//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. // // Software pipelining (SWP) is an instruction scheduling technique for loops // that overlap loop iterations and exploits ILP via a compiler transformation. // // Swing Modulo Scheduling is an implementation of software pipelining // that generates schedules that are near optimal in terms of initiation // interval, register requirements, and stage count. See the papers: // // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 // Conference on Parallel Architectures and Compilation Techiniques. // // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE // Transactions on Computers, Vol. 50, No. 3, 2001. // // "An Implementation of Swing Modulo Scheduling With Extensions for // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at // Urbana-Chambpain, 2005. // // // The SMS algorithm consists of three main steps after computing the minimal // initiation interval (MII). // 1) Analyze the dependence graph and compute information about each // instruction in the graph. // 2) Order the nodes (instructions) by priority based upon the heuristics // described in the algorithm. // 3) Attempt to schedule the nodes in the specified order using the MII. // // This SMS implementation is a target-independent back-end pass. When enabled, // the pass runs just prior to the register allocation pass, while the machine // IR is in SSA form. If software pipelining is successful, then the original // loop is replaced by the optimized loop. The optimized loop contains one or // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If // the instructions cannot be scheduled in a given MII, we increase the MII by // one and try again. // // The SMS implementation is an extension of the ScheduleDAGInstrs class. We // represent loop carried dependences in the DAG as order edges to the Phi // nodes. We also perform several passes over the DAG to eliminate unnecessary // edges that inhibit the ability to pipeline. The implementation uses the // DFAPacketizer class to compute the minimum initiation interval and the check // where an instruction may be inserted in the pipelined schedule. // // In order for the SMS pass to work, several target specific hooks need to be // implemented to get information about the loop structure and to rewrite // instructions. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/DFAPacketizer.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/RegisterPressure.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/ScheduleDAGMutation.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "pipeliner" STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); STATISTIC(NumPipelined, "Number of loops software pipelined"); STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); /// A command line option to turn software pipelining on or off. static cl::opt EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::desc("Enable Software Pipelining")); /// A command line option to enable SWP at -Os. static cl::opt EnableSWPOptSize("enable-pipeliner-opt-size", cl::desc("Enable SWP at Os."), cl::Hidden, cl::init(false)); /// A command line argument to limit minimum initial interval for pipelining. static cl::opt SwpMaxMii("pipeliner-max-mii", cl::desc("Size limit for the MII."), cl::Hidden, cl::init(27)); /// A command line argument to limit the number of stages in the pipeline. static cl::opt SwpMaxStages("pipeliner-max-stages", cl::desc("Maximum stages allowed in the generated scheduled."), cl::Hidden, cl::init(3)); /// A command line option to disable the pruning of chain dependences due to /// an unrelated Phi. static cl::opt SwpPruneDeps("pipeliner-prune-deps", cl::desc("Prune dependences between unrelated Phi nodes."), cl::Hidden, cl::init(true)); /// A command line option to disable the pruning of loop carried order /// dependences. static cl::opt SwpPruneLoopCarried("pipeliner-prune-loop-carried", cl::desc("Prune loop carried order dependences."), cl::Hidden, cl::init(true)); #ifndef NDEBUG static cl::opt SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); #endif static cl::opt SwpIgnoreRecMII("pipeliner-ignore-recmii", cl::ReallyHidden, cl::init(false), cl::ZeroOrMore, cl::desc("Ignore RecMII")); namespace { class NodeSet; class SMSchedule; /// The main class in the implementation of the target independent /// software pipeliner pass. class MachinePipeliner : public MachineFunctionPass { public: MachineFunction *MF = nullptr; const MachineLoopInfo *MLI = nullptr; const MachineDominatorTree *MDT = nullptr; const InstrItineraryData *InstrItins; const TargetInstrInfo *TII = nullptr; RegisterClassInfo RegClassInfo; #ifndef NDEBUG static int NumTries; #endif /// Cache the target analysis information about the loop. struct LoopInfo { MachineBasicBlock *TBB = nullptr; MachineBasicBlock *FBB = nullptr; SmallVector BrCond; MachineInstr *LoopInductionVar = nullptr; MachineInstr *LoopCompare = nullptr; }; LoopInfo LI; static char ID; MachinePipeliner() : MachineFunctionPass(ID) { initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } private: void preprocessPhiNodes(MachineBasicBlock &B); bool canPipelineLoop(MachineLoop &L); bool scheduleLoop(MachineLoop &L); bool swingModuloScheduler(MachineLoop &L); }; /// This class builds the dependence graph for the instructions in a loop, /// and attempts to schedule the instructions using the SMS algorithm. class SwingSchedulerDAG : public ScheduleDAGInstrs { MachinePipeliner &Pass; /// The minimum initiation interval between iterations for this schedule. unsigned MII = 0; /// Set to true if a valid pipelined schedule is found for the loop. bool Scheduled = false; MachineLoop &Loop; LiveIntervals &LIS; const RegisterClassInfo &RegClassInfo; /// A toplogical ordering of the SUnits, which is needed for changing /// dependences and iterating over the SUnits. ScheduleDAGTopologicalSort Topo; struct NodeInfo { int ASAP = 0; int ALAP = 0; int ZeroLatencyDepth = 0; int ZeroLatencyHeight = 0; NodeInfo() = default; }; /// Computed properties for each node in the graph. std::vector ScheduleInfo; enum OrderKind { BottomUp = 0, TopDown = 1 }; /// Computed node ordering for scheduling. SetVector NodeOrder; using NodeSetType = SmallVector; using ValueMapTy = DenseMap; using MBBVectorTy = SmallVectorImpl; using InstrMapTy = DenseMap; /// Instructions to change when emitting the final schedule. DenseMap> InstrChanges; /// We may create a new instruction, so remember it because it /// must be deleted when the pass is finished. SmallPtrSet NewMIs; /// Ordered list of DAG postprocessing steps. std::vector> Mutations; /// Helper class to implement Johnson's circuit finding algorithm. class Circuits { std::vector &SUnits; SetVector Stack; BitVector Blocked; SmallVector, 10> B; SmallVector, 16> AdjK; unsigned NumPaths; static unsigned MaxPaths; public: Circuits(std::vector &SUs) : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} /// Reset the data structures used in the circuit algorithm. void reset() { Stack.clear(); Blocked.reset(); B.assign(SUnits.size(), SmallPtrSet()); NumPaths = 0; } void createAdjacencyStructure(SwingSchedulerDAG *DAG); bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); void unblock(int U); }; public: SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, const RegisterClassInfo &rci) : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), RegClassInfo(rci), Topo(SUnits, &ExitSU) { P.MF->getSubtarget().getSMSMutations(Mutations); } void schedule() override; void finishBlock() override; /// Return true if the loop kernel has been scheduled. bool hasNewSchedule() { return Scheduled; } /// Return the earliest time an instruction may be scheduled. int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } /// Return the latest time an instruction my be scheduled. int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } /// The mobility function, which the number of slots in which /// an instruction may be scheduled. int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } /// The depth, in the dependence graph, for a node. unsigned getDepth(SUnit *Node) { return Node->getDepth(); } /// The maximum unweighted length of a path from an arbitrary node to the /// given node in which each edge has latency 0 int getZeroLatencyDepth(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; } /// The height, in the dependence graph, for a node. unsigned getHeight(SUnit *Node) { return Node->getHeight(); } /// The maximum unweighted length of a path from the given node to an /// arbitrary node in which each edge has latency 0 int getZeroLatencyHeight(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; } /// Return true if the dependence is a back-edge in the data dependence graph. /// Since the DAG doesn't contain cycles, we represent a cycle in the graph /// using an anti dependence from a Phi to an instruction. bool isBackedge(SUnit *Source, const SDep &Dep) { if (Dep.getKind() != SDep::Anti) return false; return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); } bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); /// The distance function, which indicates that operation V of iteration I /// depends on operations U of iteration I-distance. unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { // Instructions that feed a Phi have a distance of 1. Computing larger // values for arrays requires data dependence information. if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) return 1; return 0; } /// Set the Minimum Initiation Interval for this schedule attempt. void setMII(unsigned mii) { MII = mii; } void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); void fixupRegisterOverlaps(std::deque &Instrs); /// Return the new base register that was stored away for the changed /// instruction. unsigned getInstrBaseReg(SUnit *SU) { DenseMap>::iterator It = InstrChanges.find(SU); if (It != InstrChanges.end()) return It->second.first; return 0; } void addMutation(std::unique_ptr Mutation) { Mutations.push_back(std::move(Mutation)); } private: void addLoopCarriedDependences(AliasAnalysis *AA); void updatePhiDependences(); void changeDependences(); unsigned calculateResMII(); unsigned calculateRecMII(NodeSetType &RecNodeSets); void findCircuits(NodeSetType &NodeSets); void fuseRecs(NodeSetType &NodeSets); void removeDuplicateNodes(NodeSetType &NodeSets); void computeNodeFunctions(NodeSetType &NodeSets); void registerPressureFilter(NodeSetType &NodeSets); void colocateNodeSets(NodeSetType &NodeSets); void checkNodeSets(NodeSetType &NodeSets); void groupRemainingNodes(NodeSetType &NodeSets); void addConnectedNodes(SUnit *SU, NodeSet &NewSet, SetVector &NodesAdded); void computeNodeOrder(NodeSetType &NodeSets); void checkValidNodeOrder(const NodeSetType &Circuits) const; bool schedulePipeline(SMSchedule &Schedule); void generatePipelinedLoop(SMSchedule &Schedule); void generateProlog(SMSchedule &Schedule, unsigned LastStage, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, MBBVectorTy &PrologBBs); void generateEpilog(SMSchedule &Schedule, unsigned LastStage, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, bool IsLast); void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, bool IsLast); void removeDeadInstructions(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs); void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, SMSchedule &Schedule); void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, SMSchedule &Schedule, ValueMapTy *VRMap); bool computeDelta(MachineInstr &MI, unsigned &Delta); void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, unsigned Num); MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum); MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum, SMSchedule &Schedule); void updateInstruction(MachineInstr *NewMI, bool LastDef, unsigned CurStageNum, unsigned InstrStageNum, SMSchedule &Schedule, ValueMapTy *VRMap); MachineInstr *findDefInLoop(unsigned Reg); unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, ValueMapTy *VRMap, MachineBasicBlock *BB); void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, SMSchedule &Schedule, ValueMapTy *VRMap, InstrMapTy &InstrMap); void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, unsigned PrevReg = 0); bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, unsigned &OffsetPos, unsigned &NewBase, int64_t &NewOffset); void postprocessDAG(); }; /// A NodeSet contains a set of SUnit DAG nodes with additional information /// that assigns a priority to the set. class NodeSet { SetVector Nodes; bool HasRecurrence = false; unsigned RecMII = 0; int MaxMOV = 0; unsigned MaxDepth = 0; unsigned Colocate = 0; SUnit *ExceedPressure = nullptr; unsigned Latency = 0; public: using iterator = SetVector::const_iterator; NodeSet() = default; NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { Latency = 0; for (unsigned i = 0, e = Nodes.size(); i < e; ++i) for (const SDep &Succ : Nodes[i]->Succs) if (Nodes.count(Succ.getSUnit())) Latency += Succ.getLatency(); } bool insert(SUnit *SU) { return Nodes.insert(SU); } void insert(iterator S, iterator E) { Nodes.insert(S, E); } template bool remove_if(UnaryPredicate P) { return Nodes.remove_if(P); } unsigned count(SUnit *SU) const { return Nodes.count(SU); } bool hasRecurrence() { return HasRecurrence; }; unsigned size() const { return Nodes.size(); } bool empty() const { return Nodes.empty(); } SUnit *getNode(unsigned i) const { return Nodes[i]; }; void setRecMII(unsigned mii) { RecMII = mii; }; void setColocate(unsigned c) { Colocate = c; }; void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } int getRecMII() { return RecMII; } /// Summarize node functions for the entire node set. void computeNodeSetInfo(SwingSchedulerDAG *SSD) { for (SUnit *SU : *this) { MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); } } unsigned getLatency() { return Latency; } unsigned getMaxDepth() { return MaxDepth; } void clear() { Nodes.clear(); RecMII = 0; HasRecurrence = false; MaxMOV = 0; MaxDepth = 0; Colocate = 0; ExceedPressure = nullptr; } operator SetVector &() { return Nodes; } /// Sort the node sets by importance. First, rank them by recurrence MII, /// then by mobility (least mobile done first), and finally by depth. /// Each node set may contain a colocate value which is used as the first /// tie breaker, if it's set. bool operator>(const NodeSet &RHS) const { if (RecMII == RHS.RecMII) { if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) return Colocate < RHS.Colocate; if (MaxMOV == RHS.MaxMOV) return MaxDepth > RHS.MaxDepth; return MaxMOV < RHS.MaxMOV; } return RecMII > RHS.RecMII; } bool operator==(const NodeSet &RHS) const { return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && MaxDepth == RHS.MaxDepth; } bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } iterator begin() { return Nodes.begin(); } iterator end() { return Nodes.end(); } void print(raw_ostream &os) const { os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV << " depth " << MaxDepth << " col " << Colocate << "\n"; for (const auto &I : Nodes) os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); os << "\n"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void dump() const { print(dbgs()); } #endif }; /// This class represents the scheduled code. The main data structure is a /// map from scheduled cycle to instructions. During scheduling, the /// data structure explicitly represents all stages/iterations. When /// the algorithm finshes, the schedule is collapsed into a single stage, /// which represents instructions from different loop iterations. /// /// The SMS algorithm allows negative values for cycles, so the first cycle /// in the schedule is the smallest cycle value. class SMSchedule { private: /// Map from execution cycle to instructions. DenseMap> ScheduledInstrs; /// Map from instruction to execution cycle. std::map InstrToCycle; /// Map for each register and the max difference between its uses and def. /// The first element in the pair is the max difference in stages. The /// second is true if the register defines a Phi value and loop value is /// scheduled before the Phi. std::map> RegToStageDiff; /// Keep track of the first cycle value in the schedule. It starts /// as zero, but the algorithm allows negative values. int FirstCycle = 0; /// Keep track of the last cycle value in the schedule. int LastCycle = 0; /// The initiation interval (II) for the schedule. int InitiationInterval = 0; /// Target machine information. const TargetSubtargetInfo &ST; /// Virtual register information. MachineRegisterInfo &MRI; std::unique_ptr Resources; public: SMSchedule(MachineFunction *mf) : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} void reset() { ScheduledInstrs.clear(); InstrToCycle.clear(); RegToStageDiff.clear(); FirstCycle = 0; LastCycle = 0; InitiationInterval = 0; } /// Set the initiation interval for this schedule. void setInitiationInterval(int ii) { InitiationInterval = ii; } /// Return the first cycle in the completed schedule. This /// can be a negative value. int getFirstCycle() const { return FirstCycle; } /// Return the last cycle in the finalized schedule. int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } /// Return the cycle of the earliest scheduled instruction in the dependence /// chain. int earliestCycleInChain(const SDep &Dep); /// Return the cycle of the latest scheduled instruction in the dependence /// chain. int latestCycleInChain(const SDep &Dep); void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); /// Iterators for the cycle to instruction map. using sched_iterator = DenseMap>::iterator; using const_sched_iterator = DenseMap>::const_iterator; /// Return true if the instruction is scheduled at the specified stage. bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { return (stageScheduled(SU) == (int)StageNum); } /// Return the stage for a scheduled instruction. Return -1 if /// the instruction has not been scheduled. int stageScheduled(SUnit *SU) const { std::map::const_iterator it = InstrToCycle.find(SU); if (it == InstrToCycle.end()) return -1; return (it->second - FirstCycle) / InitiationInterval; } /// Return the cycle for a scheduled instruction. This function normalizes /// the first cycle to be 0. unsigned cycleScheduled(SUnit *SU) const { std::map::const_iterator it = InstrToCycle.find(SU); assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); return (it->second - FirstCycle) % InitiationInterval; } /// Return the maximum stage count needed for this schedule. unsigned getMaxStageCount() { return (LastCycle - FirstCycle) / InitiationInterval; } /// Return the max. number of stages/iterations that can occur between a /// register definition and its uses. unsigned getStagesForReg(int Reg, unsigned CurStage) { std::pair Stages = RegToStageDiff[Reg]; if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) return 1; return Stages.first; } /// The number of stages for a Phi is a little different than other /// instructions. The minimum value computed in RegToStageDiff is 1 /// because we assume the Phi is needed for at least 1 iteration. /// This is not the case if the loop value is scheduled prior to the /// Phi in the same stage. This function returns the number of stages /// or iterations needed between the Phi definition and any uses. unsigned getStagesForPhi(int Reg) { std::pair Stages = RegToStageDiff[Reg]; if (Stages.second) return Stages.first; return Stages.first - 1; } /// Return the instructions that are scheduled at the specified cycle. std::deque &getInstructions(int cycle) { return ScheduledInstrs[cycle]; } bool isValidSchedule(SwingSchedulerDAG *SSD); void finalizeSchedule(SwingSchedulerDAG *SSD); void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, std::deque &Insts); bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, MachineOperand &MO); void print(raw_ostream &os) const; void dump() const; }; } // end anonymous namespace unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; char MachinePipeliner::ID = 0; #ifndef NDEBUG int MachinePipeliner::NumTries = 0; #endif char &llvm::MachinePipelinerID = MachinePipeliner::ID; INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, "Modulo Software Pipelining", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, "Modulo Software Pipelining", false, false) /// The "main" function for implementing Swing Modulo Scheduling. bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { if (skipFunction(mf.getFunction())) return false; if (!EnableSWP) return false; if (mf.getFunction().getAttributes().hasAttribute( AttributeList::FunctionIndex, Attribute::OptimizeForSize) && !EnableSWPOptSize.getPosition()) return false; MF = &mf; MLI = &getAnalysis(); MDT = &getAnalysis(); TII = MF->getSubtarget().getInstrInfo(); RegClassInfo.runOnMachineFunction(*MF); for (auto &L : *MLI) scheduleLoop(*L); return false; } /// Attempt to perform the SMS algorithm on the specified loop. This function is /// the main entry point for the algorithm. The function identifies candidate /// loops, calculates the minimum initiation interval, and attempts to schedule /// the loop. bool MachinePipeliner::scheduleLoop(MachineLoop &L) { bool Changed = false; for (auto &InnerLoop : L) Changed |= scheduleLoop(*InnerLoop); #ifndef NDEBUG // Stop trying after reaching the limit (if any). int Limit = SwpLoopLimit; if (Limit >= 0) { if (NumTries >= SwpLoopLimit) return Changed; NumTries++; } #endif if (!canPipelineLoop(L)) return Changed; ++NumTrytoPipeline; Changed = swingModuloScheduler(L); return Changed; } /// Return true if the loop can be software pipelined. The algorithm is /// restricted to loops with a single basic block. Make sure that the /// branch in the loop can be analyzed. bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { if (L.getNumBlocks() != 1) return false; // Check if the branch can't be understood because we can't do pipelining // if that's the case. LI.TBB = nullptr; LI.FBB = nullptr; LI.BrCond.clear(); if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) return false; LI.LoopInductionVar = nullptr; LI.LoopCompare = nullptr; if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) return false; if (!L.getLoopPreheader()) return false; // Remove any subregisters from inputs to phi nodes. preprocessPhiNodes(*L.getHeader()); return true; } void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { MachineRegisterInfo &MRI = MF->getRegInfo(); SlotIndexes &Slots = *getAnalysis().getSlotIndexes(); for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { MachineOperand &DefOp = PI.getOperand(0); assert(DefOp.getSubReg() == 0); auto *RC = MRI.getRegClass(DefOp.getReg()); for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { MachineOperand &RegOp = PI.getOperand(i); if (RegOp.getSubReg() == 0) continue; // If the operand uses a subregister, replace it with a new register // without subregisters, and generate a copy to the new register. unsigned NewReg = MRI.createVirtualRegister(RC); MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); MachineBasicBlock::iterator At = PredB.getFirstTerminator(); const DebugLoc &DL = PredB.findDebugLoc(At); auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) .addReg(RegOp.getReg(), getRegState(RegOp), RegOp.getSubReg()); Slots.insertMachineInstrInMaps(*Copy); RegOp.setReg(NewReg); RegOp.setSubReg(0); } } } /// The SMS algorithm consists of the following main steps: /// 1. Computation and analysis of the dependence graph. /// 2. Ordering of the nodes (instructions). /// 3. Attempt to Schedule the loop. bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); SwingSchedulerDAG SMS(*this, L, getAnalysis(), RegClassInfo); MachineBasicBlock *MBB = L.getHeader(); // The kernel should not include any terminator instructions. These // will be added back later. SMS.startBlock(MBB); // Compute the number of 'real' instructions in the basic block by // ignoring terminators. unsigned size = MBB->size(); for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), E = MBB->instr_end(); I != E; ++I, --size) ; SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); SMS.schedule(); SMS.exitRegion(); SMS.finishBlock(); return SMS.hasNewSchedule(); } /// We override the schedule function in ScheduleDAGInstrs to implement the /// scheduling part of the Swing Modulo Scheduling algorithm. void SwingSchedulerDAG::schedule() { AliasAnalysis *AA = &Pass.getAnalysis().getAAResults(); buildSchedGraph(AA); addLoopCarriedDependences(AA); updatePhiDependences(); Topo.InitDAGTopologicalSorting(); postprocessDAG(); changeDependences(); LLVM_DEBUG({ for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this); }); NodeSetType NodeSets; findCircuits(NodeSets); NodeSetType Circuits = NodeSets; // Calculate the MII. unsigned ResMII = calculateResMII(); unsigned RecMII = calculateRecMII(NodeSets); fuseRecs(NodeSets); // This flag is used for testing and can cause correctness problems. if (SwpIgnoreRecMII) RecMII = 0; MII = std::max(ResMII, RecMII); LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); // Can't schedule a loop without a valid MII. if (MII == 0) return; // Don't pipeline large loops. if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) return; computeNodeFunctions(NodeSets); registerPressureFilter(NodeSets); colocateNodeSets(NodeSets); checkNodeSets(NodeSets); LLVM_DEBUG({ for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }); std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater()); groupRemainingNodes(NodeSets); removeDuplicateNodes(NodeSets); LLVM_DEBUG({ for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }); computeNodeOrder(NodeSets); // check for node order issues checkValidNodeOrder(Circuits); SMSchedule Schedule(Pass.MF); Scheduled = schedulePipeline(Schedule); if (!Scheduled) return; unsigned numStages = Schedule.getMaxStageCount(); // No need to generate pipeline if there are no overlapped iterations. if (numStages == 0) return; // Check that the maximum stage count is less than user-defined limit. if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) return; generatePipelinedLoop(Schedule); ++NumPipelined; } /// Clean up after the software pipeliner runs. void SwingSchedulerDAG::finishBlock() { for (MachineInstr *I : NewMIs) MF.DeleteMachineInstr(I); NewMIs.clear(); // Call the superclass. ScheduleDAGInstrs::finishBlock(); } /// Return the register values for the operands of a Phi instruction. /// This function assume the instruction is a Phi. static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, unsigned &InitVal, unsigned &LoopVal) { assert(Phi.isPHI() && "Expecting a Phi."); InitVal = 0; LoopVal = 0; for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() != Loop) InitVal = Phi.getOperand(i).getReg(); else LoopVal = Phi.getOperand(i).getReg(); assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); } /// Return the Phi register value that comes from the incoming block. static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() != LoopBB) return Phi.getOperand(i).getReg(); return 0; } /// Return the Phi register value that comes the loop block. static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() == LoopBB) return Phi.getOperand(i).getReg(); return 0; } /// Return true if SUb can be reached from SUa following the chain edges. static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(SUa); while (!Worklist.empty()) { const SUnit *SU = Worklist.pop_back_val(); for (auto &SI : SU->Succs) { SUnit *SuccSU = SI.getSUnit(); if (SI.getKind() == SDep::Order) { if (Visited.count(SuccSU)) continue; if (SuccSU == SUb) return true; Worklist.push_back(SuccSU); Visited.insert(SuccSU); } } } return false; } /// Return true if the instruction causes a chain between memory /// references before and after it. static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { return MI.isCall() || MI.hasUnmodeledSideEffects() || (MI.hasOrderedMemoryRef() && (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); } /// Return the underlying objects for the memory references of an instruction. /// This function calls the code in ValueTracking, but first checks that the /// instruction has a memory operand. static void getUnderlyingObjects(MachineInstr *MI, SmallVectorImpl &Objs, const DataLayout &DL) { if (!MI->hasOneMemOperand()) return; MachineMemOperand *MM = *MI->memoperands_begin(); if (!MM->getValue()) return; GetUnderlyingObjects(const_cast(MM->getValue()), Objs, DL); for (Value *V : Objs) { if (!isIdentifiedObject(V)) { Objs.clear(); return; } Objs.push_back(V); } } /// Add a chain edge between a load and store if the store can be an /// alias of the load on a subsequent iteration, i.e., a loop carried /// dependence. This code is very similar to the code in ScheduleDAGInstrs /// but that code doesn't create loop carried dependences. void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { MapVector> PendingLoads; Value *UnknownValue = UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); for (auto &SU : SUnits) { MachineInstr &MI = *SU.getInstr(); if (isDependenceBarrier(MI, AA)) PendingLoads.clear(); else if (MI.mayLoad()) { SmallVector Objs; getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); if (Objs.empty()) Objs.push_back(UnknownValue); for (auto V : Objs) { SmallVector &SUs = PendingLoads[V]; SUs.push_back(&SU); } } else if (MI.mayStore()) { SmallVector Objs; getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); if (Objs.empty()) Objs.push_back(UnknownValue); for (auto V : Objs) { MapVector>::iterator I = PendingLoads.find(V); if (I == PendingLoads.end()) continue; for (auto Load : I->second) { if (isSuccOrder(Load, &SU)) continue; MachineInstr &LdMI = *Load->getInstr(); // First, perform the cheaper check that compares the base register. // If they are the same and the load offset is less than the store // offset, then mark the dependence as loop carried potentially. unsigned BaseReg1, BaseReg2; int64_t Offset1, Offset2; if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && "What happened to the chain edge?"); SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } } // Second, the more expensive check that uses alias analysis on the // base registers. If they alias, and the load offset is less than // the store offset, the mark the dependence as loop carried. if (!AA) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); MachineMemOperand *MMO2 = *MI.memoperands_begin(); if (!MMO1->getValue() || !MMO2->getValue()) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } if (MMO1->getValue() == MMO2->getValue() && MMO1->getOffset() <= MMO2->getOffset()) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } AliasResult