//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "RuntimeDyldCOFF.h" #include "RuntimeDyldCheckerImpl.h" #include "RuntimeDyldELF.h" #include "RuntimeDyldImpl.h" #include "RuntimeDyldMachO.h" #include "llvm/Object/COFF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MutexGuard.h" using namespace llvm; using namespace llvm::object; #define DEBUG_TYPE "dyld" namespace { enum RuntimeDyldErrorCode { GenericRTDyldError = 1 }; // FIXME: This class is only here to support the transition to llvm::Error. It // will be removed once this transition is complete. Clients should prefer to // deal with the Error value directly, rather than converting to error_code. class RuntimeDyldErrorCategory : public std::error_category { public: const char *name() const noexcept override { return "runtimedyld"; } std::string message(int Condition) const override { switch (static_cast(Condition)) { case GenericRTDyldError: return "Generic RuntimeDyld error"; } llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); } }; static ManagedStatic RTDyldErrorCategory; } char RuntimeDyldError::ID = 0; void RuntimeDyldError::log(raw_ostream &OS) const { OS << ErrMsg << "\n"; } std::error_code RuntimeDyldError::convertToErrorCode() const { return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); } // Empty out-of-line virtual destructor as the key function. RuntimeDyldImpl::~RuntimeDyldImpl() {} // Pin LoadedObjectInfo's vtables to this file. void RuntimeDyld::LoadedObjectInfo::anchor() {} namespace llvm { void RuntimeDyldImpl::registerEHFrames() {} void RuntimeDyldImpl::deregisterEHFrames() { MemMgr.deregisterEHFrames(); } #ifndef NDEBUG static void dumpSectionMemory(const SectionEntry &S, StringRef State) { dbgs() << "----- Contents of section " << S.getName() << " " << State << " -----"; if (S.getAddress() == nullptr) { dbgs() << "\n
\n"; return; } const unsigned ColsPerRow = 16; uint8_t *DataAddr = S.getAddress(); uint64_t LoadAddr = S.getLoadAddress(); unsigned StartPadding = LoadAddr & (ColsPerRow - 1); unsigned BytesRemaining = S.getSize(); if (StartPadding) { dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; while (StartPadding--) dbgs() << " "; } while (BytesRemaining > 0) { if ((LoadAddr & (ColsPerRow - 1)) == 0) dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; dbgs() << " " << format("%02x", *DataAddr); ++DataAddr; ++LoadAddr; --BytesRemaining; } dbgs() << "\n"; } #endif // Resolve the relocations for all symbols we currently know about. void RuntimeDyldImpl::resolveRelocations() { MutexGuard locked(lock); // Print out the sections prior to relocation. LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) dumpSectionMemory(Sections[i], "before relocations");); // First, resolve relocations associated with external symbols. if (auto Err = resolveExternalSymbols()) { HasError = true; ErrorStr = toString(std::move(Err)); } // Iterate over all outstanding relocations for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { // The Section here (Sections[i]) refers to the section in which the // symbol for the relocation is located. The SectionID in the relocation // entry provides the section to which the relocation will be applied. int Idx = it->first; uint64_t Addr = Sections[Idx].getLoadAddress(); LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" << format("%p", (uintptr_t)Addr) << "\n"); resolveRelocationList(it->second, Addr); } Relocations.clear(); // Print out sections after relocation. LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) dumpSectionMemory(Sections[i], "after relocations");); } void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) { MutexGuard locked(lock); for (unsigned i = 0, e = Sections.size(); i != e; ++i) { if (Sections[i].getAddress() == LocalAddress) { reassignSectionAddress(i, TargetAddress); return; } } llvm_unreachable("Attempting to remap address of unknown section!"); } static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result) { Expected AddressOrErr = Sym.getAddress(); if (!AddressOrErr) return AddressOrErr.takeError(); Result = *AddressOrErr - Sec.getAddress(); return Error::success(); } Expected RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { MutexGuard locked(lock); // Save information about our target Arch = (Triple::ArchType)Obj.getArch(); IsTargetLittleEndian = Obj.isLittleEndian(); setMipsABI(Obj); // Compute the memory size required to load all sections to be loaded // and pass this information to the