//===- DWARFUnit.cpp ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Path.h" #include "llvm/Support/WithColor.h" #include #include #include #include #include #include #include using namespace llvm; using namespace dwarf; void DWARFUnitSectionBase::parse(DWARFContext &C, const DWARFSection &Section) { const DWARFObject &D = C.getDWARFObj(); parseImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangeSection(), D.getStringSection(), D.getStringOffsetSection(), &D.getAddrSection(), D.getLineSection(), D.isLittleEndian(), false, false); } void DWARFUnitSectionBase::parseDWO(DWARFContext &C, const DWARFSection &DWOSection, bool Lazy) { const DWARFObject &D = C.getDWARFObj(); parseImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangeDWOSection(), D.getStringDWOSection(), D.getStringOffsetDWOSection(), &D.getAddrSection(), D.getLineDWOSection(), C.isLittleEndian(), true, Lazy); } DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, const DWARFDebugAbbrev *DA, const DWARFSection *RS, StringRef SS, const DWARFSection &SOS, const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, const DWARFUnitSectionBase &UnitSection, const DWARFUnitIndex::Entry *IndexEntry) : Context(DC), InfoSection(Section), Abbrev(DA), RangeSection(RS), LineSection(LS), StringSection(SS), StringOffsetSection(SOS), AddrOffsetSection(AOS), isLittleEndian(LE), isDWO(IsDWO), UnitSection(UnitSection), IndexEntry(IndexEntry) { clear(); } DWARFUnit::~DWARFUnit() = default; DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian, getAddressByteSize()); } bool DWARFUnit::getAddrOffsetSectionItem(uint32_t Index, uint64_t &Result) const { uint32_t Offset = AddrOffsetSectionBase + Index * getAddressByteSize(); if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) return false; DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, isLittleEndian, getAddressByteSize()); Result = DA.getRelocatedAddress(&Offset); return true; } bool DWARFUnit::getStringOffsetSectionItem(uint32_t Index, uint64_t &Result) const { if (!StringOffsetsTableContribution) return false; unsigned ItemSize = getDwarfStringOffsetsByteSize(); uint32_t Offset = getStringOffsetsBase() + Index * ItemSize; if (StringOffsetSection.Data.size() < Offset + ItemSize) return false; DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, isLittleEndian, 0); Result = DA.getRelocatedValue(ItemSize, &Offset); return true; } bool DWARFUnit::extractImpl(const DWARFDataExtractor &debug_info, uint32_t *offset_ptr) { Length = debug_info.getU32(offset_ptr); // FIXME: Support DWARF64. FormParams.Format = DWARF32; FormParams.Version = debug_info.getU16(offset_ptr); if (FormParams.Version >= 5) { UnitType = debug_info.getU8(offset_ptr); FormParams.AddrSize = debug_info.getU8(offset_ptr); AbbrOffset = debug_info.getU32(offset_ptr); } else { AbbrOffset = debug_info.getRelocatedValue(4, offset_ptr); FormParams.AddrSize = debug_info.getU8(offset_ptr); } if (IndexEntry) { if (AbbrOffset) return false; auto *UnitContrib = IndexEntry->getOffset(); if (!UnitContrib || UnitContrib->Length != (Length + 4)) return false; auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV); if (!AbbrEntry) return false; AbbrOffset = AbbrEntry->Offset; } bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1); bool VersionOK = DWARFContext::isSupportedVersion(getVersion()); bool AddrSizeOK = getAddressByteSize() == 4 || getAddressByteSize() == 8; if (!LengthOK || !VersionOK || !AddrSizeOK) return false; // Keep track of the highest DWARF version we encounter across all units. Context.setMaxVersionIfGreater(getVersion()); return true; } bool DWARFUnit::extract(const DWARFDataExtractor &debug_info, uint32_t *offset_ptr) { clear(); Offset = *offset_ptr; if (debug_info.isValidOffset(*offset_ptr)) { if (extractImpl(debug_info, offset_ptr)) return true; // reset the offset to where we tried to parse from if anything went wrong *offset_ptr = Offset; } return false; } bool DWARFUnit::extractRangeList(uint32_t RangeListOffset, DWARFDebugRangeList &RangeList) const { // Require that compile unit is extracted. assert(!DieArray.empty()); DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, isLittleEndian, getAddressByteSize()); uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; return