AAResult = AA->alias( MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, MMO1->getAAInfo()), MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, MMO2->getAAInfo())); if (AAResult != NoAlias) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); } } } } } } /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer /// processes dependences for PHIs. This function adds true dependences /// from a PHI to a use, and a loop carried dependence from the use to the /// PHI. The loop carried dependence is represented as an anti dependence /// edge. This function also removes chain dependences between unrelated /// PHIs. void SwingSchedulerDAG::updatePhiDependences() { SmallVector RemoveDeps; const TargetSubtargetInfo &ST = MF.getSubtarget(); // Iterate over each DAG node. for (SUnit &I : SUnits) { RemoveDeps.clear(); // Set to true if the instruction has an operand defined by a Phi. unsigned HasPhiUse = 0; unsigned HasPhiDef = 0; MachineInstr *MI = I.getInstr(); // Iterate over each operand, and we process the definitions. for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (!MOI->isReg()) continue; unsigned Reg = MOI->getReg(); if (MOI->isDef()) { // If the register is used by a Phi, then create an anti dependence. for (MachineRegisterInfo::use_instr_iterator UI = MRI.use_instr_begin(Reg), UE = MRI.use_instr_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; SUnit *SU = getSUnit(UseMI); if (SU != nullptr && UseMI->isPHI()) { if (!MI->isPHI()) { SDep Dep(SU, SDep::Anti, Reg); Dep.setLatency(1); I.addPred(Dep); } else { HasPhiDef = Reg; // Add a chain edge to a dependent Phi that isn't an existing // predecessor. if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) I.addPred(SDep(SU, SDep::Barrier)); } } } } else if (MOI->isUse()) { // If the register is defined by a Phi, then create a true dependence. MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); if (DefMI == nullptr) continue; SUnit *SU = getSUnit(DefMI); if (SU != nullptr && DefMI->isPHI()) { if (!MI->isPHI()) { SDep Dep(SU, SDep::Data, Reg); Dep.setLatency(0); ST.adjustSchedDependency(SU, &I, Dep); I.addPred(Dep); } else { HasPhiUse = Reg; // Add a chain edge to a dependent Phi that isn't an existing // predecessor. if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) I.addPred(SDep(SU, SDep::Barrier)); } } } } // Remove order dependences from an unrelated Phi. if (!SwpPruneDeps) continue; for (auto &PI : I.Preds) { MachineInstr *PMI = PI.getSUnit()->getInstr(); if (PMI->isPHI() && PI.getKind() == SDep::Order) { if (I.getInstr()->isPHI()) { if (PMI->getOperand(0).getReg() == HasPhiUse) continue; if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) continue; } RemoveDeps.push_back(PI); } } for (int i = 0, e = RemoveDeps.size(); i != e; ++i) I.removePred(RemoveDeps[i]); } } /// Iterate over each DAG node and see if we can change any dependences /// in order to reduce the recurrence MII. void SwingSchedulerDAG::changeDependences() { // See if an instruction can use a value from the previous iteration. // If so, we update the base and offset of the instruction and change // the dependences. for (SUnit &I : SUnits) { unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; int64_t NewOffset = 0; if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, NewOffset)) continue; // Get the MI and SUnit for the instruction that defines the original base. unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); if (!DefMI) continue; SUnit *DefSU = getSUnit(DefMI); if (!DefSU) continue; // Get the MI and SUnit for the instruction that defins the new base. MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); if (!LastMI) continue; SUnit *LastSU = getSUnit(LastMI); if (!LastSU) continue; if (Topo.IsReachable(&I, LastSU)) continue; // Remove the dependence. The value now depends on a prior iteration. SmallVector Deps; for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; ++P) if (P->getSUnit() == DefSU) Deps.push_back(*P); for (int i = 0, e = Deps.size(); i != e; i++) { Topo.RemovePred(&I, Deps[i].getSUnit()); I.removePred(Deps[i]); } // Remove the chain dependence between the instructions. Deps.clear(); for (auto &P : LastSU->Preds) if (P.getSUnit() == &I && P.getKind() == SDep::Order) Deps.push_back(P); for (int i = 0, e = Deps.size(); i != e; i++) { Topo.RemovePred(LastSU, Deps[i].getSUnit()); LastSU->removePred(Deps[i]); } // Add a dependence between the new instruction and the instruction // that defines the new base. SDep Dep(&I, SDep::Anti, NewBase); LastSU->addPred(Dep); // Remember the base and offset information so that we can update the // instruction during code generation. InstrChanges[&I] = std::make_pair(NewBase, NewOffset); } } namespace { // FuncUnitSorter - Comparison operator used to sort instructions by // the number of functional unit choices. struct FuncUnitSorter { const InstrItineraryData *InstrItins; DenseMap Resources; FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} // Compute the number of functional unit alternatives needed // at each stage, and take the minimum value. We prioritize the // instructions by the least number of choices first. unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { unsigned schedClass = Inst->getDesc().getSchedClass(); unsigned min = UINT_MAX; for (const InstrStage *IS = InstrItins->beginStage(schedClass), *IE = InstrItins->endStage(schedClass); IS != IE; ++IS) { unsigned funcUnits = IS->getUnits(); unsigned numAlternatives = countPopulation(funcUnits); if (numAlternatives < min) { min = numAlternatives; F = funcUnits; } } return min; } // Compute the critical resources needed by the instruction. This // function records the functional units needed by instructions that // must use only one functional unit. We use this as a tie breaker // for computing the resource MII. The instrutions that require // the same, highly used, functional unit have high priority. void calcCriticalResources(MachineInstr &MI) { unsigned SchedClass = MI.getDesc().getSchedClass(); for (const InstrStage *IS = InstrItins->beginStage(SchedClass), *IE = InstrItins->endStage(SchedClass); IS != IE; ++IS) { unsigned FuncUnits = IS->getUnits(); if (countPopulation(FuncUnits) == 1) Resources[FuncUnits]++; } } /// Return true if IS1 has less priority than IS2. bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { unsigned F1 = 0, F2 = 0; unsigned MFUs1 = minFuncUnits(IS1, F1); unsigned MFUs2 = minFuncUnits(IS2, F2); if (MFUs1 == 1 && MFUs2 == 1) return Resources.lookup(F1) < Resources.lookup(F2); return MFUs1 > MFUs2; } }; } // end anonymous namespace /// Calculate the resource constrained minimum initiation interval for the /// specified loop. We use the DFA to model the resources needed for /// each instruction, and we ignore dependences. A different DFA is created /// for each cycle that is required. When adding a new instruction, we attempt /// to add it to each existing DFA, until a legal space is found. If the /// instruction cannot be reserved in an existing DFA, we create a new one. unsigned SwingSchedulerDAG::calculateResMII() { SmallVector Resources; MachineBasicBlock *MBB = Loop.getHeader(); Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); // Sort the instructions by the number of available choices for scheduling, // least to most. Use the number of critical resources as the tie breaker. FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), E = MBB->getFirstTerminator(); I != E; ++I) FUS.calcCriticalResources(*I); PriorityQueue, FuncUnitSorter> FuncUnitOrder(FUS); for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), E = MBB->getFirstTerminator(); I != E; ++I) FuncUnitOrder.push(&*I); while (!FuncUnitOrder.empty()) { MachineInstr *MI = FuncUnitOrder.top(); FuncUnitOrder.pop(); if (TII->isZeroCost(MI->getOpcode())) continue; // Attempt to reserve the instruction in an existing DFA. At least one // DFA is needed for each cycle. unsigned NumCycles = getSUnit(MI)->Latency; unsigned ReservedCycles = 0; SmallVectorImpl::iterator RI = Resources.begin(); SmallVectorImpl::iterator RE = Resources.end(); for (unsigned C = 0; C < NumCycles; ++C) while (RI != RE) { if ((*RI++)->canReserveResources(*MI)) { ++ReservedCycles; break; } } // Start reserving resources using existing DFAs. for (unsigned C = 0; C < ReservedCycles; ++C) { --RI; (*RI)->reserveResources(*MI); } // Add new DFAs, if needed, to reserve resources. for (unsigned C = ReservedCycles; C < NumCycles; ++C) { DFAPacketizer *NewResource = TII->CreateTargetScheduleState(MF.getSubtarget()); assert(NewResource->canReserveResources(*MI) && "Reserve error."); NewResource->reserveResources(*MI); Resources.push_back(NewResource); } } int Resmii = Resources.size(); // Delete the memory for each of the DFAs that were created earlier. for (DFAPacketizer *RI : Resources) { DFAPacketizer *D = RI; delete D; } Resources.clear(); return Resmii; } /// Calculate the recurrence-constrainted minimum initiation interval. /// Iterate over each circuit. Compute the delay(c) and distance(c) /// for each circuit. The II needs to satisfy the inequality /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest /// II that satisfies the inequality, and the RecMII is the maximum /// of those values. unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { unsigned RecMII = 0; for (NodeSet &Nodes : NodeSets) { if (Nodes.empty()) continue; unsigned Delay = Nodes.getLatency(); unsigned Distance = 1; // ii = ceil(delay / distance) unsigned CurMII = (Delay + Distance - 1) / Distance; Nodes.setRecMII(CurMII); if (CurMII > RecMII) RecMII = CurMII; } return RecMII; } /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, /// but we do this to find the circuits, and then change them back. static void swapAntiDependences(std::vector &SUnits) { SmallVector, 8> DepsAdded; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { SUnit *SU = &SUnits[i]; for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); IP != EP; ++IP) { if (IP->getKind() != SDep::Anti) continue; DepsAdded.push_back(std::make_pair(SU, *IP)); } } for (SmallVector, 8>::iterator I = DepsAdded.begin(), E = DepsAdded.end(); I != E; ++I) { // Remove this anti dependency and add one in the reverse direction. SUnit *SU = I->first; SDep &D = I->second; SUnit *TargetSU = D.getSUnit(); unsigned Reg = D.getReg(); unsigned Lat = D.getLatency(); SU->removePred(D); SDep Dep(SU, SDep::Anti, Reg); Dep.setLatency(Lat); TargetSU->addPred(Dep); } } /// Create the adjacency structure of the nodes in the graph. void SwingSchedulerDAG::Circuits::createAdjacencyStructure( SwingSchedulerDAG *DAG) { BitVector Added(SUnits.size()); DenseMap OutputDeps; for (int i = 0, e = SUnits.size(); i != e; ++i) { Added.reset(); // Add any successor to the adjacency matrix and exclude duplicates. for (auto &SI : SUnits[i].Succs) { // Only create a back-edge on the first and last nodes of a dependence // chain. This records any chains and adds them later. if (SI.getKind() == SDep::Output) { int N = SI.getSUnit()->NodeNum; int BackEdge = i; auto Dep = OutputDeps.find(BackEdge); if (Dep != OutputDeps.end()) { BackEdge = Dep->second; OutputDeps.erase(Dep); } OutputDeps[N] = BackEdge; } // Do not process a boundary node and a back-edge is processed only // if it goes to a Phi. if (SI.getSUnit()->isBoundaryNode() || (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) continue; int N = SI.getSUnit()->NodeNum; if (!Added.test(N)) { AdjK[i].push_back(N); Added.set(N); } } // A chain edge between a store and a load is treated as a back-edge in the // adjacency matrix. for (auto &PI : SUnits[i].Preds) { if (!SUnits[i].getInstr()->mayStore() || !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) continue; if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { int N = PI.getSUnit()->NodeNum; if (!Added.test(N)) { AdjK[i].push_back(N); Added.set(N); } } } } // Add back-eges in the adjacency matrix for the output dependences. for (auto &OD : OutputDeps) if (!Added.test(OD.second)) { AdjK[OD.first].push_back(OD.second); Added.set(OD.second); } } /// Identify an elementary circuit in the dependence graph starting at the /// specified node. bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge) { SUnit *SV = &SUnits[V]; bool F = false; Stack.insert(SV); Blocked.set(V); for (auto W : AdjK[V]) { if (NumPaths > MaxPaths) break; if (W < S) continue; if (W == S) { if (!HasBackedge) NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); F = true; ++NumPaths; break; } else if (!Blocked.test(W)) { if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) F = true; } } if (F) unblock(V); else { for (auto W : AdjK[V]) { if (W < S) continue; if (B[W].count(SV) == 0) B[W].insert(SV); } } Stack.pop_back(); return F; } /// Unblock a node in the circuit finding algorithm. void SwingSchedulerDAG::Circuits::unblock(int U) { Blocked.reset(U); SmallPtrSet &BU = B[U]; while (!BU.empty()) { SmallPtrSet::iterator SI = BU.begin(); assert(SI != BU.end() && "Invalid B set."); SUnit *W = *SI; BU.erase(W); if (Blocked.test(W->NodeNum)) unblock(W->NodeNum); } } /// Identify all the elementary circuits in the dependence graph using /// Johnson's circuit algorithm. void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { // Swap all the anti dependences in the DAG. That means it is no longer a DAG, // but we do this to find the circuits, and then change them back. swapAntiDependences(SUnits); Circuits Cir(SUnits); // Create the adjacency structure. Cir.createAdjacencyStructure(this); for (int i = 0, e = SUnits.size(); i != e; ++i) { Cir.reset(); Cir.circuit(i, i, NodeSets); } // Change the dependences back so that we've created a DAG again. swapAntiDependences(SUnits); } /// Return true for DAG nodes that we ignore when computing the cost functions. /// We ignore the back-edge recurrence in order to avoid unbounded recursion /// in the calculation of the ASAP, ALAP, etc functions. static bool ignoreDependence(const SDep &D, bool isPred) { if (D.isArtificial()) return true; return D.getKind() == SDep::Anti && isPred; } /// Compute several functions need to order the nodes for scheduling. /// ASAP - Earliest time to schedule a node. /// ALAP - Latest time to schedule a node. /// MOV - Mobility function, difference between ALAP and ASAP. /// D - Depth of each node. /// H - Height of each node. void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { ScheduleInfo.resize(SUnits.size()); LLVM_DEBUG({ for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU = &SUnits[*I]; SU->dump(this); } }); int maxASAP = 0; // Compute ASAP and ZeroLatencyDepth. for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), E = Topo.end(); I != E; ++I) { int asap = 0; int zeroLatencyDepth = 0; SUnit *SU = &SUnits[*I]; for (SUnit::const_pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); IP != EP; ++IP) { SUnit *pred = IP->getSUnit(); if (IP->getLatency() == 0) zeroLatencyDepth = std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); if (ignoreDependence(*IP, true)) continue; asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - getDistance(pred, SU, *IP) * MII)); } maxASAP = std::max(maxASAP, asap); ScheduleInfo[*I].ASAP = asap; ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; } // Compute ALAP, ZeroLatencyHeight, and