memory manager if (MemMgr.needsToReserveAllocationSpace()) { uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; if (auto Err = computeTotalAllocSize(Obj, CodeSize, CodeAlign, RODataSize, RODataAlign, RWDataSize, RWDataAlign)) return std::move(Err); MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, RWDataSize, RWDataAlign); } // Used sections from the object file ObjSectionToIDMap LocalSections; // Common symbols requiring allocation, with their sizes and alignments CommonSymbolList CommonSymbolsToAllocate; uint64_t CommonSize = 0; uint32_t CommonAlign = 0; // First, collect all weak and common symbols. We need to know if stronger // definitions occur elsewhere. JITSymbolResolver::LookupFlagsResult SymbolFlags; { JITSymbolResolver::LookupSet Symbols; for (auto &Sym : Obj.symbols()) { uint32_t Flags = Sym.getFlags(); if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { // Get symbol name. if (auto NameOrErr = Sym.getName()) Symbols.insert(*NameOrErr); else return NameOrErr.takeError(); } } if (auto FlagsResultOrErr = Resolver.lookupFlags(Symbols)) SymbolFlags = std::move(*FlagsResultOrErr); else return FlagsResultOrErr.takeError(); } // Parse symbols LLVM_DEBUG(dbgs() << "Parse symbols:\n"); for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; ++I) { uint32_t Flags = I->getFlags(); // Skip undefined symbols. if (Flags & SymbolRef::SF_Undefined) continue; // Get the symbol type. object::SymbolRef::Type SymType; if (auto SymTypeOrErr = I->getType()) SymType = *SymTypeOrErr; else return SymTypeOrErr.takeError(); // Get symbol name. StringRef Name; if (auto NameOrErr = I->getName()) Name = *NameOrErr; else return NameOrErr.takeError(); // Compute JIT symbol flags. JITSymbolFlags JITSymFlags = getJITSymbolFlags(*I); // If this is a weak definition, check to see if there's a strong one. // If there is, skip this symbol (we won't be providing it: the strong // definition will). If there's no strong definition, make this definition // strong. if (JITSymFlags.isWeak() || JITSymFlags.isCommon()) { // First check whether there's already a definition in this instance. // FIXME: Override existing weak definitions with strong ones. if (GlobalSymbolTable.count(Name)) continue; // Then check whether we found flags for an existing symbol during the // flags lookup earlier. auto FlagsI = SymbolFlags.find(Name); if (FlagsI == SymbolFlags.end() || (JITSymFlags.isWeak() && !FlagsI->second.isStrong()) || (JITSymFlags.isCommon() && FlagsI->second.isCommon())) { if (JITSymFlags.isWeak()) JITSymFlags &= ~JITSymbolFlags::Weak; if (JITSymFlags.isCommon()) { JITSymFlags &= ~JITSymbolFlags::Common; uint32_t Align = I->getAlignment(); uint64_t Size = I->getCommonSize(); if (!CommonAlign) CommonAlign = Align; CommonSize = alignTo(CommonSize, Align) + Size; CommonSymbolsToAllocate.push_back(*I); } } else continue; } if (Flags & SymbolRef::SF_Absolute && SymType != object::SymbolRef::ST_File) { uint64_t Addr = 0; if (auto AddrOrErr = I->getAddress()) Addr = *AddrOrErr; else return AddrOrErr.takeError(); unsigned SectionID = AbsoluteSymbolSection; LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name << " SID: " << SectionID << " Offset: " << format("%p", (uintptr_t)Addr) << " flags: " << Flags << "\n"); GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, JITSymFlags); } else if (SymType == object::SymbolRef::ST_Function || SymType == object::SymbolRef::ST_Data || SymType == object::SymbolRef::ST_Unknown || SymType == object::SymbolRef::ST_Other) { section_iterator SI = Obj.section_end(); if (auto SIOrErr = I->getSection()) SI = *SIOrErr; else return SIOrErr.takeError(); if (SI == Obj.section_end()) continue; // Get symbol offset. uint64_t SectOffset; if (auto Err = getOffset(*I, *SI, SectOffset)) return std::move(Err); bool IsCode = SI->isText(); unsigned SectionID; if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode, LocalSections)) SectionID = *SectionIDOrErr; else return SectionIDOrErr.takeError(); LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << " SID: " << SectionID << " Offset: " << format("%p", (uintptr_t)SectOffset) << " flags: " << Flags << "\n"); GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, SectOffset, JITSymFlags); } } // Allocate common symbols if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, CommonAlign)) return std::move(Err); // Parse and process relocations LLVM_DEBUG(dbgs() << "Parse relocations:\n"); for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); SI != SE; ++SI) { StubMap Stubs; section_iterator RelocatedSection = SI->getRelocatedSection(); if (RelocatedSection == SE) continue; relocation_iterator I = SI->relocation_begin(); relocation_iterator E = SI->relocation_end(); if (I == E && !ProcessAllSections) continue; bool IsCode = RelocatedSection->isText(); unsigned SectionID = 0; if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections)) SectionID = *SectionIDOrErr; else return SectionIDOrErr.takeError(); LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); for (; I != E;) if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) I = *IOrErr; else return IOrErr.takeError(); // If there is an attached checker, notify it about the stubs for this // section so that they can be verified. if (Checker) Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs); } // Give the subclasses a chance to tie-up any loose ends. if (auto Err = finalizeLoad(Obj, LocalSections)) return std::move(Err); // for (auto E : LocalSections) // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; return LocalSections; } // A helper method for computeTotalAllocSize. // Computes the memory size required to allocate sections with the given sizes, // assuming that all sections are allocated with the given alignment static uint64_t computeAllocationSizeForSections(std::vector &SectionSizes, uint64_t Alignment) { uint64_t TotalSize = 0; for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { uint64_t AlignedSize = (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; TotalSize += AlignedSize; } return TotalSize; } static bool isRequiredForExecution(const SectionRef Section) { const ObjectFile *Obj = Section.getObject(); if (isa(Obj)) return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; if (auto *COFFObj = dyn_cast(Obj)) { const coff_section *CoffSection = COFFObj->getCOFFSection(Section); // Avoid loading zero-sized COFF sections. // In PE files, VirtualSize gives the section size, and SizeOfRawData // may be zero for sections with content. In Obj files, SizeOfRawData // gives the section size, and VirtualSize is always zero. Hence // the need to check for both cases below. bool HasContent = (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); bool IsDiscardable = CoffSection->Characteristics & (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); return HasContent && !IsDiscardable; } assert(isa(Obj)); return true; } static bool isReadOnlyData(const SectionRef Section) { const ObjectFile *Obj = Section.getObject(); if (isa(Obj)) return !(ELFSectionRef(Section).getFlags() & (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); if (auto *COFFObj = dyn_cast(Obj)) return ((COFFObj->getCOFFSection(Section)->Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE)) == (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ)); assert(isa(Obj)); return false; } static bool isZeroInit(const SectionRef Section) { const ObjectFile *Obj = Section.getObject(); if (isa(Obj)) return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; if (auto *COFFObj = dyn_cast(Obj)) return COFFObj->getCOFFSection(Section)->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; auto *MachO = cast(Obj); unsigned SectionType = MachO->getSectionType(Section); return SectionType == MachO::S_ZEROFILL || SectionType == MachO::S_GB_ZEROFILL; } // Compute an upper bound of the memory size that is required to load all // sections Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, uint64_t &CodeSize, uint32_t &CodeAlign, uint64_t &RODataSize, uint32_t &RODataAlign, uint64_t &RWDataSize, uint32_t &RWDataAlign) { // Compute the size of all sections required for execution std::vector CodeSectionSizes; std::vector ROSectionSizes; std::vector RWSectionSizes; // Collect sizes of all sections to be loaded; // also determine the max alignment of all sections for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); SI != SE; ++SI) { const SectionRef &Section = *SI; bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; // Consider only the sections that are required to be loaded for execution if (IsRequired) { uint64_t DataSize = Section.getSize(); uint64_t Alignment64 = Section.getAlignment(); unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; bool IsCode = Section.isText(); bool IsReadOnly = isReadOnlyData(Section); StringRef Name; if (auto EC = Section.getName(Name)) return errorCodeToError(EC); uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); uint64_t