//===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file defines a register mapping file class. This class is responsible /// for managing hardware register files and the tracking of data dependencies /// between registers. /// //===----------------------------------------------------------------------===// #include "llvm/MCA/HardwareUnits/RegisterFile.h" #include "llvm/MCA/Instruction.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "llvm-mca" namespace llvm { namespace mca { RegisterFile::RegisterFile(const MCSchedModel &SM, const MCRegisterInfo &mri, unsigned NumRegs) : MRI(mri), RegisterMappings(mri.getNumRegs(), {WriteRef(), RegisterRenamingInfo()}), ZeroRegisters(mri.getNumRegs(), false) { initialize(SM, NumRegs); } void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) { // Create a default register file that "sees" all the machine registers // declared by the target. The number of physical registers in the default // register file is set equal to `NumRegs`. A value of zero for `NumRegs` // means: this register file has an unbounded number of physical registers. RegisterFiles.emplace_back(NumRegs); if (!SM.hasExtraProcessorInfo()) return; // For each user defined register file, allocate a RegisterMappingTracker // object. The size of every register file, as well as the mapping between // register files and register classes is specified via tablegen. const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo(); // Skip invalid register file at index 0. for (unsigned I = 1, E = Info.NumRegisterFiles; I < E; ++I) { const MCRegisterFileDesc &RF = Info.RegisterFiles[I]; assert(RF.NumPhysRegs && "Invalid PRF with zero physical registers!"); // The cost of a register definition is equivalent to the number of // physical registers that are allocated at register renaming stage. unsigned Length = RF.NumRegisterCostEntries; const MCRegisterCostEntry *FirstElt = &Info.RegisterCostTable[RF.RegisterCostEntryIdx]; addRegisterFile(RF, ArrayRef(FirstElt, Length)); } } void RegisterFile::cycleStart() { for (RegisterMappingTracker &RMT : RegisterFiles) RMT.NumMoveEliminated = 0; } void RegisterFile::addRegisterFile(const MCRegisterFileDesc &RF, ArrayRef Entries) { // A default register file is always allocated at index #0. That register file // is mainly used to count the total number of mappings created by all // register files at runtime. Users can limit the number of available physical // registers in register file #0 through the command line flag // `-register-file-size`. unsigned RegisterFileIndex = RegisterFiles.size(); RegisterFiles.emplace_back(RF.NumPhysRegs, RF.MaxMovesEliminatedPerCycle, RF.AllowZeroMoveEliminationOnly); // Special case where there is no register class identifier in the set. // An empty set of register classes means: this register file contains all // the physical registers specified by the target. // We optimistically assume that a register can be renamed at the cost of a // single physical register. The constructor of RegisterFile ensures that // a RegisterMapping exists for each logical register defined by the Target. if (Entries.empty()) return; // Now update the cost of individual registers. for (const MCRegisterCostEntry &RCE : Entries) { const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID); for (const MCPhysReg Reg : RC) { RegisterRenamingInfo &Entry = RegisterMappings[Reg].second; IndexPlusCostPairTy &IPC = Entry.IndexPlusCost; if (IPC.first && IPC.first != RegisterFileIndex) { // The only register file that is allowed to overlap is the default // register file at index #0. The analysis is inaccurate if register // files overlap. errs() << "warning: register " << MRI.getName(Reg) << " defined in multiple register files."; } IPC = std::make_pair(RegisterFileIndex, RCE.Cost); Entry.RenameAs = Reg; Entry.AllowMoveElimination = RCE.AllowMoveElimination; // Assume the same cost for each sub-register. for (MCSubRegIterator I(Reg, &MRI); I.isValid(); ++I) { RegisterRenamingInfo &OtherEntry = RegisterMappings[*I].second; if (!OtherEntry.IndexPlusCost.first && (!OtherEntry.RenameAs || MRI.isSuperRegister(*I, OtherEntry.RenameAs))) { OtherEntry.IndexPlusCost = IPC; OtherEntry.RenameAs = Reg; } } } } } void RegisterFile::allocatePhysRegs(const