MOV. for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), E = Topo.rend(); I != E; ++I) { int alap = maxASAP; int zeroLatencyHeight = 0; SUnit *SU = &SUnits[*I]; for (SUnit::const_succ_iterator IS = SU->Succs.begin(), ES = SU->Succs.end(); IS != ES; ++IS) { SUnit *succ = IS->getSUnit(); if (IS->getLatency() == 0) zeroLatencyHeight = std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); if (ignoreDependence(*IS, true)) continue; alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + getDistance(SU, succ, *IS) * MII)); } ScheduleInfo[*I].ALAP = alap; ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; } // After computing the node functions, compute the summary for each node set. for (NodeSet &I : NodeSets) I.computeNodeSetInfo(this); LLVM_DEBUG({ for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }); } /// Compute the Pred_L(O) set, as defined in the paper. The set is defined /// as the predecessors of the elements of NodeOrder that are not also in /// NodeOrder. static bool pred_L(SetVector &NodeOrder, SmallSetVector &Preds, const NodeSet *S = nullptr) { Preds.clear(); for (SetVector::iterator I = NodeOrder.begin(), E = NodeOrder.end(); I != E; ++I) { for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); PI != PE; ++PI) { if (S && S->count(PI->getSUnit()) == 0) continue; if (ignoreDependence(*PI, true)) continue; if (NodeOrder.count(PI->getSUnit()) == 0) Preds.insert(PI->getSUnit()); } // Back-edges are predecessors with an anti-dependence. for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), ES = (*I)->Succs.end(); IS != ES; ++IS) { if (IS->getKind() != SDep::Anti) continue; if (S && S->count(IS->getSUnit()) == 0) continue; if (NodeOrder.count(IS->getSUnit()) == 0) Preds.insert(IS->getSUnit()); } } return !Preds.empty(); } /// Compute the Succ_L(O) set, as defined in the paper. The set is defined /// as the successors of the elements of NodeOrder that are not also in /// NodeOrder. static bool succ_L(SetVector &NodeOrder, SmallSetVector &Succs, const NodeSet *S = nullptr) { Succs.clear(); for (SetVector::iterator I = NodeOrder.begin(), E = NodeOrder.end(); I != E; ++I) { for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); SI != SE; ++SI) { if (S && S->count(SI->getSUnit()) == 0) continue; if (ignoreDependence(*SI, false)) continue; if (NodeOrder.count(SI->getSUnit()) == 0) Succs.insert(SI->getSUnit()); } for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); PI != PE; ++PI) { if (PI->getKind() != SDep::Anti) continue; if (S && S->count(PI->getSUnit()) == 0) continue; if (NodeOrder.count(PI->getSUnit()) == 0) Succs.insert(PI->getSUnit()); } } return !Succs.empty(); } /// Return true if there is a path from the specified node to any of the nodes /// in DestNodes. Keep track and return the nodes in any path. static bool computePath(SUnit *Cur, SetVector &Path, SetVector &DestNodes, SetVector &Exclude, SmallPtrSet &Visited) { if (Cur->isBoundaryNode()) return false; if (Exclude.count(Cur) != 0) return false; if (DestNodes.count(Cur) != 0) return true; if (!Visited.insert(Cur).second) return Path.count(Cur) != 0; bool FoundPath = false; for (auto &SI : Cur->Succs) FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); for (auto &PI : Cur->Preds) if (PI.getKind() == SDep::Anti) FoundPath |= computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); if (FoundPath) Path.insert(Cur); return FoundPath; } /// Return true if Set1 is a subset of Set2. template static bool isSubset(S1Ty &Set1, S2Ty &Set2) { for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) if (Set2.count(*I) == 0) return false; return true; } /// Compute the live-out registers for the instructions in a node-set. /// The live-out registers are those that are defined in the node-set, /// but not used. Except for use operands of Phis. static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, NodeSet &NS) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); SmallVector LiveOutRegs; SmallSet Uses; for (SUnit *SU : NS) { const MachineInstr *MI = SU->getInstr(); if (MI->isPHI()) continue; for (const MachineOperand &MO : MI->operands()) if (MO.isReg() && MO.isUse()) { unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) Uses.insert(Reg); else if (MRI.isAllocatable(Reg)) for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) Uses.insert(*Units); } } for (SUnit *SU : NS) for (const MachineOperand &MO : SU->getInstr()->operands()) if (MO.isReg() && MO.isDef() && !MO.isDead()) { unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { if (!Uses.count(Reg)) LiveOutRegs.push_back(RegisterMaskPair(Reg, LaneBitmask::getNone())); } else if (MRI.isAllocatable(Reg)) { for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) if (!Uses.count(*Units)) LiveOutRegs.push_back(RegisterMaskPair(*Units, LaneBitmask::getNone())); } } RPTracker.addLiveRegs(LiveOutRegs); } /// A heuristic to filter nodes in recurrent node-sets if the register /// pressure of a set is too high. void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { for (auto &NS : NodeSets) { // Skip small node-sets since they won't cause register pressure problems. if (NS.size() <= 2) continue; IntervalPressure RecRegPressure; RegPressureTracker RecRPTracker(RecRegPressure); RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); computeLiveOuts(MF, RecRPTracker, NS); RecRPTracker.closeBottom(); std::vector SUnits(NS.begin(), NS.end()); llvm::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { return A->NodeNum > B->NodeNum; }); for (auto &SU : SUnits) { // Since we're computing the register pressure for a subset of the // instructions in a block, we need to set the tracker for each // instruction in the node-set. The tracker is set to the instruction // just after the one we're interested in. MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); RecRPTracker.setPos(std::next(CurInstI)); RegPressureDelta RPDelta; ArrayRef CriticalPSets; RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, CriticalPSets, RecRegPressure.MaxSetPressure); if (RPDelta.Excess.isValid()) { LLVM_DEBUG( dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess.getUnitInc()); NS.setExceedPressure(SU); break; } RecRPTracker.recede(); } } } /// A heuristic to colocate node sets that have the same set of /// successors. void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { unsigned Colocate = 0; for (int i = 0, e = NodeSets.size(); i < e; ++i) { NodeSet &N1 = NodeSets[i]; SmallSetVector S1; if (N1.empty() || !succ_L(N1, S1)) continue; for (int j = i + 1; j < e; ++j) { NodeSet &N2 = NodeSets[j]; if (N1.compareRecMII(N2) != 0) continue; SmallSetVector S2; if (N2.empty() || !succ_L(N2, S2)) continue; if (isSubset(S1, S2) && S1.size() == S2.size()) { N1.setColocate(++Colocate); N2.setColocate(Colocate); break; } } } } /// Check if the existing node-sets are profitable. If not, then ignore the /// recurrent node-sets, and attempt to schedule all nodes together. This is /// a heuristic. If the MII is large and all the recurrent node-sets are small, /// then it's best to try to schedule all instructions together instead of /// starting with the recurrent node-sets. void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { // Look for loops with a large MII. if (MII < 17) return; // Check if the node-set contains only a simple add recurrence. for (auto &NS : NodeSets) { if (NS.getRecMII() > 2) return; if (NS.getMaxDepth() > MII) return; } NodeSets.clear(); LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); return; } /// Add the nodes that do not belong to a recurrence set into groups /// based upon connected componenets. void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { SetVector NodesAdded; SmallPtrSet Visited; // Add the nodes that are on a path between the previous node sets and // the current node set. for (NodeSet &I : NodeSets) { SmallSetVector N; // Add the nodes from the current node set to the previous node set. if (succ_L(I, N)) { SetVector Path; for (SUnit *NI : N) { Visited.clear(); computePath(NI, Path, NodesAdded, I, Visited); } if (!Path.empty()) I.insert(Path.begin(), Path.end()); } // Add the nodes from the previous node set to the current node set. N.clear(); if (succ_L(NodesAdded, N)) { SetVector Path; for (SUnit *NI : N) { Visited.clear(); computePath(NI, Path, I, NodesAdded, Visited); } if (!Path.empty()) I.insert(Path.begin(), Path.end()); } NodesAdded.insert(I.begin(), I.end()); } // Create a new node set with the connected nodes of any successor of a node // in a recurrent set. NodeSet NewSet; SmallSetVector N; if (succ_L(NodesAdded, N)) for (SUnit *I : N) addConnectedNodes(I, NewSet, NodesAdded); if (!NewSet.empty()) NodeSets.push_back(NewSet); // Create a new node set with the connected nodes of any predecessor of a node // in a recurrent set. NewSet.clear(); if (pred_L(NodesAdded, N)) for (SUnit *I : N) addConnectedNodes(I, NewSet, NodesAdded); if (!NewSet.empty()) NodeSets.push_back(NewSet); // Create new nodes sets with the connected nodes any remaining node that // has no predecessor. for (unsigned i = 0; i < SUnits.size(); ++i) { SUnit *SU = &SUnits[i]; if (NodesAdded.count(SU) == 0) { NewSet.clear(); addConnectedNodes(SU, NewSet, NodesAdded); if (!NewSet.empty()) NodeSets.push_back(NewSet); } } } /// Add the node to the set, and add all is its connected nodes to the set. void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, SetVector &NodesAdded) { NewSet.insert(SU); NodesAdded.insert(SU); for (auto &SI : SU->Succs) { SUnit *Successor = SI.getSUnit(); if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) addConnectedNodes(Successor, NewSet, NodesAdded); } for (auto &PI : SU->Preds) { SUnit *Predecessor = PI.getSUnit(); if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) addConnectedNodes(Predecessor, NewSet, NodesAdded); } } /// Return true if Set1 contains elements in Set2. The elements in common /// are returned in a different container. static bool isIntersect(SmallSetVector &Set1, const NodeSet &Set2, SmallSetVector &Result) { Result.clear(); for (unsigned i = 0, e = Set1.size(); i != e; ++i) { SUnit *SU = Set1[i]; if (Set2.count(SU) != 0) Result.insert(SU); } return !Result.empty(); } /// Merge the recurrence node sets that have the same initial node. void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; ++I) { NodeSet &NI = *I; for (NodeSetType::iterator J = I + 1; J != E;) { NodeSet &NJ = *J; if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { if (NJ.compareRecMII(NI) > 0) NI.setRecMII(NJ.getRecMII()); for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; ++NII) I->insert(*NII); NodeSets.erase(J); E = NodeSets.end(); } else { ++J; } } } } /// Remove nodes that have been scheduled in previous NodeSets. void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; ++I) for (NodeSetType::iterator J = I + 1; J != E;) { J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); if (J->empty()) { NodeSets.erase(J); E = NodeSets.end(); } else { ++J; } } } /// Compute an ordered list of the dependence graph nodes, which /// indicates the order that the nodes will be scheduled. This is a /// two-level algorithm. First, a partial order is created, which /// consists of a list of sets ordered from highest to lowest priority. void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { SmallSetVector R; NodeOrder.clear(); for (auto &Nodes : NodeSets) { LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); OrderKind Order; SmallSetVector N; if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { R.insert(N.begin(), N.end()); Order = BottomUp; LLVM_DEBUG(dbgs() << " Bottom up (preds) "); } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { R.insert(N.begin(), N.end()); Order = TopDown; LLVM_DEBUG(dbgs() << " Top down (succs) "); } else if (isIntersect(N, Nodes, R)) { // If some of the successors are in the existing node-set, then use the // top-down ordering. Order = TopDown; LLVM_DEBUG(dbgs() << " Top down (intersect) "); } else if (NodeSets.size() == 1) { for (auto &N : Nodes) if (N->Succs.size() == 0) R.insert(N); Order = BottomUp; LLVM_DEBUG(dbgs() << " Bottom up (all) "); } else { // Find the node with the highest ASAP. SUnit *maxASAP = nullptr; for (SUnit *SU : Nodes) { if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) maxASAP = SU; } R.insert(maxASAP); Order = BottomUp; LLVM_DEBUG(dbgs() << " Bottom up (default) "); } while (!R.empty()) { if (Order == TopDown) { // Choose the node with the maximum height. If more than one, choose // the node wiTH the maximum ZeroLatencyHeight. If still more than one, // choose the node with the lowest MOV. while (!R.empty()) { SUnit *maxHeight = nullptr; for (SUnit *I : R) { if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) maxHeight = I; else if (getHeight(I) == getHeight(maxHeight) && getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) maxHeight = I; else if (getHeight(I) == getHeight(maxHeight) && getZeroLatencyHeight(I) == getZeroLatencyHeight(maxHeight) && getMOV(I) < getMOV(maxHeight)) maxHeight = I; } NodeOrder.insert(maxHeight); LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); R.remove(maxHeight); for (const auto &I : maxHeight->Succs) { if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.count(I.getSUnit()) != 0) continue; if (ignoreDependence(I, false)) continue; R.insert(I.getSUnit()); } // Back-edges are predecessors with an anti-dependence. for (const auto &I : maxHeight->Preds) { if (I.getKind() != SDep::Anti) continue; if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.count(I.getSUnit()) != 0) continue; R.insert(I.getSUnit()); } } Order = BottomUp; LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); SmallSetVector N; if (pred_L(NodeOrder, N, &Nodes)) R.insert(N.begin(), N.end()); } else { // Choose the node with the maximum depth. If more than one, choose // the node with the maximum ZeroLatencyDepth. If still more than one, // choose the node with the lowest MOV. while (!R.empty()) { SUnit *maxDepth = nullptr; for (SUnit *I : R) { if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) maxDepth = I; else if (getDepth(I) == getDepth(maxDepth) && getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) maxDepth = I; else if (getDepth(I) == getDepth(maxDepth) && getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && getMOV(I) < getMOV(maxDepth)) maxDepth = I; } NodeOrder.insert(maxDepth); LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); R.remove(maxDepth); if (Nodes.isExceedSU(maxDepth)) { Order = TopDown; R.clear(); R.insert(Nodes.getNode(0)); break; } for (const auto &I : maxDepth->Preds) { if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.count(I.getSUnit()) != 0) continue; R.insert(I.getSUnit()); } // Back-edges are predecessors with an anti-dependence. for (const auto &I : maxDepth->Succs) { if (I.getKind() != SDep::Anti) continue; if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.count(I.getSUnit()) != 0) continue; R.insert(I.getSUnit()); } } Order = TopDown; LLVM_DEBUG(dbgs() << "\n Switching order to top down "); SmallSetVector N; if (succ_L(NodeOrder, N, &Nodes)) R.insert(N.begin(), N.end()); } } LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); } LLVM_DEBUG({ dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }); } /// Process the nodes in the computed order and create the pipelined schedule /// of