SectionSize = DataSize + StubBufSize; // The .eh_frame section (at least on Linux) needs an extra four bytes // padded // with zeroes added at the end. For MachO objects, this section has a // slightly different name, so this won't have any effect for MachO // objects. if (Name == ".eh_frame") SectionSize += 4; if (!SectionSize) SectionSize = 1; if (IsCode) { CodeAlign = std::max(CodeAlign, Alignment); CodeSectionSizes.push_back(SectionSize); } else if (IsReadOnly) { RODataAlign = std::max(RODataAlign, Alignment); ROSectionSizes.push_back(SectionSize); } else { RWDataAlign = std::max(RWDataAlign, Alignment); RWSectionSizes.push_back(SectionSize); } } } // Compute Global Offset Table size. If it is not zero we // also update alignment, which is equal to a size of a // single GOT entry. if (unsigned GotSize = computeGOTSize(Obj)) { RWSectionSizes.push_back(GotSize); RWDataAlign = std::max(RWDataAlign, getGOTEntrySize()); } // Compute the size of all common symbols uint64_t CommonSize = 0; uint32_t CommonAlign = 1; for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; ++I) { uint32_t Flags = I->getFlags(); if (Flags & SymbolRef::SF_Common) { // Add the common symbols to a list. We'll allocate them all below. uint64_t Size = I->getCommonSize(); uint32_t Align = I->getAlignment(); // If this is the first common symbol, use its alignment as the alignment // for the common symbols section. if (CommonSize == 0) CommonAlign = Align; CommonSize = alignTo(CommonSize, Align) + Size; } } if (CommonSize != 0) { RWSectionSizes.push_back(CommonSize); RWDataAlign = std::max(RWDataAlign, CommonAlign); } // Compute the required allocation space for each different type of sections // (code, read-only data, read-write data) assuming that all sections are // allocated with the max alignment. Note that we cannot compute with the // individual alignments of the sections, because then the required size // depends on the order, in which the sections are allocated. CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); return Error::success(); } // compute GOT size unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { size_t GotEntrySize = getGOTEntrySize(); if (!GotEntrySize) return 0; size_t GotSize = 0; for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); SI != SE; ++SI) { for (const RelocationRef &Reloc : SI->relocations()) if (relocationNeedsGot(Reloc)) GotSize += GotEntrySize; } return GotSize; } // compute stub buffer size for the given section unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, const SectionRef &Section) { unsigned StubSize = getMaxStubSize(); if (StubSize == 0) { return 0; } // FIXME: this is an inefficient way to handle this. We should computed the // necessary section allocation size in loadObject by walking all the sections // once. unsigned StubBufSize = 0; for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); SI != SE; ++SI) { section_iterator RelSecI = SI->getRelocatedSection(); if (!(RelSecI == Section)) continue; for (const RelocationRef &Reloc : SI->relocations()) if (relocationNeedsStub(Reloc)) StubBufSize += StubSize; } // Get section data size and alignment uint64_t DataSize = Section.getSize(); uint64_t Alignment64 = Section.getAlignment(); // Add stubbuf size alignment unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; unsigned StubAlignment = getStubAlignment(); unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); if (StubAlignment > EndAlignment) StubBufSize += StubAlignment - EndAlignment; return StubBufSize; } uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, unsigned Size) const { uint64_t Result = 0; if (IsTargetLittleEndian) { Src += Size - 1; while (Size--) Result = (Result << 8) | *Src--; } else while (Size--) Result = (Result << 8) | *Src++; return Result; } void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const { if (IsTargetLittleEndian) { while (Size--) { *Dst++ = Value & 0xFF; Value >>= 8; } } else { Dst += Size - 1; while (Size--) { *Dst-- = Value & 0xFF; Value >>= 8; } } } JITSymbolFlags RuntimeDyldImpl::getJITSymbolFlags(const BasicSymbolRef &SR) { return JITSymbolFlags::fromObjectSymbol(SR); } Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, CommonSymbolList &SymbolsToAllocate, uint64_t CommonSize, uint32_t CommonAlign) { if (SymbolsToAllocate.empty()) return Error::success(); // Allocate memory for the section unsigned SectionID = Sections.size(); uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, "", false); if (!Addr) report_fatal_error("Unable to allocate memory for common symbols!"); uint64_t Offset = 0; Sections.push_back( SectionEntry("", Addr, CommonSize, CommonSize, 0)); memset(Addr, 0, CommonSize); LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " << format("%p", Addr) << " DataSize: " << CommonSize << "\n"); // Assign the address of each symbol for (auto &Sym : SymbolsToAllocate) { uint32_t Align = Sym.getAlignment(); uint64_t Size = Sym.getCommonSize(); StringRef Name; if (auto NameOrErr = Sym.getName()) Name = *NameOrErr; else return NameOrErr.takeError(); if (Align) { // This symbol has an alignment requirement. uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); Addr += AlignOffset; Offset += AlignOffset; } JITSymbolFlags JITSymFlags = getJITSymbolFlags(Sym); LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " << format("%p", Addr) << "\n"); GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Offset, JITSymFlags); Offset += Size; Addr += Size; } if (Checker) Checker->registerSection(Obj.getFileName(), SectionID); return Error::success(); } Expected RuntimeDyldImpl::emitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode) { StringRef data; uint64_t Alignment64 = Section.getAlignment(); unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; unsigned PaddingSize = 0; unsigned StubBufSize = 0; bool IsRequired = isRequiredForExecution(Section); bool IsVirtual = Section.isVirtual(); bool IsZeroInit = isZeroInit(Section); bool IsReadOnly = isReadOnlyData(Section); uint64_t DataSize = Section.getSize(); StringRef Name; if (auto EC = Section.getName(Name)) return errorCodeToError(EC); StubBufSize = computeSectionStubBufSize(Obj, Section); // The .eh_frame section (at least on Linux) needs an extra four bytes padded // with zeroes added at the end. For MachO objects, this section has a // slightly different name, so this won't have any effect for MachO objects. if (Name == ".eh_frame") PaddingSize = 4; uintptr_t Allocate; unsigned SectionID = Sections.size(); uint8_t *Addr; const char *pData = nullptr; // If this section contains any bits (i.e. isn't a virtual or bss section), // grab a reference to them. if (!IsVirtual && !IsZeroInit) { // In either case, set the location of the unrelocated section in memory, // since we still process relocations for it even if we're not applying them. if (auto EC = Section.getContents(data)) return errorCodeToError(EC); pData = data.data(); } // Code section alignment needs to be at least as high as stub alignment or // padding calculations may by incorrect when the section is remapped to a // higher alignment. if (IsCode) { Alignment = std::max(Alignment, getStubAlignment()); if (StubBufSize > 0) PaddingSize += getStubAlignment() - 1; } // Some sections, such as debug info, don't need to be loaded for execution. // Process those only if explicitly requested. if (IsRequired || ProcessAllSections) { Allocate = DataSize + PaddingSize + StubBufSize; if (!Allocate) Allocate = 1; Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, Name) : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, Name, IsReadOnly); if (!Addr) report_fatal_error("Unable to allocate section memory!"); // Zero-initialize or copy the data from the image if (IsZeroInit || IsVirtual) memset(Addr, 0, DataSize); else memcpy(Addr, pData, DataSize); // Fill in any extra bytes we allocated for padding if (PaddingSize != 0) { memset(Addr + DataSize, 0, PaddingSize); // Update the DataSize variable to include padding. DataSize += PaddingSize; // Align DataSize to stub alignment if we have any stubs (PaddingSize will // have been increased above to account for this). if (StubBufSize > 0) DataSize &= ~(getStubAlignment() - 1); } LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name << " obj addr: " << format("%p", pData) << " new addr: " << format("%p", Addr) << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize << " Allocate: " << Allocate << "\n"); } else { // Even if we didn't load the section, we need to record an entry for it // to handle later processing (and by 'handle' I mean don't do anything // with these sections). Allocate = 0; Addr = nullptr; LLVM_DEBUG( dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name << " obj addr: " << format("%p", data.data()) << " new addr: 0" << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize << " Allocate: " << Allocate << "\n"); } Sections.push_back( SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); // Debug info sections are linked as if their load address was zero if (!IsRequired) Sections.back().setLoadAddress(0); if (Checker) Checker->registerSection(Obj.getFileName(), SectionID); return SectionID; } Expected RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections) { unsigned SectionID = 0; ObjSectionToIDMap::iterator i = LocalSections.find(Section); if (i != LocalSections.end()) SectionID = i->second; else { if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) SectionID = *SectionIDOrErr; else return SectionIDOrErr.takeError(); LocalSections[Section] = SectionID; } return SectionID; } void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, unsigned SectionID) { Relocations[SectionID].push_back(RE); } void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName) { // Relocation by symbol. If the symbol is found in the global symbol table, // create an appropriate section relocation. Otherwise, add it to // ExternalSymbolRelocations. RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); if (Loc == GlobalSymbolTable.end()) { ExternalSymbolRelocations[SymbolName].push_back(RE); } else { // Copy the RE since we want to modify its addend. RelocationEntry RECopy = RE; const auto &SymInfo = Loc->second; RECopy.Addend += SymInfo.getOffset(); Relocations[SymInfo.getSectionID()].push_back(RECopy); } } uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, unsigned AbiVariant) { if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { // This stub has to be able to access the full address space, // since symbol lookup won't necessarily find a handy, in-range, // PLT stub for functions which could be anywhere. // Stub can use ip0 (== x16) to calculate address writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3: writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc: writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc: writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc: writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 return Addr; } else if (Arch == Triple::arm || Arch == Triple::armeb) { // TODO: There is only ARM far stub now. We should add the Thumb stub, // and stubs for branches Thumb - ARM and ARM - Thumb. writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] return Addr + 4; } else if (IsMipsO32ABI || IsMipsN32ABI) { // 0: 3c190000 lui t9,%hi(addr). // 4: 27390000 addiu t9,t9,%lo(addr). // 8: 03200008 jr t9. // c: 00000000 nop. const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; const unsigned NopInstr = 0x0; unsigned JrT9Instr = 0x03200008; if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) JrT9Instr = 0x03200009; writeBytesUnaligned(LuiT9Instr, Addr, 4); writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); writeBytesUnaligned(JrT9Instr, Addr + 8, 4); writeBytesUnaligned(NopInstr, Addr + 12, 4); return Addr; } else if (IsMipsN64ABI) { // 0: 3c190000 lui t9,%highest(addr). // 4: 67390000 daddiu t9,t9,%higher(addr). // 8: 0019CC38 dsll t9,t9,16. // c: 67390000 daddiu t9,t9,%hi(addr). // 10: 0019CC38 dsll t9,t9,16. // 14: 67390000 daddiu t9,t9,%lo(addr). // 18: 03200008 jr t9. // 1c: 00000000 nop. const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, DsllT9Instr = 0x19CC38; const unsigned NopInstr = 0x0; unsigned JrT9Instr = 0x03200008; if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) JrT9Instr = 0x03200009; writeBytesUnaligned(LuiT9Instr, Addr, 4); writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); writeBytesUnaligned(JrT9Instr, Addr + 24, 4); writeBytesUnaligned(NopInstr, Addr + 28, 4); return Addr; } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { // Depending on which version of the ELF ABI is in use, we need to // generate one of two variants of the stub. They both start with // the same sequence to load the target address into r12. writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) if (AbiVariant == 2) { // PowerPC64 stub ELFv2 ABI: The address points to the function itself. // The address is already in r12 as required by the ABI. Branch to it. writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 writeInt32BE(Addr+28, 0x4E800420); // bctr } else { // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. // Load the function address on r11 and sets it to control register. Also // loads the function TOC in r2 and environment pointer to r11. writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) writeInt32BE(Addr+40, 