RangeList.extract(RangesData, &ActualRangeListOffset); } void DWARFUnit::clear() { Offset = 0; Length = 0; Abbrevs = nullptr; FormParams = dwarf::FormParams({0, 0, DWARF32}); BaseAddr.reset(); RangeSectionBase = 0; AddrOffsetSectionBase = 0; clearDIEs(false); DWO.reset(); } const char *DWARFUnit::getCompilationDir() { return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); } Optional DWARFUnit::getDWOId() { return toUnsigned(getUnitDIE().find(DW_AT_GNU_dwo_id)); } void DWARFUnit::extractDIEsToVector( bool AppendCUDie, bool AppendNonCUDies, std::vector &Dies) const { if (!AppendCUDie && !AppendNonCUDies) return; // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. uint32_t DIEOffset = Offset + getHeaderSize(); uint32_t NextCUOffset = getNextUnitOffset(); DWARFDebugInfoEntry DIE; DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); uint32_t Depth = 0; bool IsCUDie = true; while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, Depth)) { if (IsCUDie) { if (AppendCUDie) Dies.push_back(DIE); if (!AppendNonCUDies) break; // The average bytes per DIE entry has been seen to be // around 14-20 so let's pre-reserve the needed memory for // our DIE entries accordingly. Dies.reserve(Dies.size() + getDebugInfoSize() / 14); IsCUDie = false; } else { Dies.push_back(DIE); } if (const DWARFAbbreviationDeclaration *AbbrDecl = DIE.getAbbreviationDeclarationPtr()) { // Normal DIE if (AbbrDecl->hasChildren()) ++Depth; } else { // NULL DIE. if (Depth > 0) --Depth; if (Depth == 0) break; // We are done with this compile unit! } } // Give a little bit of info if we encounter corrupt DWARF (our offset // should always terminate at or before the start of the next compilation // unit header). if (DIEOffset > NextCUOffset) WithColor::warning() << format("DWARF compile unit extends beyond its " "bounds cu 0x%8.8x at 0x%8.8x\n", getOffset(), DIEOffset); } size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { if ((CUDieOnly && !DieArray.empty()) || DieArray.size() > 1) return 0; // Already parsed. bool HasCUDie = !DieArray.empty(); extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); if (DieArray.empty()) return 0; // If CU DIE was just parsed, copy several attribute values from it. if (!HasCUDie) { DWARFDie UnitDie = getUnitDIE(); Optional PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); if (Optional Addr = toAddress(PC)) setBaseAddress({*Addr, PC->getSectionIndex()}); if (!isDWO) { assert(AddrOffsetSectionBase == 0); assert(RangeSectionBase == 0); AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base), 0); RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); } // In general, in DWARF v5 and beyond we derive the start of the unit's // contribution to the string offsets table from the unit DIE's // DW_AT_str_offsets_base attribute. Split DWARF units do not use this // attribute, so we assume that there is a contribution to the string // offsets table starting at offset 0 of the debug_str_offsets.dwo section. // In both cases we need to determine the format of the contribution, // which may differ from the unit's format. uint64_t StringOffsetsContributionBase = isDWO ? 0 : toSectionOffset(UnitDie.find(DW_AT_str_offsets_base), 0); if (IndexEntry) if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS)) StringOffsetsContributionBase += C->Offset; DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, isLittleEndian, 0); if (isDWO) StringOffsetsTableContribution = determineStringOffsetsTableContributionDWO( DA, StringOffsetsContributionBase); else if (getVersion() >= 5) StringOffsetsTableContribution = determineStringOffsetsTableContribution( DA, StringOffsetsContributionBase); // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for // skeleton CU DIE, so that DWARF users not aware of it are not broken. } return DieArray.size(); } bool DWARFUnit::parseDWO() { if (isDWO) return false; if (DWO.get()) return false; DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return false; auto DWOFileName = dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); if (!DWOFileName) return false; auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); SmallString<16> AbsolutePath; if (sys::path::is_relative(*DWOFileName) && CompilationDir && *CompilationDir) { sys::path::append(AbsolutePath, *CompilationDir); } sys::path::append(AbsolutePath, *DWOFileName); auto