the instructions, if possible. Return true if a schedule is found. bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { if (NodeOrder.empty()) return false; bool scheduleFound = false; // Keep increasing II until a valid schedule is found. for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { Schedule.reset(); Schedule.setInitiationInterval(II); LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); SetVector::iterator NI = NodeOrder.begin(); SetVector::iterator NE = NodeOrder.end(); do { SUnit *SU = *NI; // Compute the schedule time for the instruction, which is based // upon the scheduled time for any predecessors/successors. int EarlyStart = INT_MIN; int LateStart = INT_MAX; // These values are set when the size of the schedule window is limited // due to chain dependences. int SchedEnd = INT_MAX; int SchedStart = INT_MIN; Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, II, this); LLVM_DEBUG({ dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()->dump(); dbgs() << "\n"; }); LLVM_DEBUG({ dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; }); if (EarlyStart > LateStart || SchedEnd < EarlyStart || SchedStart > LateStart) scheduleFound = false; else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { SchedStart = std::max(SchedStart, LateStart - (int)II + 1); scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { SchedEnd = std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); // When scheduling a Phi it is better to start at the late cycle and go // backwards. The default order may insert the Phi too far away from // its first dependence. if (SU->getInstr()->isPHI()) scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); else scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); } else { int FirstCycle = Schedule.getFirstCycle(); scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), FirstCycle + getASAP(SU) + II - 1, II); } // Even if we find a schedule, make sure the schedule doesn't exceed the // allowable number of stages. We keep trying if this happens. if (scheduleFound) if (SwpMaxStages > -1 && Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) scheduleFound = false; LLVM_DEBUG({ if (!scheduleFound) dbgs() << "\tCan't schedule\n"; }); } while (++NI != NE && scheduleFound); // If a schedule is found, check if it is a valid schedule too. if (scheduleFound) scheduleFound = Schedule.isValidSchedule(this); } LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); if (scheduleFound) Schedule.finalizeSchedule(this); else Schedule.reset(); return scheduleFound && Schedule.getMaxStageCount() > 0; } /// Given a schedule for the loop, generate a new version of the loop, /// and replace the old version. This function generates a prolog /// that contains the initial iterations in the pipeline, and kernel /// loop, and the epilogue that contains the code for the final /// iterations. void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { // Create a new basic block for the kernel and add it to the CFG. MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); unsigned MaxStageCount = Schedule.getMaxStageCount(); // Remember the registers that are used in different stages. The index is // the iteration, or stage, that the instruction is scheduled in. This is // a map between register names in the original block and the names created // in each stage of the pipelined loop. ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; InstrMapTy InstrMap; SmallVector PrologBBs; // Generate the prolog instructions that set up the pipeline. generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); MF.insert(BB->getIterator(), KernelBB); // Rearrange the instructions to generate the new, pipelined loop, // and update register names as needed. for (int Cycle = Schedule.getFirstCycle(), LastCycle = Schedule.getFinalCycle(); Cycle <= LastCycle; ++Cycle) { std::deque &CycleInstrs = Schedule.getInstructions(Cycle); // This inner loop schedules each instruction in the cycle. for (SUnit *CI : CycleInstrs) { if (CI->getInstr()->isPHI()) continue; unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); KernelBB->push_back(NewMI); InstrMap[NewMI] = CI->getInstr(); } } // Copy any terminator instructions to the new kernel, and update // names as needed. for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), E = BB->instr_end(); I != E; ++I) { MachineInstr *NewMI = MF.CloneMachineInstr(&*I); updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); KernelBB->push_back(NewMI); InstrMap[NewMI] = &*I; } KernelBB->transferSuccessors(BB); KernelBB->replaceSuccessor(BB, KernelBB); generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, InstrMap, MaxStageCount, MaxStageCount, false); generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, InstrMap, MaxStageCount, MaxStageCount, false); LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); SmallVector EpilogBBs; // Generate the epilog instructions to complete the pipeline. generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); // We need this step because the register allocation doesn't handle some // situations well, so we insert copies to help out. splitLifetimes(KernelBB, EpilogBBs, Schedule); // Remove dead instructions due to loop induction variables. removeDeadInstructions(KernelBB, EpilogBBs); // Add branches between prolog and epilog blocks. addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); // Remove the original loop since it's no longer referenced. for (auto &I : *BB) LIS.RemoveMachineInstrFromMaps(I); BB->clear(); BB->eraseFromParent(); delete[] VRMap; } /// Generate the pipeline prolog code. void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, MBBVectorTy &PrologBBs) { MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); assert(PreheaderBB != nullptr && "Need to add code to handle loops w/o preheader"); MachineBasicBlock *PredBB = PreheaderBB; InstrMapTy InstrMap; // Generate a basic block for each stage, not including the last stage, // which will be generated in the kernel. Each basic block may contain // instructions from multiple stages/iterations. for (unsigned i = 0; i < LastStage; ++i) { // Create and insert the prolog basic block prior to the original loop // basic block. The original loop is removed later. MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); PrologBBs.push_back(NewBB); MF.insert(BB->getIterator(), NewBB); NewBB->transferSuccessors(PredBB); PredBB->addSuccessor(NewBB); PredBB = NewBB; // Generate instructions for each appropriate stage. Process instructions // in original program order. for (int StageNum = i; StageNum >= 0; --StageNum) { for (MachineBasicBlock::iterator BBI = BB->instr_begin(), BBE = BB->getFirstTerminator(); BBI != BBE; ++BBI) { if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { if (BBI->isPHI()) continue; MachineInstr *NewMI = cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, VRMap); NewBB->push_back(NewMI); InstrMap[NewMI] = &*BBI; } } } rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); LLVM_DEBUG({ dbgs() << "prolog:\n"; NewBB->dump(); }); } PredBB->replaceSuccessor(BB, KernelBB); // Check if we need to remove the branch from the preheader to the original // loop, and replace it with a branch to the new loop. unsigned numBranches = TII->removeBranch(*PreheaderBB); if (numBranches) { SmallVector Cond; TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); } } /// Generate the pipeline epilog code. The epilog code finishes the iterations /// that were started in either the prolog or the kernel. We create a basic /// block for each stage that needs to complete. void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs) { // We need to change the branch from the kernel to the first epilog block, so // this call to analyze branch uses the kernel rather than the original BB. MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); assert(!checkBranch && "generateEpilog must be able to analyze the branch"); if (checkBranch) return; MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); if (*LoopExitI == KernelBB) ++LoopExitI; assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); MachineBasicBlock *LoopExitBB = *LoopExitI; MachineBasicBlock *PredBB = KernelBB; MachineBasicBlock *EpilogStart = LoopExitBB; InstrMapTy InstrMap; // Generate a basic block for each stage, not including the last stage, // which was generated for the kernel. Each basic block may contain // instructions from multiple stages/iterations. int EpilogStage = LastStage + 1; for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); EpilogBBs.push_back(NewBB); MF.insert(BB->getIterator(), NewBB); PredBB->replaceSuccessor(LoopExitBB, NewBB); NewBB->addSuccessor(LoopExitBB); if (EpilogStart == LoopExitBB) EpilogStart = NewBB; // Add instructions to the epilog depending on the current block. // Process instructions in original program order. for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { for (auto &BBI : *BB) { if (BBI.isPHI()) continue; MachineInstr *In = &BBI; if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { // Instructions with memoperands in the epilog are updated with // conservative values. MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); NewBB->push_back(NewMI); InstrMap[NewMI] = In; } } } generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, InstrMap, LastStage, EpilogStage, i == 1); generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, InstrMap, LastStage, EpilogStage, i == 1); PredBB = NewBB; LLVM_DEBUG({ dbgs() << "epilog:\n"; NewBB->dump(); }); } // Fix any Phi nodes in the loop exit block. for (MachineInstr &MI : *LoopExitBB) { if (!MI.isPHI()) break; for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { MachineOperand &MO = MI.getOperand(i); if (MO.getMBB() == BB) MO.setMBB(PredBB); } } // Create a branch to the new epilog from the kernel. // Remove the original branch and add a new branch to the epilog. TII->removeBranch(*KernelBB); TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); // Add a branch to the loop exit. if (EpilogBBs.size() > 0) { MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); SmallVector Cond1; TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); } } /// Replace all uses of FromReg that appear outside the specified /// basic block with ToReg. static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, MachineBasicBlock *MBB, MachineRegisterInfo &MRI, LiveIntervals &LIS) { for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), E = MRI.use_end(); I != E;) { MachineOperand &O = *I; ++I; if (O.getParent()->getParent() != MBB) O.setReg(ToReg); } if (!LIS.hasInterval(ToReg)) LIS.createEmptyInterval(ToReg); } /// Return true if the register has a use that occurs outside the /// specified loop. static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, MachineRegisterInfo &MRI) { for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), E = MRI.use_end(); I != E; ++I) if (I->getParent()->getParent() != BB) return true; return false; } /// Generate Phis for the specific block in the generated pipelined code. /// This function looks at the Phis from the original code to guide the /// creation of new Phis. void SwingSchedulerDAG::generateExistingPhis( MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { // Compute the stage number for the initial value of the Phi, which // comes from the prolog. The prolog to use depends on to which kernel/ // epilog that we're adding the Phi. unsigned PrologStage = 0; unsigned PrevStage = 0; bool InKernel = (LastStageNum == CurStageNum); if (InKernel) { PrologStage = LastStageNum - 1; PrevStage = CurStageNum; } else { PrologStage = LastStageNum - (CurStageNum - LastStageNum); PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; } for (MachineBasicBlock::iterator BBI = BB->instr_begin(), BBE = BB->getFirstNonPHI(); BBI != BBE; ++BBI) { unsigned Def = BBI->getOperand(0).getReg(); unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(*BBI, BB, InitVal, LoopVal); unsigned PhiOp1 = 0; // The Phi value from the loop body typically is defined in the loop, but // not always. So, we need to check if the value is defined in the loop. unsigned PhiOp2 = LoopVal; if (VRMap[LastStageNum].count(LoopVal)) PhiOp2 = VRMap[LastStageNum][LoopVal]; int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); int LoopValStage = Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); if (NumStages == 0) { // We don't need to generate a Phi anymore, but we need to rename any uses // of the Phi value. unsigned NewReg = VRMap[PrevStage][LoopVal]; rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, Def, InitVal, NewReg); if (VRMap[CurStageNum].count(LoopVal)) VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; } // Adjust the number of Phis needed depending on the number of prologs left, // and the distance from where the Phi is first scheduled. The number of // Phis cannot exceed the number of prolog stages. Each stage can // potentially define two values. unsigned MaxPhis = PrologStage + 2; if (!InKernel && (int)PrologStage <= LoopValStage) MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); unsigned NumPhis = std::min(NumStages, MaxPhis); unsigned NewReg = 0; unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; // In the epilog, we may need to look back one stage to get the correct // Phi name because the epilog and prolog blocks execute the same stage. // The correct name is from the previous block only when the Phi has // been completely scheduled prior to the epilog, and Phi value is not // needed in multiple stages. int StageDiff = 0; if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && NumPhis == 1) StageDiff = 1; // Adjust the computations below when the phi and the loop definition // are scheduled in different stages. if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) StageDiff = StageScheduled - LoopValStage; for (unsigned np = 0; np < NumPhis; ++np) { // If the Phi hasn't been scheduled, then use the initial Phi operand // value. Otherwise, use the scheduled version of the instruction. This // is a little complicated when a Phi references another Phi. if (np > PrologStage || StageScheduled >= (int)LastStageNum) PhiOp1 = InitVal; // Check if the Phi has already been scheduled in a prolog stage. else if (PrologStage >= AccessStage + StageDiff + np && VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; // Check if the Phi has already been scheduled, but the loop intruction // is either another Phi, or doesn't occur in the loop. else if (PrologStage >= AccessStage + StageDiff + np) { // If the Phi references another Phi, we need to examine the other // Phi to get the correct value. PhiOp1 = LoopVal; MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); int Indirects = 1; while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) PhiOp1 = getInitPhiReg(*InstOp1, BB); else PhiOp1 = getLoopPhiReg(*InstOp1, BB); InstOp1 = MRI.getVRegDef(PhiOp1); int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; break; } ++Indirects; } } else PhiOp1 = InitVal; // If this references a generated Phi in the kernel, get the Phi operand // from the incoming block. if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); // In the epilog, a map lookup is needed to get the value from the kernel, // or previous epilog block. How is does this