0x4E800420); // bctr } return Addr; } else if (Arch == Triple::systemz) { writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 writeInt16BE(Addr+2, 0x0000); writeInt16BE(Addr+4, 0x0004); writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 // 8-byte address stored at Addr + 8 return Addr; } else if (Arch == Triple::x86_64) { *Addr = 0xFF; // jmp *(Addr+1) = 0x25; // rip // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 } else if (Arch == Triple::x86) { *Addr = 0xE9; // 32-bit pc-relative jump. } return Addr; } // Assign an address to a symbol name and resolve all the relocations // associated with it. void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { // The address to use for relocation resolution is not // the address of the local section buffer. We must be doing // a remote execution environment of some sort. Relocations can't // be applied until all the sections have been moved. The client must // trigger this with a call to MCJIT::finalize() or // RuntimeDyld::resolveRelocations(). // // Addr is a uint64_t because we can't assume the pointer width // of the target is the same as that of the host. Just use a generic // "big enough" type. LLVM_DEBUG( dbgs() << "Reassigning address for section " << SectionID << " (" << Sections[SectionID].getName() << "): " << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) << " -> " << format("0x%016" PRIx64, Addr) << "\n"); Sections[SectionID].setLoadAddress(Addr); } void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, uint64_t Value) { for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { const RelocationEntry &RE = Relocs[i]; // Ignore relocations for sections that were not loaded if (Sections[RE.SectionID].getAddress() == nullptr) continue; resolveRelocation(RE, Value); } } Error RuntimeDyldImpl::resolveExternalSymbols() { StringMap ExternalSymbolMap; // Resolution can trigger emission of more symbols, so iterate until // we've resolved *everything*. { JITSymbolResolver::LookupSet ResolvedSymbols; while (true) { JITSymbolResolver::LookupSet NewSymbols; for (auto &RelocKV : ExternalSymbolRelocations) { StringRef Name = RelocKV.first(); if (!Name.empty() && !GlobalSymbolTable.count(Name) && !ResolvedSymbols.count(Name)) NewSymbols.insert(Name); } if (NewSymbols.empty()) break; auto NewResolverResults = Resolver.lookup(NewSymbols); if (!NewResolverResults) return NewResolverResults.takeError(); assert(NewResolverResults->size() == NewSymbols.size() && "Should have errored on unresolved symbols"); for (auto &RRKV : *NewResolverResults) { assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); ExternalSymbolMap.insert(RRKV); ResolvedSymbols.insert(RRKV.first); } } } while (!ExternalSymbolRelocations.empty()) { StringMap::iterator i = ExternalSymbolRelocations.begin(); StringRef Name = i->first(); if (Name.size() == 0) { // This is an absolute symbol, use an address of zero. LLVM_DEBUG(dbgs() << "Resolving absolute relocations." << "\n"); RelocationList &Relocs = i->second; resolveRelocationList(Relocs, 0); } else { uint64_t Addr = 0; JITSymbolFlags Flags; RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); if (Loc == GlobalSymbolTable.end()) { auto RRI = ExternalSymbolMap.find(Name); assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); Addr = RRI->second.getAddress(); Flags = RRI->second.getFlags(); // The call to getSymbolAddress may have caused additional modules to // be loaded, which may have added new entries to the // ExternalSymbolRelocations map. Consquently, we need to update our // iterator. This is also why retrieval of the relocation list // associated with this symbol is deferred until below this point. // New entries may have been added to the relocation list. i = ExternalSymbolRelocations.find(Name); } else { // We found the symbol in our global table. It was probably in a // Module that we loaded previously. const auto &SymInfo = Loc->second; Addr = getSectionLoadAddress(SymInfo.getSectionID()) + SymInfo.getOffset(); Flags = SymInfo.getFlags(); } // FIXME: Implement error handling that doesn't kill the host program! if (!Addr) report_fatal_error("Program used external function '" + Name + "' which could not be resolved!"); // If Resolver returned UINT64_MAX, the client wants to handle this symbol // manually and we shouldn't resolve its relocations. if (Addr != UINT64_MAX) { // Tweak the address based on the symbol flags if necessary. // For