DWOId = getDWOId(); if (!DWOId) return false; auto DWOContext = Context.getDWOContext(AbsolutePath); if (!DWOContext) return false; DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); if (!DWOCU) return false; DWO = std::shared_ptr(std::move(DWOContext), DWOCU); // Share .debug_addr and .debug_ranges section with compile unit in .dwo DWO->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase); auto DWORangesBase = UnitDie.getRangesBaseAttribute(); DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0); return true; } void DWARFUnit::clearDIEs(bool KeepCUDie) { if (DieArray.size() > (unsigned)KeepCUDie) { DieArray.resize((unsigned)KeepCUDie); DieArray.shrink_to_fit(); } } void DWARFUnit::collectAddressRanges(DWARFAddressRangesVector &CURanges) { DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return; // First, check if unit DIE describes address ranges for the whole unit. const auto &CUDIERanges = UnitDie.getAddressRanges(); if (!CUDIERanges.empty()) { CURanges.insert(CURanges.end(), CUDIERanges.begin(), CUDIERanges.end()); return; } // This function is usually called if there in no .debug_aranges section // in order to produce a compile unit level set of address ranges that // is accurate. If the DIEs weren't parsed, then we don't want all dies for // all compile units to stay loaded when they weren't needed. So we can end // up parsing the DWARF and then throwing them all away to keep memory usage // down. const bool ClearDIEs = extractDIEsIfNeeded(false) > 1; getUnitDIE().collectChildrenAddressRanges(CURanges); // Collect address ranges from DIEs in .dwo if necessary. bool DWOCreated = parseDWO(); if (DWO) DWO->collectAddressRanges(CURanges); if (DWOCreated) DWO.reset(); // Keep memory down by clearing DIEs if this generate function // caused them to be parsed. if (ClearDIEs) clearDIEs(true); } void DWARFUnit::updateAddressDieMap(DWARFDie Die) { if (Die.isSubroutineDIE()) { for (const auto &R : Die.getAddressRanges()) { // Ignore 0-sized ranges. if (R.LowPC == R.HighPC) continue; auto B = AddrDieMap.upper_bound(R.LowPC); if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) { // The range is a sub-range of existing ranges, we need to split the // existing range. if (R.HighPC < B->second.first) AddrDieMap[R.HighPC] = B->second; if (R.LowPC > B->first) AddrDieMap[B->first].first = R.LowPC; } AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die); } } // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to // simplify the logic to update AddrDieMap. The child's range will always // be equal or smaller than the parent's range. With this assumption, when // adding one range into the map, it will at most split a range into 3 // sub-ranges. for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling()) updateAddressDieMap(Child); } DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { extractDIEsIfNeeded(false); if (AddrDieMap.empty()) updateAddressDieMap(getUnitDIE()); auto R = AddrDieMap.upper_bound(Address); if (R == AddrDieMap.begin()) return DWARFDie(); // upper_bound's previous item contains Address. --R; if (Address >= R->second.first) return DWARFDie(); return R->second.second; } void DWARFUnit::getInlinedChainForAddress(uint64_t Address, SmallVectorImpl &InlinedChain) { assert(InlinedChain.empty()); // Try to look for subprogram DIEs in the DWO file. parseDWO(); // First, find the subroutine that contains the given address (the leaf // of inlined chain). DWARFDie SubroutineDIE = (DWO ? DWO.get() : this)->getSubroutineForAddress(Address); while (SubroutineDIE) { if (SubroutineDIE.isSubroutineDIE()) InlinedChain.push_back(SubroutineDIE); SubroutineDIE = SubroutineDIE.getParent(); } } const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, DWARFSectionKind Kind) { if (Kind == DW_SECT_INFO) return Context.getCUIndex(); assert(Kind == DW_SECT_TYPES); return Context.getTUIndex(); } DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { if (!Die) return DWARFDie(); const uint32_t Depth = Die->getDepth(); // Unit DIEs always have a depth of zero and never have parents. if (Depth == 0) return DWARFDie(); // Depth of 1 always means parent is the compile/type unit. if (Depth == 1) return getUnitDIE(); // Look for previous DIE with a