depends on if the // instruction is scheduled in the previous block. if (!InKernel) { int StageDiffAdj = 0; if (LoopValStage != -1 && StageScheduled > LoopValStage) StageDiffAdj = StageScheduled - LoopValStage; // Use the loop value defined in the kernel, unless the kernel // contains the last definition of the Phi. if (np == 0 && PrevStage == LastStageNum && (StageScheduled != 0 || LoopValStage != 0) && VRMap[PrevStage - StageDiffAdj].count(LoopVal)) PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; // Use the value defined by the Phi. We add one because we switch // from looking at the loop value to the Phi definition. else if (np > 0 && PrevStage == LastStageNum && VRMap[PrevStage - np + 1].count(Def)) PhiOp2 = VRMap[PrevStage - np + 1][Def]; // Use the loop value defined in the kernel. else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; // Use the value defined by the Phi, unless we're generating the first // epilog and the Phi refers to a Phi in a different stage. else if (VRMap[PrevStage - np].count(Def) && (!LoopDefIsPhi || PrevStage != LastStageNum)) PhiOp2 = VRMap[PrevStage - np][Def]; } // Check if we can reuse an existing Phi. This occurs when a Phi // references another Phi, and the other Phi is scheduled in an // earlier stage. We can try to reuse an existing Phi up until the last // stage of the current Phi. if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) { int LVNumStages = Schedule.getStagesForPhi(LoopVal); int StageDiff = (StageScheduled - LoopValStage); LVNumStages -= StageDiff; // Make sure the loop value Phi has been processed already. if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { NewReg = PhiOp2; unsigned ReuseStage = CurStageNum; if (Schedule.isLoopCarried(this, *PhiInst)) ReuseStage -= LVNumStages; // Check if the Phi to reuse has been generated yet. If not, then // there is nothing to reuse. if (VRMap[ReuseStage - np].count(LoopVal)) { NewReg = VRMap[ReuseStage - np][LoopVal]; rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, Def, NewReg); // Update the map with the new Phi name. VRMap[CurStageNum - np][Def] = NewReg; PhiOp2 = NewReg; if (VRMap[LastStageNum - np - 1].count(LoopVal)) PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; if (IsLast && np == NumPhis - 1) replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); continue; } } else if (InKernel && StageDiff > 0 && VRMap[CurStageNum - StageDiff - np].count(LoopVal)) PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; } const TargetRegisterClass *RC = MRI.getRegClass(Def); NewReg = MRI.createVirtualRegister(RC); MachineInstrBuilder NewPhi = BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), NewReg); NewPhi.addReg(PhiOp1).addMBB(BB1); NewPhi.addReg(PhiOp2).addMBB(BB2); if (np == 0) InstrMap[NewPhi] = &*BBI; // We define the Phis after creating the new pipelined code, so // we need to rename the Phi values in scheduled instructions. unsigned PrevReg = 0; if (InKernel && VRMap[PrevStage - np].count(LoopVal)) PrevReg = VRMap[PrevStage - np][LoopVal]; rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, Def, NewReg, PrevReg); // If the Phi has been scheduled, use the new name for rewriting. if (VRMap[CurStageNum - np].count(Def)) { unsigned R = VRMap[CurStageNum - np][Def]; rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, R, NewReg); } // Check if we need to rename any uses that occurs after the loop. The // register to replace depends on whether the Phi is scheduled in the // epilog. if (IsLast && np == NumPhis - 1) replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); // In the kernel, a dependent Phi uses the value from this Phi. if (InKernel) PhiOp2 = NewReg; // Update the map with the new Phi name. VRMap[CurStageNum - np][Def] = NewReg; } while (NumPhis++ < NumStages) { rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, &*BBI, Def, NewReg, 0); } // Check if we need to rename a Phi that has been eliminated due to // scheduling. if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); } } /// Generate Phis for the specified block in the generated pipelined code. /// These are new Phis needed because the definition is scheduled after the /// use in the pipelined sequence. void SwingSchedulerDAG::generatePhis( MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { // Compute the stage number that contains the initial Phi value, and // the Phi from the previous stage. unsigned PrologStage = 0; unsigned PrevStage = 0; unsigned StageDiff = CurStageNum - LastStageNum; bool InKernel = (StageDiff == 0); if (InKernel) { PrologStage = LastStageNum - 1; PrevStage = CurStageNum; } else { PrologStage = LastStageNum - StageDiff; PrevStage = LastStageNum + StageDiff - 1; } for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), BBE = BB->instr_end(); BBI != BBE; ++BBI) { for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { MachineOperand &MO = BBI->getOperand(i); if (!MO.isReg() || !MO.isDef() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); assert(StageScheduled != -1 && "Expecting scheduled instruction."); unsigned Def = MO.getReg(); unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); // An instruction scheduled in stage 0 and is used after the loop // requires a phi in the epilog for the last definition from either // the kernel or prolog. if (!InKernel && NumPhis == 0 && StageScheduled == 0 && hasUseAfterLoop(Def, BB, MRI)) NumPhis = 1; if (!InKernel && (unsigned)StageScheduled > PrologStage) continue; unsigned PhiOp2 = VRMap[PrevStage][Def]; if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) PhiOp2 = getLoopPhiReg(*InstOp2, BB2); // The number of Phis can't exceed the number of prolog stages. The // prolog stage number is zero based. if (NumPhis > PrologStage + 1 - StageScheduled) NumPhis = PrologStage + 1 - StageScheduled; for (unsigned np = 0; np < NumPhis; ++np) { unsigned PhiOp1 = VRMap[PrologStage][Def]; if (np <= PrologStage) PhiOp1 = VRMap[PrologStage - np][Def]; if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) PhiOp1 = getInitPhiReg(*InstOp1, NewBB); } if (!InKernel) PhiOp2 = VRMap[PrevStage - np][Def]; const TargetRegisterClass *RC = MRI.getRegClass(Def); unsigned NewReg = MRI.createVirtualRegister(RC); MachineInstrBuilder NewPhi = BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), NewReg); NewPhi.addReg(PhiOp1).addMBB(BB1); NewPhi.addReg(PhiOp2).addMBB(BB2); if (np == 0) InstrMap[NewPhi] = &*BBI; // Rewrite uses and update the map. The actions depend upon whether // we generating code for the kernel or epilog blocks. if (InKernel) { rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, PhiOp1, NewReg); rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, PhiOp2, NewReg); PhiOp2 = NewReg; VRMap[PrevStage - np - 1][Def] = NewReg; } else { VRMap[CurStageNum - np][Def] = NewReg; if (np == NumPhis - 1) rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, Def, NewReg); } if (IsLast && np == NumPhis - 1) replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); } } } } /// Remove instructions that generate values with no uses. /// Typically, these are induction variable operations that generate values /// used in the loop itself. A dead instruction has a definition with /// no uses, or uses that occur in the original loop only. void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs) { // For each epilog block, check that the value defined by each instruction // is used. If not, delete it. for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), MBE = EpilogBBs.rend(); MBB != MBE; ++MBB) for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), ME = (*MBB)->instr_rend(); MI != ME;) { // From DeadMachineInstructionElem. Don't delete inline assembly. if (MI->isInlineAsm()) { ++MI; continue; } bool SawStore = false; // Check if it's safe to remove the instruction due to side effects. // We can, and want to, remove Phis here. if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { ++MI; continue; } bool used = true; for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (!MOI->isReg() || !MOI->isDef()) continue; unsigned reg = MOI->getReg(); // Assume physical registers are used, unless they are marked dead. if (TargetRegisterInfo::isPhysicalRegister(reg)) { used = !MOI->isDead(); if (used) break; continue; } unsigned realUses = 0; for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), EI = MRI.use_end(); UI != EI; ++UI) { // Check if there are any uses that occur only in the original // loop. If so, that's not a real use. if (UI->getParent()->getParent() != BB) { realUses++; used = true; break; } } if (realUses > 0) break; used = false; } if (!used) { LIS.RemoveMachineInstrFromMaps(*MI); MI++->eraseFromParent(); continue; } ++MI; } // In the kernel block, check if we can remove a Phi that generates a value // used in an instruction removed in the epilog block. for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), BBE = KernelBB->getFirstNonPHI(); BBI != BBE;) { MachineInstr *MI = &*BBI; ++BBI; unsigned reg = MI->getOperand(0).getReg(); if (MRI.use_begin(reg) == MRI.use_end()) { LIS.RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); } } } /// For loop carried definitions, we split the lifetime of a virtual register /// that has uses past the definition in the next iteration. A copy with a new /// virtual register is inserted before the definition, which helps with /// generating a better register assignment. /// /// v1 = phi(a, v2) v1 = phi(a, v2) /// v2 = phi(b, v3) v2 = phi(b, v3) /// v3 = .. v4 = copy v1 /// .. = V1 v3 = .. /// .. = v4 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, SMSchedule &Schedule) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); for (auto &PHI : KernelBB->phis()) { unsigned Def = PHI.getOperand(0).getReg(); // Check for any Phi definition that used as an operand of another Phi // in the same block. for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), E = MRI.use_instr_end(); I != E; ++I) { if (I->isPHI() && I->getParent() == KernelBB) { // Get the loop carried definition. unsigned LCDef = getLoopPhiReg(PHI, KernelBB); if (!LCDef) continue; MachineInstr *MI = MRI.getVRegDef(LCDef); if (!MI || MI->getParent() != KernelBB || MI->isPHI()) continue; // Search through the rest of the block looking for uses of the Phi // definition. If one occurs, then split the lifetime. unsigned SplitReg = 0; for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), KernelBB->instr_end())) if (BBJ.readsRegister(Def)) { // We split the lifetime when we find the first use. if (SplitReg == 0) { SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); BuildMI(*KernelBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), SplitReg) .addReg(Def); } BBJ.substituteRegister(Def, SplitReg, 0, *TRI); } if (!SplitReg) continue; // Search through each of the epilog blocks for any uses to be renamed. for (auto &Epilog : EpilogBBs) for (auto &I : *Epilog) if (I.readsRegister(Def)) I.substituteRegister(Def, SplitReg, 0, *TRI); break; } } } } /// Remove the incoming block from the Phis in a basic block. static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { for (MachineInstr &MI : *BB) { if (!MI.isPHI()) break; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) if (MI.getOperand(i + 1).getMBB() == Incoming) { MI.RemoveOperand(i + 1); MI.RemoveOperand(i); break; } } } /// Create branches from each prolog basic block to the appropriate epilog /// block. These edges are needed if the loop ends before reaching the /// kernel. void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, SMSchedule &Schedule, ValueMapTy *VRMap) { assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); MachineInstr *IndVar = Pass.LI.LoopInductionVar; MachineInstr *Cmp = Pass.LI.LoopCompare; MachineBasicBlock *LastPro = KernelBB; MachineBasicBlock *LastEpi = KernelBB; // Start from the blocks connected to the kernel and work "out" // to the first prolog and the last epilog blocks. SmallVector PrevInsts; unsigned MaxIter = PrologBBs.size() - 1; unsigned LC = UINT_MAX; unsigned LCMin = UINT_MAX; for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { // Add branches to the prolog that go to the corresponding // epilog, and the fall-thru prolog/kernel block. MachineBasicBlock *Prolog = PrologBBs[j]; MachineBasicBlock *Epilog = EpilogBBs[i]; // We've executed one iteration, so decrement the loop count and check for // the loop end. SmallVector Cond; // Check if the LOOP0 has already been removed. If so, then there is no need // to reduce the trip count. if (LC != 0) LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, MaxIter); // Record the value of the first trip count, which is used to determine if // branches and blocks can be removed for constant trip counts. if (LCMin == UINT_MAX) LCMin = LC; unsigned numAdded = 0; if (TargetRegisterInfo::isVirtualRegister(LC)) { Prolog->addSuccessor(Epilog); numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); } else if (j >= LCMin) { Prolog->addSuccessor(Epilog); Prolog->removeSuccessor(LastPro); LastEpi->removeSuccessor(Epilog); numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); removePhis(Epilog, LastEpi); // Remove the blocks that are no longer referenced. if (LastPro != LastEpi) { LastEpi->clear(); LastEpi->eraseFromParent(); } LastPro->clear(); LastPro->eraseFromParent(); } else { numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); removePhis(Epilog, Prolog); } LastPro = Prolog; LastEpi = Epilog; for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), E = Prolog->instr_rend(); I != E && numAdded > 0; ++I, --numAdded) updateInstruction(&*I, false, j, 0, Schedule, VRMap); } } /// Return true if we can compute the amount the instruction changes /// during each iteration. Set Delta to the amount of the change. bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); unsigned BaseReg; int64_t Offset; if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) return false; MachineRegisterInfo &MRI = MF.getRegInfo(); // Check if there is a Phi. If so, get the definition in the loop. MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); if (BaseDef && BaseDef->isPHI()) { BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); BaseDef = MRI.getVRegDef(BaseReg); } if (!BaseDef) return false; int D = 0; if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) return false; Delta = D; return true; } /// Update the memory operand with a new offset when the pipeliner /// generates a new copy of the instruction that refers to a /// different memory location. void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, unsigned Num) { if (Num == 0) return; // If the instruction has memory operands, then adjust the offset // when the instruction appears in different stages. unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); if (NumRefs == 0) return; MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); unsigned Refs = 0; for (MachineMemOperand *MMO : NewMI.memoperands()) { if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || (!MMO->getValue())) { NewMemRefs[Refs++] = MMO; continue; } unsigned Delta; if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { int64_t AdjOffset = Delta * Num; NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); } else { NewMI.dropMemRefs(); return; } } NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); } /// Clone