//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Trace PCs. // This module implements __sanitizer_cov_trace_pc_guard[_init], // the callback required for -fsanitize-coverage=trace-pc-guard instrumentation. // //===----------------------------------------------------------------------===// #include "FuzzerCorpus.h" #include "FuzzerDefs.h" #include "FuzzerDictionary.h" #include "FuzzerTracePC.h" #include "FuzzerValueBitMap.h" namespace fuzzer { TracePC TPC; void TracePC::HandleTrace(uint32_t *Guard, uintptr_t PC) { uint32_t Idx = *Guard; if (!Idx) return; uint8_t *CounterPtr = &Counters[Idx % kNumCounters]; uint8_t Counter = *CounterPtr; if (Counter == 0) { if (!PCs[Idx % kNumPCs]) { AddNewPCID(Idx); TotalPCCoverage++; PCs[Idx % kNumPCs] = PC; } } if (UseCounters) { if (Counter < 128) *CounterPtr = Counter + 1; else *Guard = 0; } else { *CounterPtr = 1; *Guard = 0; } } void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) { if (Start == Stop || *Start) return; assert(NumModules < sizeof(Modules) / sizeof(Modules[0])); for (uint32_t *P = Start; P < Stop; P++) *P = ++NumGuards; Modules[NumModules].Start = Start; Modules[NumModules].Stop = Stop; NumModules++; } void TracePC::PrintModuleInfo() { Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards); for (size_t i = 0; i < NumModules; i++) Printf("[%p, %p), ", Modules[i].Start, Modules[i].Stop); Printf("\n"); } void TracePC::ResetGuards() { uint32_t N = 0; for (size_t M = 0; M < NumModules; M++) for (uint32_t *X = Modules[M].Start, *End = Modules[M].Stop; X < End; X++) *X = ++N; assert(N == NumGuards); } size_t TracePC::FinalizeTrace(InputCorpus *C, size_t InputSize, bool Shrink) { if (!UsingTracePcGuard()) return 0; size_t Res = 0; const size_t Step = 8; assert(reinterpret_cast(Counters) % Step == 0); size_t N = Min(kNumCounters, NumGuards + 1); N = (N + Step - 1) & ~(Step - 1); // Round up. for (size_t Idx = 0; Idx < N; Idx += Step) { uint64_t Bundle = *reinterpret_cast(&Counters[Idx]); if (!Bundle) continue; for (size_t i = Idx; i < Idx + Step; i++) { uint8_t Counter = (Bundle >> (i * 8)) & 0xff; if (!Counter) continue; Counters[i] = 0; unsigned Bit = 0; /**/ if (Counter >= 128) Bit = 7; else if (Counter >= 32) Bit = 6; else if (Counter >= 16) Bit = 5; else if (Counter >= 8) Bit = 4; else if (Counter >= 4) Bit = 3; else if (Counter >= 3) Bit = 2; else if (Counter >= 2) Bit = 1; size_t Feature = (i * 8 + Bit); if (C->AddFeature(Feature, InputSize, Shrink)) Res++; } } if (UseValueProfile) ValueProfileMap.ForEach([&](size_t Idx) { if (C->AddFeature(NumGuards + Idx, InputSize, Shrink)) Res++; }); return Res; } void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) { const uintptr_t kBits = 12; const uintptr_t kMask = (1 << kBits) - 1; uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits); HandleValueProfile(Idx); } void TracePC::PrintCoverage() { Printf("COVERAGE:\n"); for (size_t i = 0; i < Min(NumGuards + 1, kNumPCs); i++) { if (PCs[i]) PrintPC("COVERED: %p %F %L\n", "COVERED: %p\n", PCs[i]); } } // Value profile. // We keep track of various values that affect control flow. // These values are inserted into a bit-set-based hash map. // Every new bit in the map is treated as a new coverage. // // For memcmp/strcmp/etc the interesting value is the length of the common // prefix of the parameters. // For cmp instructions the interesting value is a XOR of the parameters. // The interesting value is mixed up with the PC and is then added to the map. void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2, size_t n) { if (!n) return; size_t Len = std::min(n, (size_t)32); const uint8_t *A1 = reinterpret_cast(s1); const uint8_t *A2 = reinterpret_cast(s2); size_t I = 0; for (; I < Len; I++) if (A1[I] != A2[I]) break; size_t PC = reinterpret_cast(caller_pc); size_t Idx = I; // if (I < Len) // Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1; TPC.HandleValueProfile((PC & 4095) | (Idx << 12)); } void TracePC::AddValueForStrcmp(void *caller_pc, const char *s1, const char *s2, size_t n) { if (!n) return; size_t Len = std::min(n, (size_t)32); const uint8_t *A1 = reinterpret_cast(s1); const uint8_t *A2 = reinterpret_cast(s2); size_t I = 0; for (; I < Len; I++) if (A1[I] != A2[I] || A1[I] == 0) break; size_t PC = reinterpret_cast(caller_pc); size_t Idx = I; // if (I < Len && A1[I]) // Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1; TPC.HandleValueProfile((PC & 4095) | (Idx << 12)); } template ATTRIBUTE_TARGET_POPCNT #ifdef __clang__ // g++ can't handle this __attribute__ here :( __attribute__((always_inline)) #endif // __clang__ void TracePC::HandleCmp(void *PC, T Arg1, T Arg2) { uintptr_t PCuint = reinterpret_cast(PC); uint64_t ArgXor = Arg1 ^ Arg2; uint64_t ArgDistance = __builtin_popcountl(ArgXor) + 1; // [1,65] uintptr_t Idx = ((PCuint & 4095) + 1) * ArgDistance; TORCInsert(ArgXor, Arg1, Arg2); HandleValueProfile(Idx); } void TracePC::ProcessTORC(Dictionary *Dict, const uint8_t *Data, size_t Size) { TORCToDict(TORC8, Dict, Data, Size); TORCToDict(TORC4, Dict, Data, Size); } template void TracePC::TORCToDict(const TableOfRecentCompares &TORC, Dictionary *Dict, const uint8_t *Data, size_t Size) { ScopedDoingMyOwnMemmem scoped_doing_my_own_memmem; for (size_t i = 0; i < TORC.kSize; i++) { T A[2] = {TORC.Table[i][0], TORC.Table[i][1]}; if (!A[0] && !A[1]) continue; for (int j = 0; j < 2; j++) TORCToDict(Dict, A[j], A[!j], Data, Size); } } template void TracePC::TORCToDict(Dictionary *Dict, T FindInData, T Substitute, const uint8_t *Data, size_t Size) { if (FindInData == Substitute) return; if (sizeof(T) == 4) { uint16_t HigherBytes = Substitute >> sizeof(T) * 4; if (HigherBytes == 0 || HigherBytes == 0xffff) TORCToDict(Dict, static_cast(FindInData), static_cast(Substitute), Data, Size); } const size_t DataSize = sizeof(T); const uint8_t *End = Data + Size; int Attempts = 3; for (int DoSwap = 0; DoSwap <= 1; DoSwap++) { for (const uint8_t *Cur = Data; Cur < End && Attempts--; Cur++) { Cur = (uint8_t *)memmem(Cur, End - Cur, &FindInData, DataSize); if (!Cur) break; size_t Pos = Cur - Data; Word W(reinterpret_cast(&Substitute), sizeof(Substitute)); DictionaryEntry DE(W, Pos); // TODO: evict all entries from Dic if it's full. Dict->push_back(DE); // Printf("Dict[%zd] TORC%zd %llx => %llx pos %zd\n", Dict->size(), // sizeof(T), // (uint64_t)FindInData, (uint64_t)Substitute, Pos); } FindInData = Bswap(FindInData); Substitute = Bswap(Substitute); } } } // namespace fuzzer extern "C" { __attribute__((visibility("default"))) void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) { uintptr_t PC = (uintptr_t)__builtin_return_address(0); fuzzer::TPC.HandleTrace(Guard, PC); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) { fuzzer::TPC.HandleInit(Start, Stop); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) { uintptr_t PC = (uintptr_t)__builtin_return_address(0); fuzzer::TPC.HandleCallerCallee(PC, Callee); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { uint64_t N = Cases[0]; uint64_t *Vals = Cases + 2; char *PC = (char*)__builtin_return_address(0); for (size_t i = 0; i < N; i++) if (Val != Vals[i]) fuzzer::TPC.HandleCmp(PC + i, Val, Vals[i]); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_div4(uint32_t Val) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Val, (uint32_t)0); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_div8(uint64_t Val) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Val, (uint64_t)0); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_gep(uintptr_t Idx) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Idx, (uintptr_t)0); } } // extern "C"