); } if (Ctx.Ptr != Ctx.End) return make_error("Import section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseFunctionSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); FunctionTypes.reserve(Count); uint32_t NumTypes = Signatures.size(); while (Count--) { uint32_t Type = readVaruint32(Ctx); if (Type >= NumTypes) return make_error("Invalid function type", object_error::parse_failed); FunctionTypes.push_back(Type); } if (Ctx.Ptr != Ctx.End) return make_error("Function section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseTableSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Tables.reserve(Count); while (Count--) { Tables.push_back(readTable(Ctx)); if (Tables.back().ElemType != wasm::WASM_TYPE_ANYFUNC) { return make_error("Invalid table element type", object_error::parse_failed); } } if (Ctx.Ptr != Ctx.End) return make_error("Table section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseMemorySection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Memories.reserve(Count); while (Count--) { Memories.push_back(readLimits(Ctx)); } if (Ctx.Ptr != Ctx.End) return make_error("Memory section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseGlobalSection(ReadContext &Ctx) { GlobalSection = Sections.size(); uint32_t Count = readVaruint32(Ctx); Globals.reserve(Count); while (Count--) { wasm::WasmGlobal Global; Global.Index = NumImportedGlobals + Globals.size(); Global.Type.Type = readUint8(Ctx); Global.Type.Mutable = readVaruint1(Ctx); if (Error Err = readInitExpr(Global.InitExpr, Ctx)) return Err; Globals.push_back(Global); } if (Ctx.Ptr != Ctx.End) return make_error("Global section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseExportSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Exports.reserve(Count); for (uint32_t i = 0; i < Count; i++) { wasm::WasmExport Ex; Ex.Name = readString(Ctx); Ex.Kind = readUint8(Ctx); Ex.Index = readVaruint32(Ctx); switch (Ex.Kind) { case wasm::WASM_EXTERNAL_FUNCTION: if (!isValidFunctionIndex(Ex.Index)) return make_error("Invalid function export", object_error::parse_failed); break; case wasm::WASM_EXTERNAL_GLOBAL: if (!isValidGlobalIndex(Ex.Index)) return make_error("Invalid global export", object_error::parse_failed); break; case wasm::WASM_EXTERNAL_MEMORY: case wasm::WASM_EXTERNAL_TABLE: break; default: return make_error( "Unexpected export kind", object_error::parse_failed); } Exports.push_back(Ex); } if (Ctx.Ptr != Ctx.End) return make_error("Export section ended prematurely", object_error::parse_failed); return Error::success(); } bool WasmObjectFile::isValidFunctionIndex(uint32_t Index) const { return Index < NumImportedFunctions + FunctionTypes.size(); } bool WasmObjectFile::isDefinedFunctionIndex(uint32_t Index) const { return Index >= NumImportedFunctions && isValidFunctionIndex(Index); } bool WasmObjectFile::isValidGlobalIndex(uint32_t Index) const { return Index < NumImportedGlobals + Globals.size(); } bool WasmObjectFile::isDefinedGlobalIndex(uint32_t Index) const { return Index >= NumImportedGlobals && isValidGlobalIndex(Index); } bool WasmObjectFile::isValidFunctionSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeFunction(); } bool WasmObjectFile::isValidGlobalSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeGlobal(); } bool WasmObjectFile::isValidDataSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeData(); } bool WasmObjectFile::isValidSectionSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeSection(); } wasm::WasmFunction &WasmObjectFile::getDefinedFunction(uint32_t Index) { assert(isDefinedFunctionIndex(Index)); return Functions[Index - NumImportedFunctions]; } wasm::WasmGlobal &WasmObjectFile::getDefinedGlobal(uint32_t Index) { assert(isDefinedGlobalIndex(Index)); return Globals[Index - NumImportedGlobals]; } Error