//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the RegisterBankInfo class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/RegisterBank.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetOpcodes.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include // For std::max. #define DEBUG_TYPE "registerbankinfo" using namespace llvm; const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX; const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1; /// Get the size in bits of the \p Reg. /// /// \pre \p Reg != 0 (NoRegister). static unsigned getSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) { const TargetRegisterClass *RC = nullptr; if (TargetRegisterInfo::isPhysicalRegister(Reg)) { // The size is not directly available for physical registers. // Instead, we need to access a register class that contains Reg and // get the size of that register class. RC = TRI.getMinimalPhysRegClass(Reg); } else { unsigned RegSize = MRI.getSize(Reg); // If Reg is not a generic register, query the register class to // get its size. if (RegSize) return RegSize; // Since Reg is not a generic register, it must have a register class. RC = MRI.getRegClass(Reg); } assert(RC && "Unable to deduce the register class"); return RC->getSize() * 8; } //------------------------------------------------------------------------------ // RegisterBankInfo implementation. //------------------------------------------------------------------------------ RegisterBankInfo::RegisterBankInfo(unsigned NumRegBanks) : NumRegBanks(NumRegBanks) { RegBanks.reset(new RegisterBank[NumRegBanks]); } void RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const { for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) { const RegisterBank &RegBank = getRegBank(Idx); assert(Idx == RegBank.getID() && "ID does not match the index in the array"); DEBUG(dbgs() << "Verify " << RegBank << '\n'); RegBank.verify(TRI); } } void RegisterBankInfo::createRegisterBank(unsigned ID, const char *Name) { DEBUG(dbgs() << "Create register bank: " << ID << " with name \"" << Name << "\"\n"); RegisterBank &RegBank = getRegBank(ID); assert(RegBank.getID() == RegisterBank::InvalidID && "A register bank should be created only once"); RegBank.ID = ID; RegBank.Name = Name; } void RegisterBankInfo::addRegBankCoverage(unsigned ID, unsigned RCId, const TargetRegisterInfo &TRI) { RegisterBank &RB = getRegBank(ID); unsigned NbOfRegClasses = TRI.getNumRegClasses(); DEBUG(dbgs() << "Add coverage for: " << RB << '\n'); // Check if RB is underconstruction. if (!RB.isValid()) RB.ContainedRegClasses.resize(NbOfRegClasses); else if (RB.covers(*TRI.getRegClass(RCId))) // If RB already covers this register class, there is nothing // to do. return; BitVector &Covered = RB.ContainedRegClasses; SmallVector WorkList; WorkList.push_back(RCId); Covered.set(RCId); unsigned &MaxSize = RB.Size; do { unsigned RCId = WorkList.pop_back_val(); const TargetRegisterClass &CurRC = *TRI.getRegClass(RCId); DEBUG(dbgs() << "Examine: " << TRI.getRegClassName(&CurRC) << "(Size*8: " << (CurRC.getSize() * 8) << ")\n"); // Remember the biggest size in bits. MaxSize = std::max(MaxSize, CurRC.getSize() * 8); // Walk through all sub register classes and push them into the worklist. const uint32_t *SubClassMask = CurRC.getSubClassMask(); // The subclasses mask is broken down into chunks of uint32_t, but it still // represents all register classes. bool First = true; for (unsigned Base = 0; Base < NbOfRegClasses; Base += 32) { unsigned Idx = Base; for (uint32_t Mask = *SubClassMask++; Mask; Mask >>= 1, ++Idx) { unsigned Offset = countTrailingZeros(Mask); unsigned SubRCId = Idx + Offset; if (!Covered.test(SubRCId)) { if (First) DEBUG(dbgs() << " Enqueue sub-class: "); DEBUG(dbgs() << TRI.getRegClassName(TRI.getRegClass(SubRCId)) << ", "); WorkList.push_back(SubRCId); // Remember that we saw the sub class. Covered.set(SubRCId); First = false; } // Move the cursor to the next sub class. // I.e., eat up the zeros then move to the next bit. // This last part is done as part of the loop increment. // By construction, Offset must be less than 32. // Otherwise, than means Mask was zero. I.e., no UB. Mask >>= Offset; // Remember that we shifted the base offset. Idx += Offset; } } if (!First) DEBUG(dbgs() << '\n'); // Push also all the register classes that can be accessed via a // subreg index, i.e., its subreg-class (which is different than // its subclass). // // Note: It would probably be faster to go the other way around // and have this method add only super classes, since this // information is available in a more efficient way. However, it // feels less natural for the client of this APIs plus we will // TableGen the whole bitset at some point, so compile time for // the initialization is not very important. First = true; for (unsigned SubRCId = 0; SubRCId < NbOfRegClasses; ++SubRCId) { if (Covered.test(SubRCId)) continue; bool Pushed = false; const TargetRegisterClass *SubRC = TRI.getRegClass(SubRCId); for (SuperRegClassIterator SuperRCIt(SubRC, &TRI); SuperRCIt.isValid(); ++SuperRCIt) { if (Pushed) break; const uint32_t *SuperRCMask = SuperRCIt.getMask(); for (unsigned Base = 0; Base < NbOfRegClasses; Base += 32) { unsigned Idx = Base; for (uint32_t Mask = *SuperRCMask++; Mask; Mask >>= 1, ++Idx) { unsigned Offset = countTrailingZeros(Mask); unsigned SuperRCId = Idx + Offset; if (SuperRCId == RCId) { if (First) DEBUG(dbgs() << " Enqueue subreg-class: "); DEBUG(dbgs() << TRI.getRegClassName(SubRC) << ", "); WorkList.push_back(SubRCId); // Remember that we saw the sub class. Covered.set(SubRCId); Pushed = true; First = false; break; } // Move the cursor to the next sub class. // I.e., eat up the