example, this is used by RuntimeDyldMachOARM to toggle the low bit // if the target symbol is Thumb. Addr = modifyAddressBasedOnFlags(Addr, Flags); LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" << format("0x%lx", Addr) << "\n"); // This list may have been updated when we called getSymbolAddress, so // don't change this code to get the list earlier. RelocationList &Relocs = i->second; resolveRelocationList(Relocs, Addr); } } ExternalSymbolRelocations.erase(i); } return Error::success(); } //===----------------------------------------------------------------------===// // RuntimeDyld class implementation uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( const object::SectionRef &Sec) const { auto I = ObjSecToIDMap.find(Sec); if (I != ObjSecToIDMap.end()) return RTDyld.Sections[I->second].getLoadAddress(); return 0; } void RuntimeDyld::MemoryManager::anchor() {} void JITSymbolResolver::anchor() {} void LegacyJITSymbolResolver::anchor() {} RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver) : MemMgr(MemMgr), Resolver(Resolver) { // FIXME: There's a potential issue lurking here if a single instance of // RuntimeDyld is used to load multiple objects. The current implementation // associates a single memory manager with a RuntimeDyld instance. Even // though the public class spawns a new 'impl' instance for each load, // they share a single memory manager. This can become a problem when page // permissions are applied. Dyld = nullptr; ProcessAllSections = false; Checker = nullptr; } RuntimeDyld::~RuntimeDyld() {} static std::unique_ptr createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, JITSymbolResolver &Resolver, bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { std::unique_ptr Dyld = RuntimeDyldCOFF::create(Arch, MM, Resolver); Dyld->setProcessAllSections(ProcessAllSections); Dyld->setRuntimeDyldChecker(Checker); return Dyld; } static std::unique_ptr createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, JITSymbolResolver &Resolver, bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { std::unique_ptr Dyld = RuntimeDyldELF::create(Arch, MM, Resolver); Dyld->setProcessAllSections(ProcessAllSections); Dyld->setRuntimeDyldChecker(Checker); return Dyld; } static std::unique_ptr createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, JITSymbolResolver &Resolver, bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { std::unique_ptr Dyld = RuntimeDyldMachO::create(Arch, MM, Resolver); Dyld->setProcessAllSections(ProcessAllSections); Dyld->setRuntimeDyldChecker(Checker); return Dyld; } std::unique_ptr RuntimeDyld::loadObject(const ObjectFile &Obj) { if (!Dyld) { if (Obj.isELF()) Dyld = createRuntimeDyldELF(static_cast(Obj.getArch()), MemMgr, Resolver, ProcessAllSections, Checker); else if (Obj.isMachO()) Dyld = createRuntimeDyldMachO( static_cast(Obj.getArch()), MemMgr, Resolver, ProcessAllSections, Checker); else if (Obj.isCOFF()) Dyld = createRuntimeDyldCOFF( static_cast(Obj.getArch()), MemMgr, Resolver, ProcessAllSections, Checker); else report_fatal_error("Incompatible object format!"); } if (!Dyld->isCompatibleFile(Obj)) report_fatal_error("Incompatible object format!"); auto LoadedObjInfo = Dyld->loadObject(Obj); MemMgr.notifyObjectLoaded(*this, Obj); return LoadedObjInfo; } void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { if (!Dyld) return nullptr; return Dyld->getSymbolLocalAddress(Name); } JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { if (!Dyld) return nullptr; return Dyld->getSymbol(Name); } std::map RuntimeDyld::getSymbolTable() const { if (!Dyld) return std::map(); return Dyld->getSymbolTable(); } void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { Dyld->reassignSectionAddress(SectionID, Addr); } void RuntimeDyld::mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) { Dyld->mapSectionAddress(LocalAddress, TargetAddress); } bool RuntimeDyld::hasError() { return Dyld->hasError(); } StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } void RuntimeDyld::finalizeWithMemoryManagerLocking() { bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; MemMgr.FinalizationLocked = true; resolveRelocations(); registerEHFrames(); if (!MemoryFinalizationLocked) { MemMgr.finalizeMemory(); MemMgr.FinalizationLocked = false; } } void RuntimeDyld::registerEHFrames() { if (Dyld) Dyld->registerEHFrames(); } void RuntimeDyld::deregisterEHFrames() { if (Dyld) Dyld->deregisterEHFrames(); } } // end namespace llvm