RegisterRenamingInfo &Entry, MutableArrayRef UsedPhysRegs) { unsigned RegisterFileIndex = Entry.IndexPlusCost.first; unsigned Cost = Entry.IndexPlusCost.second; if (RegisterFileIndex) { RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; RMT.NumUsedPhysRegs += Cost; UsedPhysRegs[RegisterFileIndex] += Cost; } // Now update the default register mapping tracker. RegisterFiles[0].NumUsedPhysRegs += Cost; UsedPhysRegs[0] += Cost; } void RegisterFile::freePhysRegs(const RegisterRenamingInfo &Entry, MutableArrayRef FreedPhysRegs) { unsigned RegisterFileIndex = Entry.IndexPlusCost.first; unsigned Cost = Entry.IndexPlusCost.second; if (RegisterFileIndex) { RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; RMT.NumUsedPhysRegs -= Cost; FreedPhysRegs[RegisterFileIndex] += Cost; } // Now update the default register mapping tracker. RegisterFiles[0].NumUsedPhysRegs -= Cost; FreedPhysRegs[0] += Cost; } void RegisterFile::addRegisterWrite(WriteRef Write, MutableArrayRef UsedPhysRegs) { WriteState &WS = *Write.getWriteState(); MCPhysReg RegID = WS.getRegisterID(); assert(RegID && "Adding an invalid register definition?"); LLVM_DEBUG({ dbgs() << "RegisterFile: addRegisterWrite [ " << Write.getSourceIndex() << ", " << MRI.getName(RegID) << "]\n"; }); // If RenameAs is equal to RegID, then RegID is subject to register renaming // and false dependencies on RegID are all eliminated. // If RenameAs references the invalid register, then we optimistically assume // that it can be renamed. In the absence of tablegen descriptors for register // files, RenameAs is always set to the invalid register ID. In all other // cases, RenameAs must be either equal to RegID, or it must reference a // super-register of RegID. // If RenameAs is a super-register of RegID, then a write to RegID has always // a false dependency on RenameAs. The only exception is for when the write // implicitly clears the upper portion of the underlying register. // If a write clears its super-registers, then it is renamed as `RenameAs`. bool IsWriteZero = WS.isWriteZero(); bool IsEliminated = WS.isEliminated(); bool ShouldAllocatePhysRegs = !IsWriteZero && !IsEliminated; const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; WS.setPRF(RRI.IndexPlusCost.first); if (RRI.RenameAs && RRI.RenameAs != RegID) { RegID = RRI.RenameAs; WriteRef &OtherWrite = RegisterMappings[RegID].first; if (!WS.clearsSuperRegisters()) { // The processor keeps the definition of `RegID` together with register // `RenameAs`. Since this partial write is not renamed, no physical // register is allocated. ShouldAllocatePhysRegs = false; WriteState *OtherWS = OtherWrite.getWriteState(); if (OtherWS && (OtherWrite.getSourceIndex() != Write.getSourceIndex())) { // This partial write has a false dependency on RenameAs. assert(!IsEliminated && "Unexpected partial update!"); OtherWS->addUser(OtherWrite.getSourceIndex(), &WS); } } } // Update zero registers. MCPhysReg ZeroRegisterID = WS.clearsSuperRegisters() ? RegID : WS.getRegisterID(); if (IsWriteZero) { ZeroRegisters.setBit(ZeroRegisterID); for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I) ZeroRegisters.setBit(*I); } else { ZeroRegisters.clearBit(ZeroRegisterID); for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I) ZeroRegisters.clearBit(*I); } // If this is move has been eliminated, then the call to tryEliminateMove // should have already updated all the register mappings. if (!IsEliminated) { // Update the mapping for register RegID including its sub-registers. RegisterMappings[RegID].first = Write; RegisterMappings[RegID].second.AliasRegID = 0U; for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { RegisterMappings[*I].first = Write; RegisterMappings[*I].second.AliasRegID = 0U; } // No physical registers are allocated for instructions that are optimized // in hardware. For example, zero-latency data-dependency breaking // instructions don't consume physical registers. if (ShouldAllocatePhysRegs) allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs); } if (!WS.clearsSuperRegisters()) return; for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) { if (!IsEliminated) { RegisterMappings[*I].first = Write; RegisterMappings[*I].second.AliasRegID = 0U; } if (IsWriteZero) ZeroRegisters.setBit(*I); else ZeroRegisters.clearBit(*I); } } void RegisterFile::removeRegisterWrite( const WriteState &WS, MutableArrayRef FreedPhysRegs) { // Early exit if this write was eliminated. A write eliminated at register // renaming stage generates an alias, and it is not added to the PRF. if (WS.isEliminated()) return; MCPhysReg RegID = WS.getRegisterID(); assert(RegID != 0 && "Invalidating an already invalid register?"); assert(WS.getCyclesLeft() != UNKNOWN_CYCLES && "Invalidating a write of unknown cycles!"); assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!"); bool ShouldFreePhysRegs = !WS.isWriteZero(); MCPhysReg RenameAs = RegisterMappings[RegID].second.RenameAs; if (RenameAs && RenameAs != RegID) { RegID = RenameAs; if (!WS.clearsSuperRegisters()) { // Keep the definition of `RegID` together with register `RenameAs`. ShouldFreePhysRegs = false; } } if (ShouldFreePhysRegs) freePhysRegs(RegisterMappings[RegID].second, FreedPhysRegs); WriteRef &WR = RegisterMappings[RegID].first; if (WR.getWriteState() == &WS) WR.invalidate(); for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { WriteRef &OtherWR = RegisterMappings[*I].first; if (OtherWR.getWriteState() == &WS) OtherWR.invalidate(); } if (!WS.clearsSuperRegisters()) return; for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) { WriteRef &OtherWR = RegisterMappings[*I].first; if (OtherWR.getWriteState() == &WS) OtherWR.invalidate(); } } bool RegisterFile::tryEliminateMove(WriteState &WS, ReadState &RS) { const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()]; const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()]; // From and To must be owned by the same PRF. const RegisterRenamingInfo &RRIFrom = RMFrom.second; const RegisterRenamingInfo &RRITo = RMTo.second; unsigned RegisterFileIndex = RRIFrom.IndexPlusCost.first; if (RegisterFileIndex != RRITo.IndexPlusCost.first) return false; // We only allow move elimination for writes that update a full physical // register. On X86, move elimination is possible with 32-bit general purpose // registers because writes to those registers are not partial writes. If a // register move is a partial write, then we conservatively assume that move // elimination fails, since it would either trigger a partial update, or the // issue of a merge opcode. // // Note that this constraint may be lifted in future. For example, we could // make this model more flexible, and let users customize the set of registers // (i.e. register classes) that allow move elimination. // // For now, we assume that there is a strong correlation between registers // that allow move elimination, and how those same registers are renamed in // hardware. if (RRITo.RenameAs && RRITo.RenameAs != WS.getRegisterID()) { // Early exit if the PRF doesn't support move elimination for this register. if (!RegisterMappings[RRITo.RenameAs].second.AllowMoveElimination) return false; if (!WS.clearsSuperRegisters()) return false; } RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; if (RMT.MaxMoveEliminatedPerCycle && RMT.NumMoveEliminated == RMT.MaxMoveEliminatedPerCycle) return false; bool IsZeroMove = ZeroRegisters[RS.getRegisterID()]; if (RMT.AllowZeroMoveEliminationOnly && !IsZeroMove) return false; // Construct an alias. MCPhysReg AliasedReg = RRIFrom.RenameAs ? RRIFrom.RenameAs : RS.getRegisterID(); MCPhysReg AliasReg = RRITo.RenameAs ? RRITo.RenameAs : WS.getRegisterID(); const RegisterRenamingInfo &RMAlias = RegisterMappings[AliasedReg].second; if (RMAlias.AliasRegID) AliasedReg = RMAlias.AliasRegID; RegisterMappings[AliasReg].second.AliasRegID = AliasedReg; for (MCSubRegIterator I(AliasReg, &MRI); I.isValid(); ++I) RegisterMappings[*I].second.AliasRegID = AliasedReg; if (IsZeroMove) { WS.setWriteZero(); RS.setReadZero(); } WS.setEliminated(); RMT.NumMoveEliminated++; return true; } void RegisterFile::collectWrites(const ReadState &RS, SmallVectorImpl &Writes) const { MCPhysReg RegID = RS.getRegisterID(); assert(RegID && RegID < RegisterMappings.size()); LLVM_DEBUG(dbgs() << "RegisterFile: collecting writes for register " << MRI.getName(RegID) << '\n'); // Check if this is an alias. const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; if (RRI.AliasRegID) RegID = RRI.AliasRegID; const WriteRef &WR = RegisterMappings[RegID].first; if (WR.isValid()) Writes.push_back(WR); // Handle potential partial register updates. for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { const WriteRef &WR = RegisterMappings[*I].first; if (WR.isValid()) Writes.push_back(WR); } // Remove duplicate entries and resize the input vector. if (Writes.size() > 1) { sort(Writes, [](const WriteRef &Lhs, const WriteRef &Rhs) { return Lhs.getWriteState() < Rhs.getWriteState(); }); auto It = std::unique(Writes.begin(), Writes.end()); Writes.resize(std::distance(Writes.begin(), It)); } LLVM_DEBUG({ for (const WriteRef &WR : Writes) { const WriteState &WS = *WR.getWriteState(); dbgs() << "[PRF] Found a dependent use of Register " << MRI.getName(WS.getRegisterID()) << " (defined by instruction #" << WR.getSourceIndex() << ")\n"; } }); } void RegisterFile::addRegisterRead(ReadState &RS, const MCSubtargetInfo &STI) const { MCPhysReg RegID = RS.getRegisterID(); const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; RS.setPRF(RRI.IndexPlusCost.first); if (RS.isIndependentFromDef()) return; if (ZeroRegisters[RS.getRegisterID()]) RS.setReadZero(); SmallVector DependentWrites; collectWrites(RS, DependentWrites); RS.setDependentWrites(DependentWrites.size()); // We know that this read depends on all the writes in DependentWrites. // For each write, check if we have ReadAdvance information, and use it // to figure out in how many cycles this read becomes available. const ReadDescriptor &RD = RS.getDescriptor(); const MCSchedModel &SM = STI.getSchedModel(); const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID); for (WriteRef &WR : DependentWrites) { WriteState &WS = *WR.getWriteState(); unsigned WriteResID = WS.getWriteResourceID(); int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID); WS.addUser(WR.getSourceIndex(), &RS, ReadAdvance); } } unsigned RegisterFile::isAvailable(ArrayRef Regs) const { SmallVector NumPhysRegs(getNumRegisterFiles()); // Find how many new mappings must be created for each register file. for (const MCPhysReg RegID : Regs) { const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; const IndexPlusCostPairTy &Entry = RRI.IndexPlusCost; if (Entry.first) NumPhysRegs[Entry.first] += Entry.second; NumPhysRegs[0] += Entry.second; } unsigned Response = 0; for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { unsigned NumRegs = NumPhysRegs[I]; if (!NumRegs) continue; const RegisterMappingTracker &RMT = RegisterFiles[I]; if (!RMT.NumPhysRegs) { // The register file has an unbounded number of microarchitectural // registers. continue; } if (RMT.NumPhysRegs < NumRegs) { // The current register file is too small. This may occur if the number of // microarchitectural registers in register file #0 was changed by the // users via flag -reg-file-size. Alternatively, the scheduling model // specified a too small number of registers for this register file. LLVM_DEBUG(dbgs() << "Not enough registers in the register file.\n"); // FIXME: Normalize the instruction register count to match the // NumPhysRegs value. This is a highly unusual case, and is not expected // to occur. This normalization is hiding an inconsistency in either the // scheduling model or in the value that the user might have specified // for NumPhysRegs. NumRegs = RMT.NumPhysRegs; } if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs)) Response |= (1U << I); } return Response; } #ifndef NDEBUG void RegisterFile::dump() const { for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) { const RegisterMapping &RM = RegisterMappings[I]; const RegisterRenamingInfo &RRI = RM.second; if (ZeroRegisters[I]) { dbgs() << MRI.getName(I) << ", " << I << ", PRF=" << RRI.IndexPlusCost.first << ", Cost=" << RRI.IndexPlusCost.second << ", RenameAs=" << RRI.RenameAs << ", IsZero=" << ZeroRegisters[I] << ","; RM.first.dump(); dbgs() << '\n'; } } for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { dbgs() << "Register File #" << I; const RegisterMappingTracker &RMT = RegisterFiles[I]; dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs << "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n'; } } #endif } // namespace mca } // namespace llvm