depth that is one less than the Die's depth. const uint32_t ParentDepth = Depth - 1; for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) { if (DieArray[I].getDepth() == ParentDepth) return DWARFDie(this, &DieArray[I]); } return DWARFDie(); } DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { if (!Die) return DWARFDie(); uint32_t Depth = Die->getDepth(); // Unit DIEs always have a depth of zero and never have siblings. if (Depth == 0) return DWARFDie(); // NULL DIEs don't have siblings. if (Die->getAbbreviationDeclarationPtr() == nullptr) return DWARFDie(); // Find the next DIE whose depth is the same as the Die's depth. for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx; ++I) { if (DieArray[I].getDepth() == Depth) return DWARFDie(this, &DieArray[I]); } return DWARFDie(); } DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { if (!Die->hasChildren()) return DWARFDie(); // We do not want access out of bounds when parsing corrupted debug data. size_t I = getDIEIndex(Die) + 1; if (I >= DieArray.size()) return DWARFDie(); return DWARFDie(this, &DieArray[I]); } const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { if (!Abbrevs) Abbrevs = Abbrev->getAbbreviationDeclarationSet(AbbrOffset); return Abbrevs; } Optional StrOffsetsContributionDescriptor::validateContributionSize( DWARFDataExtractor &DA) { uint8_t EntrySize = getDwarfOffsetByteSize(); // In order to ensure that we don't read a partial record at the end of // the section we validate for a multiple of the entry size. uint64_t ValidationSize = alignTo(Size, EntrySize); // Guard against overflow. if (ValidationSize >= Size) if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) return *this; return Optional(); } // Look for a DWARF64-formatted contribution to the string offsets table // starting at a given offset and record it in a descriptor. static Optional parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { if (!DA.isValidOffsetForDataOfSize(Offset, 16)) return Optional(); if (DA.getU32(&Offset) != 0xffffffff) return Optional(); uint64_t Size = DA.getU64(&Offset); uint8_t Version = DA.getU16(&Offset); (void)DA.getU16(&Offset); // padding return StrOffsetsContributionDescriptor(Offset, Size, Version, DWARF64); //return Optional(Descriptor); } // Look for a DWARF32-formatted contribution to the string offsets table // starting at a given offset and record it in a descriptor. static Optional parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { if (!DA.isValidOffsetForDataOfSize(Offset, 8)) return Optional(); uint32_t ContributionSize = DA.getU32(&Offset); if (ContributionSize >= 0xfffffff0) return Optional(); uint8_t Version = DA.getU16(&Offset); (void)DA.getU16(&Offset); // padding return StrOffsetsContributionDescriptor(Offset, ContributionSize, Version, DWARF32); //return Optional(Descriptor); } Optional DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA, uint64_t Offset) { Optional Descriptor; // Attempt to find a DWARF64 contribution 16 bytes before the base. if (Offset >= 16) Descriptor = parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset - 16); // Try to find a DWARF32 contribution 8 bytes before the base. if (!Descriptor && Offset >= 8) Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset - 8); return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor; } Optional DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA, uint64_t Offset) { if (getVersion() >= 5) { // Look for a valid contribution at the given offset. auto Descriptor = parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset); if (!Descriptor) Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset); return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor; } // Prior to DWARF v5, we derive the contribution size from the // index table (in a package file). In a .dwo file it is simply // the length of the string offsets section. uint64_t Size = 0; if (!IndexEntry) Size = StringOffsetSection.Data.size(); else if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS)) Size = C->Length; // Return a descriptor with the given offset as base, version 4 and // DWARF32 format. //return Optional( //StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32)); return StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32); }