WasmObjectFile::parseStartSection(ReadContext &Ctx) { StartFunction = readVaruint32(Ctx); if (!isValidFunctionIndex(StartFunction)) return make_error("Invalid start function", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseCodeSection(ReadContext &Ctx) { CodeSection = Sections.size(); uint32_t FunctionCount = readVaruint32(Ctx); if (FunctionCount != FunctionTypes.size()) { return make_error("Invalid function count", object_error::parse_failed); } while (FunctionCount--) { wasm::WasmFunction Function; const uint8_t *FunctionStart = Ctx.Ptr; uint32_t Size = readVaruint32(Ctx); const uint8_t *FunctionEnd = Ctx.Ptr + Size; Function.CodeOffset = Ctx.Ptr - FunctionStart; Function.Index = NumImportedFunctions + Functions.size(); Function.CodeSectionOffset = FunctionStart - Ctx.Start; Function.Size = FunctionEnd - FunctionStart; uint32_t NumLocalDecls = readVaruint32(Ctx); Function.Locals.reserve(NumLocalDecls); while (NumLocalDecls--) { wasm::WasmLocalDecl Decl; Decl.Count = readVaruint32(Ctx); Decl.Type = readUint8(Ctx); Function.Locals.push_back(Decl); } uint32_t BodySize = FunctionEnd - Ctx.Ptr; Function.Body = ArrayRef(Ctx.Ptr, BodySize); // This will be set later when reading in the linking metadata section. Function.Comdat = UINT32_MAX; Ctx.Ptr += BodySize; assert(Ctx.Ptr == FunctionEnd); Functions.push_back(Function); } if (Ctx.Ptr != Ctx.End) return make_error("Code section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseElemSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); ElemSegments.reserve(Count); while (Count--) { wasm::WasmElemSegment Segment; Segment.TableIndex = readVaruint32(Ctx); if (Segment.TableIndex != 0) { return make_error("Invalid TableIndex", object_error::parse_failed); } if (Error Err = readInitExpr(Segment.Offset, Ctx)) return Err; uint32_t NumElems = readVaruint32(Ctx); while (NumElems--) { Segment.Functions.push_back(readVaruint32(Ctx)); } ElemSegments.push_back(Segment); } if (Ctx.Ptr != Ctx.End) return make_error("Elem section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseDataSection(ReadContext &Ctx) { DataSection = Sections.size(); uint32_t Count = readVaruint32(Ctx); DataSegments.reserve(Count); while (Count--) { WasmSegment Segment; Segment.Data.MemoryIndex = readVaruint32(Ctx); if (Error Err = readInitExpr(Segment.Data.Offset, Ctx)) return Err; uint32_t Size = readVaruint32(Ctx); if (Size > (size_t)(Ctx.End - Ctx.Ptr)) return make_error("Invalid segment size", object_error::parse_failed); Segment.Data.Content = ArrayRef(Ctx.Ptr, Size); // The rest of these Data fields are set later, when reading in the linking // metadata section. Segment.Data.Alignment = 0; Segment.Data.Flags = 0; Segment.Data.Comdat = UINT32_MAX; Segment.SectionOffset = Ctx.Ptr - Ctx.Start; Ctx.Ptr += Size; DataSegments.push_back(Segment); } if (Ctx.Ptr != Ctx.End) return make_error("Data section ended prematurely", object_error::parse_failed); return Error::success(); } const uint8_t *WasmObjectFile::getPtr(size_t Offset) const { return reinterpret_cast(getData().data() + Offset); } const wasm::WasmObjectHeader &WasmObjectFile::getHeader() const { return Header; } void WasmObjectFile::moveSymbolNext(DataRefImpl &Symb) const { Symb.d.a++; } uint32_t WasmObjectFile::getSymbolFlags(DataRefImpl Symb) const { uint32_t Result = SymbolRef::SF_None; const WasmSymbol &Sym = getWasmSymbol(Symb); LLVM_DEBUG(dbgs() << "getSymbolFlags: ptr=" << &Sym << " " << Sym << "\n"); if (Sym.isBindingWeak()) Result |= SymbolRef::SF_Weak; if (!Sym.isBindingLocal()) Result |= SymbolRef::SF_Global; if (Sym.isHidden()) Result |= SymbolRef::SF_Hidden; if (!Sym.isDefined()) Result |= SymbolRef::SF_Undefined; if (Sym.isTypeFunction()) Result |= SymbolRef::SF_Executable; return Result; } basic_symbol_iterator