the instruction for the new pipelined loop and update the /// memory operands, if needed. MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); // Check for tied operands in inline asm instructions. This should be handled // elsewhere, but I'm not sure of the best solution. if (OldMI->isInlineAsm()) for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { const auto &MO = OldMI->getOperand(i); if (MO.isReg() && MO.isUse()) break; unsigned UseIdx; if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) NewMI->tieOperands(i, UseIdx); } updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); return NewMI; } /// Clone the instruction for the new pipelined loop. If needed, this /// function updates the instruction using the values saved in the /// InstrChanges structure. MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum, SMSchedule &Schedule) { MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); DenseMap>::iterator It = InstrChanges.find(getSUnit(OldMI)); if (It != InstrChanges.end()) { std::pair RegAndOffset = It->second; unsigned BasePos, OffsetPos; if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) return nullptr; int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); NewMI->getOperand(OffsetPos).setImm(NewOffset); } updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); return NewMI; } /// Update the machine instruction with new virtual registers. This /// function may change the defintions and/or uses. void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, unsigned CurStageNum, unsigned InstrStageNum, SMSchedule &Schedule, ValueMapTy *VRMap) { for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = NewMI->getOperand(i); if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; unsigned reg = MO.getReg(); if (MO.isDef()) { // Create a new virtual register for the definition. const TargetRegisterClass *RC = MRI.getRegClass(reg); unsigned NewReg = MRI.createVirtualRegister(RC); MO.setReg(NewReg); VRMap[CurStageNum][reg] = NewReg; if (LastDef) replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); } else if (MO.isUse()) { MachineInstr *Def = MRI.getVRegDef(reg); // Compute the stage that contains the last definition for instruction. int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); unsigned StageNum = CurStageNum; if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { // Compute the difference in stages between the defintion and the use. unsigned StageDiff = (InstrStageNum - DefStageNum); // Make an adjustment to get the last definition. StageNum -= StageDiff; } if (VRMap[StageNum].count(reg)) MO.setReg(VRMap[StageNum][reg]); } } } /// Return the instruction in the loop that defines the register. /// If the definition is a Phi, then follow the Phi operand to /// the instruction in the loop. MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { SmallPtrSet Visited; MachineInstr *Def = MRI.getVRegDef(Reg); while (Def->isPHI()) { if (!Visited.insert(Def).second) break; for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) if (Def->getOperand(i + 1).getMBB() == BB) { Def = MRI.getVRegDef(Def->getOperand(i).getReg()); break; } } return Def; } /// Return the new name for the value from the previous stage. unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, ValueMapTy *VRMap, MachineBasicBlock *BB) { unsigned PrevVal = 0; if (StageNum > PhiStage) { MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) // The name is defined in the previous stage. PrevVal = VRMap[StageNum - 1][LoopVal]; else if (VRMap[StageNum].count(LoopVal)) // The previous name is defined in the current stage when the instruction // order is swapped. PrevVal = VRMap[StageNum][LoopVal]; else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) // The loop value hasn't yet been scheduled. PrevVal = LoopVal; else if (StageNum == PhiStage + 1) // The loop value is another phi, which has not been scheduled. PrevVal = getInitPhiReg(*LoopInst, BB); else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) // The loop value is another phi, which has been scheduled. PrevVal = getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), LoopStage, VRMap, BB); } return PrevVal; } /// Rewrite the Phi values in the specified block to use the mappings /// from the initial operand. Once the Phi is scheduled, we switch /// to using the loop value instead of the Phi value, so those names /// do not need to be rewritten. void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, SMSchedule &Schedule, ValueMapTy *VRMap, InstrMapTy &InstrMap) { for (auto &PHI : BB->phis()) { unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(PHI, BB, InitVal, LoopVal); unsigned PhiDef = PHI.getOperand(0).getReg(); unsigned PhiStage = (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); unsigned LoopStage = (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); if (NumPhis > StageNum) NumPhis = StageNum; for (unsigned np = 0; np <= NumPhis; ++np) { unsigned NewVal = getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); if (!NewVal) NewVal = InitVal; rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, PhiDef, NewVal); } } } /// Rewrite a previously scheduled instruction to use the register value /// from the new instruction. Make sure the instruction occurs in the /// basic block, and we don't change the uses in the new instruction. void SwingSchedulerDAG::rewriteScheduledInstr( MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, unsigned PrevReg) { bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; // Rewrite uses that have been scheduled already to use the new // Phi register. for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), EI = MRI.use_end(); UI != EI;) { MachineOperand &UseOp = *UI; MachineInstr *UseMI = UseOp.getParent(); ++UI; if (UseMI->getParent() != BB) continue; if (UseMI->isPHI()) { if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) continue; if (getLoopPhiReg(*UseMI, BB) != OldReg) continue; } InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); SUnit *OrigMISU = getSUnit(OrigInstr->second); int StageSched = Schedule.stageScheduled(OrigMISU); int CycleSched = Schedule.cycleScheduled(OrigMISU); unsigned ReplaceReg = 0; // This is the stage for the scheduled instruction. if (StagePhi == StageSched && Phi->isPHI()) { int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); if (PrevReg && InProlog) ReplaceReg = PrevReg; else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) ReplaceReg = PrevReg; else ReplaceReg = NewReg; } // The scheduled instruction occurs before the scheduled Phi, and the // Phi is not loop carried. if (!InProlog && StagePhi + 1 == StageSched && !Schedule.isLoopCarried(this, *Phi)) ReplaceReg = NewReg; if (StagePhi > StageSched && Phi->isPHI()) ReplaceReg = NewReg; if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) ReplaceReg = NewReg; if (ReplaceReg) { MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); UseOp.setReg(ReplaceReg); } } } /// Check if we can change the instruction to use an offset value from the /// previous iteration. If so, return true and set the base and offset values /// so that we can rewrite the load, if necessary. /// v1 = Phi(v0, v3) /// v2 = load v1, 0 /// v3 = post_store v1, 4, x /// This function enables the load to be rewritten as v2 = load v3, 4. bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, unsigned &OffsetPos, unsigned &NewBase, int64_t &Offset) { // Get the load instruction. if (TII->isPostIncrement(*MI)) return false; unsigned BasePosLd, OffsetPosLd; if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) return false; unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); // Look for the Phi instruction. MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); MachineInstr *Phi = MRI.getVRegDef(BaseReg); if (!Phi || !Phi->isPHI()) return false; // Get the register defined in the loop block. unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); if (!PrevReg) return false; // Check for the post-increment load/store instruction. MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); if (!PrevDef || PrevDef == MI) return false; if (!TII->isPostIncrement(*PrevDef)) return false; unsigned BasePos1 = 0, OffsetPos1 = 0; if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) return false; // Make sure that the instructions do not access the same memory location in // the next iteration. int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); MachineInstr *NewMI = MF.CloneMachineInstr(MI); NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); MF.DeleteMachineInstr(NewMI); if (!Disjoint) return false; // Set the return value once we determine that we return true. BasePos = BasePosLd; OffsetPos = OffsetPosLd; NewBase = PrevReg; Offset = StoreOffset; return true; } /// Apply changes to the instruction if needed. The changes are need /// to improve the scheduling and depend up on the final schedule. void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, SMSchedule &Schedule) { SUnit *SU = getSUnit(MI); DenseMap>::iterator It = InstrChanges.find(SU); if (It != InstrChanges.end()) { std::pair RegAndOffset = It->second; unsigned BasePos, OffsetPos; if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) return; unsigned BaseReg = MI->getOperand(BasePos).getReg(); MachineInstr *LoopDef = findDefInLoop(BaseReg); int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); int BaseStageNum = Schedule.stageScheduled(SU); int BaseCycleNum = Schedule.cycleScheduled(SU); if (BaseStageNum < DefStageNum) { MachineInstr *NewMI = MF.CloneMachineInstr(MI); int OffsetDiff = DefStageNum - BaseStageNum; if (DefCycleNum < BaseCycleNum) { NewMI->getOperand(BasePos).setReg(RegAndOffset.first); if (OffsetDiff > 0) --OffsetDiff; } int64_t NewOffset = MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; NewMI->getOperand(OffsetPos).setImm(NewOffset); SU->setInstr(NewMI); MISUnitMap[NewMI] = SU; NewMIs.insert(NewMI); } } } /// Return true for an order or output dependence that is loop carried /// potentially. A dependence is loop carried if the destination defines a valu /// that may be used or defined by the source in a subsequent iteration. bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc) { if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || Dep.isArtificial()) return false; if (!SwpPruneLoopCarried) return true; if (Dep.getKind() == SDep::Output) return true; MachineInstr *SI = Source->getInstr(); MachineInstr *DI = Dep.getSUnit()->getInstr(); if (!isSucc) std::swap(SI, DI); assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); // Assume ordered loads and stores may have a loop carried dependence. if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) return true; // Only chain dependences between a load and store can be loop carried. if (!DI->mayStore() || !SI->mayLoad()) return false; unsigned DeltaS, DeltaD; if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) return true; unsigned BaseRegS, BaseRegD; int64_t OffsetS, OffsetD; const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) return true; if (BaseRegS != BaseRegD) return true; // Check that the base register is incremented by a constant value for each // iteration. MachineInstr *Def = MRI.getVRegDef(BaseRegS); if (!Def || !Def->isPHI()) return true; unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(*Def, BB, InitVal, LoopVal); MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); int D = 0; if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) return true; uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); // This is the main test, which checks the offset values and the loop // increment value to determine if the accesses may be loop carried. if (OffsetS >= OffsetD) return OffsetS + AccessSizeS > DeltaS; else return OffsetD + AccessSizeD > DeltaD; return true; } void SwingSchedulerDAG::postprocessDAG() { for (auto &M : Mutations) M->apply(this); } /// Try to schedule the node at the specified StartCycle and continue /// until the node is schedule or the EndCycle is reached. This function /// returns true if the node is scheduled. This routine may search either /// forward or backward for a place to insert the instruction based upon /// the relative values of StartCycle and EndCycle. bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { bool forward = true; if (StartCycle > EndCycle) forward = false; // The terminating condition depends on the direction. int termCycle = forward ? EndCycle + 1 : EndCycle - 1; for (int curCycle = StartCycle; curCycle != termCycle; forward ? ++curCycle : --curCycle) { // Add the already scheduled instructions at the specified cycle to the DFA. Resources->clearResources(); for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); checkCycle <= LastCycle; checkCycle += II) { std::deque &cycleInstrs = ScheduledInstrs[checkCycle]; for (std::deque::iterator I = cycleInstrs.begin(), E = cycleInstrs.end(); I != E; ++I) { if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) continue; assert(Resources->canReserveResources(*(*I)->getInstr()) && "These instructions have already been scheduled."); Resources->reserveResources(*(*I)->getInstr()); } } if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || Resources->canReserveResources(*SU->getInstr())) { LLVM_DEBUG({ dbgs() << "\tinsert at cycle " << curCycle << " "; SU->getInstr()->dump(); }); ScheduledInstrs[curCycle].push_back(SU); InstrToCycle.insert(std::make_pair(SU, curCycle)); if (curCycle > LastCycle) LastCycle = curCycle; if (curCycle < FirstCycle) FirstCycle = curCycle; return true; } LLVM_DEBUG({ dbgs() << "\tfailed to insert at cycle " << curCycle << " "; SU->getInstr()->dump(); }); } return false; } // Return the cycle of the earliest scheduled instruction in the chain. int SMSchedule::earliestCycleInChain(const SDep &Dep) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(Dep); int EarlyCycle = INT_MAX; while (!Worklist.empty()) { const SDep &Cur = Worklist.pop_back_val(); SUnit *PrevSU = Cur.getSUnit(); if (Visited.count(PrevSU)) continue; std::map::const_iterator it = InstrToCycle.find(PrevSU); if (it == InstrToCycle.end()) continue; EarlyCycle = std::min(EarlyCycle, it->second); for (const auto &PI : PrevSU->Preds) if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) Worklist.push_back(PI); Visited.insert(PrevSU); } return EarlyCycle; } // Return the cycle of the latest scheduled instruction in the chain. int SMSchedule::latestCycleInChain(const SDep &Dep) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(Dep); int LateCycle = INT_MIN; while (!Worklist.empty()) { const SDep &Cur = Worklist.pop_back_val(); SUnit *SuccSU = Cur.getSUnit(); if (Visited.count(SuccSU)) continue; std::map::const_iterator it = InstrToCycle.find(SuccSU); if (it == InstrToCycle.end()) continue; LateCycle = std::max(LateCycle, it->second); for (const auto &SI : SuccSU->Succs) if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) Worklist.push_back(SI); Visited.insert(SuccSU); } return LateCycle; } /// If an instruction has a use that spans multiple iterations, then /// return true. These instructions are characterized by having a back-ege /// to a Phi, which contains a reference to another Phi. static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { for (auto &P : SU->Preds) if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) for (auto &S : P.getSUnit()->Succs) if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) return P.getSUnit(); return nullptr; } /// Compute the scheduling start slot for the instruction. The start slot /// depends on any predecessor or successor nodes scheduled already. void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG) { // Iterate over each instruction that has been scheduled already. The start // slot computation depends on whether the previously scheduled instruction // is a predecessor or successor of the specified instruction. for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { // Iterate over each instruction in the current cycle. for (SUnit *I : getInstructions(cycle)) { // Because we're processing a DAG for the dependences, we recognize // the back-edge in recurrences by anti dependences. for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { const SDep &Dep = SU->Preds[i]; if (Dep.getSUnit() == I) { if (!DAG->isBackedge(SU, Dep)) { int EarlyStart = cycle + Dep.getLatency() - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); if (DAG->isLoopCarriedDep(SU, Dep, false)) { int End = earliestCycleInChain(Dep) + (II - 1); *MinEnd = std::min(*MinEnd, End); } } else { int LateStart = cycle - Dep.getLatency() + DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; *MinLateStart = std::min(*MinLateStart, LateStart); } } // For instruction that requires multiple iterations, make sure that // the dependent instruction is not scheduled past the definition. SUnit *BE = multipleIterations(I, DAG); if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && !SU->isPred(I)) *MinLateStart = std::min(*MinLateStart, cycle); } for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { if (SU->Succs[i].getSUnit() == I) { const SDep &Dep = SU->Succs[i]; if (!DAG->isBackedge(SU, Dep)) { int LateStart = cycle - Dep.getLatency() + DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; *MinLateStart = std::min(*MinLateStart, LateStart); if (DAG->isLoopCarriedDep(SU, Dep)) { int Start = latestCycleInChain(Dep) + 1 - II; *MaxStart = std::max(*MaxStart, Start); } } else { int EarlyStart = cycle + Dep.getLatency() - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); } } } } } } /// Order the instructions within a cycle so that the definitions occur /// before the uses. Returns true if the instruction is added to the start /// of the list, or false if added to the end. void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, std::deque &Insts) { MachineInstr *MI = SU->getInstr(); bool OrderBeforeUse = false; bool OrderAfterDef = false; bool OrderBeforeDef = false; unsigned MoveDef = 0; unsigned MoveUse = 0; int StageInst1 = stageScheduled(SU); unsigned Pos = 0; for (std::deque::iterator I = Insts.begin(), E = Insts.end(); I != E; ++I, ++Pos) { for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; unsigned Reg = MO.getReg(); unsigned BasePos, OffsetPos; if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) if (MI->getOperand(BasePos).getReg() == Reg) if (unsigned NewReg = SSD->getInstrBaseReg(SU)) Reg = NewReg; bool Reads, Writes; std::tie(Reads, Writes) = (*I)->getInstr()->readsWritesVirtualRegister(Reg); if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { // Add the instruction after the scheduled instruction. OrderAfterDef = true; MoveDef = Pos; } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; } else { OrderAfterDef = true; MoveDef = Pos; } } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; if (MoveUse != 0) { OrderAfterDef = true; MoveDef = Pos - 1; } } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { // Add the instruction before the scheduled instruction. OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { if (MoveUse == 0) { OrderBeforeDef = true; MoveUse = Pos; } } } // Check for order dependences between instructions. Make sure the source // is ordered before the destination. for (auto &S : SU->Succs) { if (S.getSUnit() != *I) continue; if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { OrderBeforeUse = true; if (Pos < MoveUse) MoveUse = Pos; } } for (auto &P : SU->Preds) { if (P.getSUnit() != *I) continue; if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { OrderAfterDef = true; MoveDef = Pos; } } } // A circular dependence. if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) OrderBeforeUse = false; // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due // to a loop-carried dependence. if (OrderBeforeDef) OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); // The uncommon case when the instruction order needs to be updated because // there is both a use and def. if (OrderBeforeUse && OrderAfterDef) { SUnit *UseSU = Insts.at(MoveUse); SUnit *DefSU = Insts.at(MoveDef); if (MoveUse > MoveDef) { Insts.erase(Insts.begin() + MoveUse); Insts.erase(Insts.begin() + MoveDef); } else { Insts.erase(Insts.begin() + MoveDef); Insts.erase(Insts.begin() + MoveUse); } orderDependence(SSD, UseSU, Insts); orderDependence(SSD, SU, Insts); orderDependence(SSD, DefSU, Insts); return; } // Put the new instruction first if there is a use in the list. Otherwise, // put it at the end of the list. if (OrderBeforeUse) Insts.push_front(SU); else Insts.push_back(SU); } /// Return true if the scheduled Phi has a loop carried operand. bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { if (!Phi.isPHI()) return false; assert(Phi.isPHI() && "Expecting a Phi."); SUnit *DefSU = SSD->getSUnit(&Phi); unsigned DefCycle = cycleScheduled(DefSU); int DefStage = stageScheduled(DefSU); unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); if (!UseSU) return true; if (UseSU->getInstr()->isPHI()) return true; unsigned LoopCycle = cycleScheduled(UseSU); int LoopStage = stageScheduled(UseSU); return (LoopCycle > DefCycle) || (LoopStage <= DefStage); } /// Return true if the instruction is a definition that is loop carried /// and defines the use on the next iteration. /// v1 = phi(v2, v3) /// (Def) v3 = op v1 /// (MO) = v1 /// If MO appears before Def, then then v1 and v3 may get assigned to the same /// register. bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, MachineOperand &MO) { if (!MO.isReg()) return false; if (Def->isPHI()) return false; MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) return false; if (!isLoopCarried(SSD, *Phi)) return false; unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { MachineOperand &DMO = Def->getOperand(i); if (!DMO.isReg() || !DMO.isDef()) continue; if (DMO.getReg() == LoopReg) return true; } return false; } // Check if the generated schedule is valid. This function checks if // an instruction that uses a physical register is scheduled in a // different stage than the definition. The pipeliner does not handle // physical register values that may cross a basic block boundary. bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { SUnit &SU = SSD->SUnits[i]; if (!SU.hasPhysRegDefs) continue; int StageDef = stageScheduled(&SU); assert(StageDef != -1 && "Instruction should have been scheduled."); for (auto &SI : SU.Succs) if (SI.isAssignedRegDep()) if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) if (stageScheduled(SI.getSUnit()) != StageDef) return false; } return true; } /// A property of the node order in swing-modulo-scheduling is /// that for nodes outside circuits the following holds: /// none of them is scheduled after both a successor and a /// predecessor. /// The method below checks whether the property is met. /// If not, debug information is printed and statistics information updated. /// Note that we do not use an assert statement. /// The reason is that although an invalid node oder may prevent /// the pipeliner from finding a pipelined schedule for arbitrary II, /// it does not lead to the generation of incorrect code. void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { // a sorted vector that maps each SUnit to its index in the NodeOrder typedef std::pair UnitIndex; std::vector Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) Indices.push_back(std::make_pair(NodeOrder[i], i)); auto CompareKey = [](UnitIndex i1, UnitIndex i2) { return std::get<0>(i1) < std::get<0>(i2); }; // sort, so that we can perform a binary search llvm::sort(Indices.begin(), Indices.end(), CompareKey); bool Valid = true; (void)Valid; // for each SUnit in the NodeOrder, check whether // it appears after both a successor and a predecessor // of the SUnit. If this is the case, and the SUnit // is not part of circuit, then the NodeOrder is not // valid. for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { SUnit *SU = NodeOrder[i]; unsigned Index = i; bool PredBefore = false; bool SuccBefore = false; SUnit *Succ; SUnit *Pred; (void)Succ; (void)Pred; for (SDep &PredEdge : SU->Preds) { SUnit *PredSU = PredEdge.getSUnit(); unsigned PredIndex = std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), std::make_pair(PredSU, 0), CompareKey)); if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { PredBefore = true; Pred = PredSU; break; } } for (SDep &SuccEdge : SU->Succs) { SUnit *SuccSU = SuccEdge.getSUnit(); unsigned SuccIndex = std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), std::make_pair(SuccSU, 0), CompareKey)); if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { SuccBefore = true; Succ = SuccSU; break; } } if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { // instructions in circuits are allowed to be scheduled // after both a successor and predecessor. bool InCircuit = std::any_of( Circuits.begin(), Circuits.end(), [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); if (InCircuit) LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); else { Valid = false; NumNodeOrderIssues++; LLVM_DEBUG(dbgs() << "Predecessor ";); } LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum << " are scheduled before node " << SU->NodeNum << "\n";); } } LLVM_DEBUG({ if (!Valid) dbgs() << "Invalid node order found!\n"; }); } /// Attempt to fix the degenerate cases when the instruction serialization /// causes the register lifetimes to overlap. For example, /// p' = store_pi(p, b) /// = load p, offset /// In this case p and p' overlap, which means that two registers are needed. /// Instead, this function changes the load to use p' and updates the offset. void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque &Instrs) { unsigned OverlapReg = 0; unsigned NewBaseReg = 0; for (SUnit *SU : Instrs) { MachineInstr *MI = SU->getInstr(); for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI->getOperand(i); // Look for an instruction that uses p. The instruction occurs in the // same cycle but occurs later in the serialized order. if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { // Check that the instruction appears in the InstrChanges structure, // which contains instructions that can have the offset updated. DenseMap>::iterator It = InstrChanges.find(SU); if (It != InstrChanges.end()) { unsigned BasePos, OffsetPos; // Update the base register and adjust the offset. if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { MachineInstr *NewMI = MF.CloneMachineInstr(MI); NewMI->getOperand(BasePos).setReg(NewBaseReg); int64_t NewOffset = MI->getOperand(OffsetPos).getImm() - It->second.second; NewMI->getOperand(OffsetPos).setImm(NewOffset); SU->setInstr(NewMI); MISUnitMap[NewMI] = SU; NewMIs.insert(NewMI); } } OverlapReg = 0; NewBaseReg = 0; break; } // Look for an instruction of the form p' = op(p), which uses and defines // two virtual registers that get allocated to the same physical register. unsigned TiedUseIdx = 0; if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { // OverlapReg is p in the example above. OverlapReg = MI->getOperand(TiedUseIdx).getReg(); // NewBaseReg is p' in the example above. NewBaseReg = MI->getOperand(i).getReg(); break; } } } } /// After the schedule has been formed, call this function to combine /// the instructions from the different stages/cycles. That is, this /// function creates a schedule that represents a single iteration. void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { // Move all instructions to the first stage from later stages. for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; ++stage) { std::deque &cycleInstrs = ScheduledInstrs[cycle + (stage * InitiationInterval)]; for (std::deque::reverse_iterator I = cycleInstrs.rbegin(), E = cycleInstrs.rend(); I != E; ++I) ScheduledInstrs[cycle].push_front(*I); } } // Iterate over the definitions in each instruction, and compute the // stage difference for each use. Keep the maximum value. for (auto &I : InstrToCycle) { int DefStage = stageScheduled(I.first); MachineInstr *MI = I.first->getInstr(); for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { MachineOperand &Op = MI->getOperand(i); if (!Op.isReg() || !Op.isDef()) continue; unsigned Reg = Op.getReg(); unsigned MaxDiff = 0; bool PhiIsSwapped = false; for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), EI = MRI.use_end(); UI != EI; ++UI) { MachineOperand &UseOp = *UI; MachineInstr *UseMI = UseOp.getParent(); SUnit *SUnitUse = SSD->getSUnit(UseMI); int UseStage = stageScheduled(SUnitUse); unsigned Diff = 0; if (UseStage != -1 && UseStage >= DefStage) Diff = UseStage - DefStage; if (MI->isPHI()) { if (isLoopCarried(SSD, *MI)) ++Diff; else PhiIsSwapped = true; } MaxDiff = std::max(Diff, MaxDiff); } RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); } } // Erase all the elements in the later stages. Only one iteration should // remain in the scheduled list, and it contains all the instructions. for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) ScheduledInstrs.erase(cycle); // Change the registers in instruction as specified in the InstrChanges // map. We need to use the new registers to create the correct order. for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { SUnit *SU = &SSD->SUnits[i]; SSD->applyInstrChange(SU->getInstr(), *this); } // Reorder the instructions in each cycle to fix and improve the // generated code. for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { std::deque &cycleInstrs = ScheduledInstrs[Cycle]; std::deque newOrderPhi; for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { SUnit *SU = cycleInstrs[i]; if (SU->getInstr()->isPHI()) newOrderPhi.push_back(SU); } std::deque newOrderI; for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { SUnit *SU = cycleInstrs[i]; if (!SU->getInstr()->isPHI()) orderDependence(SSD, SU, newOrderI); } // Replace the old order with the new order. cycleInstrs.swap(newOrderPhi); cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); SSD->fixupRegisterOverlaps(cycleInstrs); } LLVM_DEBUG(dump();); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Print the schedule information to the given output. void SMSchedule::print(raw_ostream &os) const { // Iterate over each cycle. for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { // Iterate over each instruction in the cycle. const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); for (SUnit *CI : cycleInstrs->second) { os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; os << "(" << CI->NodeNum << ") "; CI->getInstr()->print(os); os << "\n"; } } } /// Utility function used for debugging to print the schedule. LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } #endif