//===-- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a MachineFunctionPass that inserts the appropriate // XRay instrumentation instructions. We look for XRay-specific attributes // on the function to determine whether we should insert the replacement // operations. // //===---------------------------------------------------------------------===// #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; namespace { struct XRayInstrumentation : public MachineFunctionPass { static char ID; XRayInstrumentation() : MachineFunctionPass(ID) { initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; private: // Replace the original RET instruction with the exit sled code ("patchable // ret" pseudo-instruction), so that at runtime XRay can replace the sled // with a code jumping to XRay trampoline, which calls the tracing handler // and, in the end, issues the RET instruction. // This is the approach to go on CPUs which have a single RET instruction, // like x86/x86_64. void replaceRetWithPatchableRet(MachineFunction &MF, const TargetInstrInfo *TII); // Prepend the original return instruction with the exit sled code ("patchable // function exit" pseudo-instruction), preserving the original return // instruction just after the exit sled code. // This is the approach to go on CPUs which have multiple options for the // return instruction, like ARM. For such CPUs we can't just jump into the // XRay trampoline and issue a single return instruction there. We rather // have to call the trampoline and return from it to the original return // instruction of the function being instrumented. void prependRetWithPatchableExit(MachineFunction &MF, const TargetInstrInfo *TII); }; } // anonymous namespace void XRayInstrumentation::replaceRetWithPatchableRet(MachineFunction &MF, const TargetInstrInfo *TII) { // We look for *all* terminators and returns, then replace those with // PATCHABLE_RET instructions. SmallVector Terminators; for (auto &MBB : MF) { for (auto &T : MBB.terminators()) { unsigned Opc = 0; if (T.isReturn() && T.getOpcode() == TII->getReturnOpcode()) { // Replace return instructions with: // PATCHABLE_RET , ... Opc = TargetOpcode::PATCHABLE_RET; } if (TII->isTailCall(T)) { // Treat the tail call as a return instruction, which has a // different-looking sled than the normal return case. Opc = TargetOpcode::PATCHABLE_TAIL_CALL; } if (Opc != 0) { auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc)) .addImm(T.getOpcode()); for (auto &MO : T.operands()) MIB.addOperand(MO); Terminators.push_back(&T); } } } for (auto &I : Terminators) I->eraseFromParent(); } void XRayInstrumentation::prependRetWithPatchableExit(MachineFunction &MF, const TargetInstrInfo *TII) { for (auto &MBB : MF) { for (auto &T : MBB.terminators()) { if (T.isReturn()) { // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT BuildMI(MBB, T, T.getDebugLoc(), TII->get(TargetOpcode::PATCHABLE_FUNCTION_EXIT)); } } } } bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) { auto &F = *MF.getFunction(); auto InstrAttr = F.getFnAttribute("function-instrument"); bool AlwaysInstrument = !InstrAttr.hasAttribute(Attribute::None) && InstrAttr.isStringAttribute() && InstrAttr.getValueAsString() == "xray-always"; Attribute Attr = F.getFnAttribute("xray-instruction-threshold"); unsigned XRayThreshold = 0; if (!AlwaysInstrument) { if (Attr.hasAttribute(Attribute::None) || !Attr.isStringAttribute()) return false; // XRay threshold attribute not found. if (Attr.getValueAsString().getAsInteger(10, XRayThreshold)) return false; // Invalid value for threshold. if (F.size() < XRayThreshold) return false; // Function is too small. } auto &FirstMBB = *MF.begin(); auto &FirstMI = *FirstMBB.begin(); if (!MF.getSubtarget().isXRaySupported()) { FirstMI.emitError("An attempt to perform XRay instrumentation for an" " unsupported target."); return false; } // FIXME: Do the loop triviality analysis here or in an earlier pass. // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the // MachineFunction. auto *TII = MF.getSubtarget().getInstrInfo(); BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(), TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER)); switch (MF.getTarget().getTargetTriple().getArch()) { case Triple::ArchType::arm: case Triple::ArchType::thumb: // For the architectures which don't have a single return instruction prependRetWithPatchableExit(MF, TII); break; default: // For the architectures that have a single return instruction (such as // RETQ on x86_64). replaceRetWithPatchableRet(MF, TII); break; } return true; } char XRayInstrumentation::ID = 0; char &llvm::XRayInstrumentationID = XRayInstrumentation::ID; INITIALIZE_PASS(XRayInstrumentation, "xray-instrumentation", "Insert XRay ops", false, false)