WasmObjectFile::symbol_begin() const { DataRefImpl Ref; Ref.d.a = 0; return BasicSymbolRef(Ref, this); } basic_symbol_iterator WasmObjectFile::symbol_end() const { DataRefImpl Ref; Ref.d.a = Symbols.size(); return BasicSymbolRef(Ref, this); } const WasmSymbol &WasmObjectFile::getWasmSymbol(const DataRefImpl &Symb) const { return Symbols[Symb.d.a]; } const WasmSymbol &WasmObjectFile::getWasmSymbol(const SymbolRef &Symb) const { return getWasmSymbol(Symb.getRawDataRefImpl()); } Expected WasmObjectFile::getSymbolName(DataRefImpl Symb) const { return getWasmSymbol(Symb).Info.Name; } Expected WasmObjectFile::getSymbolAddress(DataRefImpl Symb) const { return getSymbolValue(Symb); } uint64_t WasmObjectFile::getWasmSymbolValue(const WasmSymbol& Sym) const { switch (Sym.Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: case wasm::WASM_SYMBOL_TYPE_GLOBAL: return Sym.Info.ElementIndex; case wasm::WASM_SYMBOL_TYPE_DATA: { // The value of a data symbol is the segment offset, plus the symbol // offset within the segment. uint32_t SegmentIndex = Sym.Info.DataRef.Segment; const wasm::WasmDataSegment &Segment = DataSegments[SegmentIndex].Data; assert(Segment.Offset.Opcode == wasm::WASM_OPCODE_I32_CONST); return Segment.Offset.Value.Int32 + Sym.Info.DataRef.Offset; } case wasm::WASM_SYMBOL_TYPE_SECTION: return 0; } llvm_unreachable("invalid symbol type"); } uint64_t WasmObjectFile::getSymbolValueImpl(DataRefImpl Symb) const { return getWasmSymbolValue(getWasmSymbol(Symb)); } uint32_t WasmObjectFile::getSymbolAlignment(DataRefImpl Symb) const { llvm_unreachable("not yet implemented"); return 0; } uint64_t WasmObjectFile::getCommonSymbolSizeImpl(DataRefImpl Symb) const { llvm_unreachable("not yet implemented"); return 0; } Expected WasmObjectFile::getSymbolType(DataRefImpl Symb) const { const WasmSymbol &Sym = getWasmSymbol(Symb); switch (Sym.Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: return SymbolRef::ST_Function; case wasm::WASM_SYMBOL_TYPE_GLOBAL: return SymbolRef::ST_Other; case wasm::WASM_SYMBOL_TYPE_DATA: return SymbolRef::ST_Data; case wasm::WASM_SYMBOL_TYPE_SECTION: return SymbolRef::ST_Debug; } llvm_unreachable("Unknown WasmSymbol::SymbolType"); return SymbolRef::ST_Other; } Expected WasmObjectFile::getSymbolSection(DataRefImpl Symb) const { const WasmSymbol& Sym = getWasmSymbol(Symb); if (Sym.isUndefined()) return section_end(); DataRefImpl Ref; switch (Sym.Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: Ref.d.a = CodeSection; break; case wasm::WASM_SYMBOL_TYPE_GLOBAL: Ref.d.a = GlobalSection; break; case wasm::WASM_SYMBOL_TYPE_DATA: Ref.d.a = DataSection; break; case wasm::WASM_SYMBOL_TYPE_SECTION: { Ref.d.a = Sym.Info.ElementIndex; break; } default: llvm_unreachable("Unknown WasmSymbol::SymbolType"); } return section_iterator(SectionRef(Ref, this)); } void WasmObjectFile::moveSectionNext(DataRefImpl &Sec) const { Sec.d.a++; } std::error_code WasmObjectFile::getSectionName(DataRefImpl Sec, StringRef &Res) const { const WasmSection &S = Sections[Sec.d.a]; #define ECase(X) \ case wasm::WASM_SEC_##X: \ Res = #X; \ break switch (S.Type) { ECase(TYPE); ECase(IMPORT); ECase(FUNCTION); ECase(TABLE); ECase(MEMORY); ECase(GLOBAL); ECase(EXPORT); ECase(START); ECase(ELEM); ECase(CODE); ECase(DATA); case wasm::WASM_SEC_CUSTOM: Res = S.Name; break; default: return object_error::invalid_section_index; } #undef ECase return std::error_code(); } uint64_t WasmObjectFile::getSectionAddress(DataRefImpl Sec) const { return 0; } uint64_t WasmObjectFile::getSectionIndex(DataRefImpl Sec) const { return Sec.d.a; } uint64_t WasmObjectFile::getSectionSize(DataRefImpl Sec) const { const WasmSection &S = Sections[Sec.d.a]; return S.Content.size(); } std::error_code WasmObjectFile::getSectionContents(DataRefImpl Sec, StringRef &Res) const { const WasmSection &S = Sections[Sec.d.a]; // This will never fail since wasm sections can never be empty (user-sections // must have a name and non-user sections each have a defined structure). Res = StringRef(reinterpret_cast(S.Content.data()), S.Content.size()); return std::error_code(); } uint64_t WasmObjectFile::getSectionAlignment(DataRefImpl Sec) const { return 1; } bool WasmObjectFile::isSectionCompressed(DataRefImpl Sec) const { return false; } bool WasmObjectFile::isSectionText(DataRefImpl Sec) const { return getWasmSection(Sec).Type == wasm::WASM_SEC_CODE; } bool WasmObjectFile::isSectionData(DataRefImpl Sec) const { return getWasmSection(Sec).Type == wasm::WASM_SEC_DATA; } bool WasmObjectFile::isSectionBSS(DataRefImpl Sec) const { return false; } bool WasmObjectFile::isSectionVirtual(DataRefImpl Sec) const { return false; } bool WasmObjectFile::isSectionBitcode(DataRefImpl Sec) const { return false; } relocation_iterator WasmObjectFile::section_rel_begin(DataRefImpl Ref) const { DataRefImpl RelocRef; RelocRef.d.a = Ref.d.a; RelocRef.d.b = 0; return relocation_iterator(RelocationRef(RelocRef, this)); } relocation_iterator WasmObjectFile::section_rel_end(DataRefImpl Ref) const { const WasmSection &Sec = getWasmSection(Ref); DataRefImpl RelocRef; RelocRef.d.a = Ref.d.a; RelocRef.d.b = Sec.Relocations.size(); return relocation_iterator(RelocationRef(RelocRef, this)); } void WasmObjectFile::moveRelocationNext(DataRefImpl &Rel) const { Rel.d.b++; } uint64_t WasmObjectFile::getRelocationOffset(DataRefImpl Ref) const { const wasm::WasmRelocation &Rel = getWasmRelocation(Ref); return Rel.Offset; } symbol_iterator WasmObjectFile::getRelocationSymbol(DataRefImpl Ref) const { const wasm::WasmRelocation &Rel = getWasmRelocation(Ref); if (Rel.Type == wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB) return symbol_end(); DataRefImpl Sym; Sym.d.a = Rel.Index; Sym.d.b = 0; return symbol_iterator(SymbolRef(Sym, this)); } uint64_t WasmObjectFile::getRelocationType(DataRefImpl Ref) const { const wasm::WasmRelocation &Rel = getWasmRelocation(Ref); return Rel.Type; } void WasmObjectFile::getRelocationTypeName( DataRefImpl Ref, SmallVectorImpl &Result) const { const wasm::WasmRelocation& Rel = getWasmRelocation(Ref); StringRef Res = "Unknown"; #define WASM_RELOC(name, value) \ case wasm::name: \ Res = #name; \ break; switch (Rel.Type) { #include "llvm/BinaryFormat/WasmRelocs.def" } #undef WASM_RELOC Result.append(Res.begin(), Res.end()); } section_iterator WasmObjectFile::section_begin() const { DataRefImpl Ref; Ref.d.a = 0; return section_iterator(SectionRef(Ref, this)); } section_iterator WasmObjectFile::section_end() const { DataRefImpl Ref; Ref.d.a = Sections.size(); return section_iterator(SectionRef(Ref, this)); } uint8_t WasmObjectFile::getBytesInAddress() const { return 4; } StringRef WasmObjectFile::getFileFormatName() const { return "WASM"; } Triple::ArchType WasmObjectFile::getArch() const { return Triple::wasm32; } SubtargetFeatures WasmObjectFile::getFeatures() const { return SubtargetFeatures(); } bool WasmObjectFile::isRelocatableObject() const { return HasLinkingSection; } const WasmSection &WasmObjectFile::getWasmSection(DataRefImpl Ref) const { assert(Ref.d.a < Sections.size()); return Sections[Ref.d.a]; } const WasmSection & WasmObjectFile::getWasmSection(const SectionRef &Section) const { return getWasmSection(Section.getRawDataRefImpl()); } const wasm::WasmRelocation & WasmObjectFile::getWasmRelocation(const RelocationRef &Ref) const { return getWasmRelocation(Ref.getRawDataRefImpl()); } const wasm::WasmRelocation & WasmObjectFile::getWasmRelocation(DataRefImpl Ref) const { assert(Ref.d.a < Sections.size()); const WasmSection& Sec = Sections[Ref.d.a]; assert(Ref.d.b < Sec.Relocations.size()); return Sec.Relocations[Ref.d.b]; }