zeros then move to the next bit. // This last part is done as part of the loop increment. // By construction, Offset must be less than 32. // Otherwise, than means Mask was zero. I.e., no UB. Mask >>= Offset; // Remember that we shifted the base offset. Idx += Offset; } } } } if (!First) DEBUG(dbgs() << '\n'); } while (!WorkList.empty()); } const RegisterBank * RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const { if (TargetRegisterInfo::isPhysicalRegister(Reg)) return &getRegBankFromRegClass(*TRI.getMinimalPhysRegClass(Reg)); assert(Reg && "NoRegister does not have a register bank"); const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); if (RegClassOrBank.is()) return RegClassOrBank.get(); const TargetRegisterClass *RC = RegClassOrBank.get(); if (RC) return &getRegBankFromRegClass(*RC); return nullptr; } RegisterBankInfo::InstructionMapping RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const { RegisterBankInfo::InstructionMapping Mapping(DefaultMappingID, /*Cost*/ 1, MI.getNumOperands()); const MachineFunction &MF = *MI.getParent()->getParent(); const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); // We may need to query the instruction encoding to guess the mapping. const TargetInstrInfo &TII = *STI.getInstrInfo(); // Before doing anything complicated check if the mapping is not // directly available. bool CompleteMapping = true; // For copies we want to walk over the operands and try to find one // that has a register bank. bool isCopyLike = MI.isCopy() || MI.isPHI(); // Remember the register bank for reuse for copy-like instructions. const RegisterBank *RegBank = nullptr; // Remember the size of the register for reuse for copy-like instructions. unsigned RegSize = 0; for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) { const MachineOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; const RegisterBank *CurRegBank = getRegBank(Reg, MRI, TRI); if (!CurRegBank) { // The mapping of the registers may be available via the // register class constraints. const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI); if (RC) CurRegBank = &getRegBankFromRegClass(*RC); } if (!CurRegBank) { CompleteMapping = false; if (!isCopyLike) // MI does not carry enough information to guess the mapping. return InstructionMapping(); // For copies, we want to keep interating to find a register // bank for the other operands if we did not find one yet. if(RegBank) break; continue; } RegBank = CurRegBank; RegSize = getSizeInBits(Reg, MRI, TRI); Mapping.setOperandMapping(OpIdx, RegSize, *CurRegBank); } if (CompleteMapping) return Mapping; assert(isCopyLike && "We should have bailed on non-copies at this point"); // For copy like instruction, if none of the operand has a register // bank avialable, there is nothing we can propagate. if (!RegBank) return InstructionMapping(); // This is a copy-like instruction. // Propagate RegBank to all operands that do not have a // mapping yet. for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) { if (!static_cast(&Mapping) ->getOperandMapping(OpIdx) .BreakDown.empty()) continue; Mapping.setOperandMapping(OpIdx, RegSize, *RegBank); } return Mapping; } RegisterBankInfo::InstructionMapping RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { if (!isPreISelGenericOpcode(MI.getOpcode())) { RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI); if (Mapping.isValid()) return Mapping; } llvm_unreachable("The target must implement this"); } RegisterBankInfo::InstructionMappings RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const { InstructionMappings PossibleMappings; // Put the default mapping first. PossibleMappings.push_back(getInstrMapping(MI)); // Then the alternative mapping, if any. InstructionMappings AltMappings = getInstrAlternativeMappings(MI); for (InstructionMapping &AltMapping : AltMappings) PossibleMappings.emplace_back(std::move(AltMapping)); #ifndef NDEBUG for (const InstructionMapping &Mapping : PossibleMappings) Mapping.verify(MI); #endif return PossibleMappings; } RegisterBankInfo::InstructionMappings RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const { // No alternative for MI. return InstructionMappings(); } //------------------------------------------------------------------------------ // Helper classes implementation. //------------------------------------------------------------------------------ void RegisterBankInfo::PartialMapping::dump() const { print(dbgs()); dbgs() << '\n'; } void RegisterBankInfo::PartialMapping::verify() const { assert(RegBank && "Register bank not set"); // Check what is the minimum width that will live into RegBank. // RegBank will have to, at least, accomodate all the bits between the first // and last bits active in Mask. // If Mask is zero, then ActiveWidth is 0. unsigned ActiveWidth = 0; // Otherwise, remove the trailing and leading zeros from the bitwidth. // 0..0 ActiveWidth 0..0. if (Mask.getBoolValue()) ActiveWidth = Mask.getBitWidth() - Mask.countLeadingZeros() - Mask.countTrailingZeros(); (void)ActiveWidth; assert(ActiveWidth <= Mask.getBitWidth() && "Wrong computation of ActiveWidth, overflow?"); assert(RegBank->getSize() >= ActiveWidth && "Register bank too small for Mask"); } void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const { SmallString<128> MaskStr; Mask.toString(MaskStr, /*Radix*/ 2, /*Signed*/ 0, /*formatAsCLiteral*/ true); OS << "Mask(" << Mask.getBitWidth() << ") = " << MaskStr << ", RegBank = "; if (RegBank) OS << *RegBank; else OS << "nullptr"; } void RegisterBankInfo::ValueMapping::verify(unsigned ExpectedBitWidth) const { assert(!BreakDown.empty() && "Value mapped nowhere?!"); unsigned ValueBitWidth = BreakDown.back().Mask.getBitWidth(); assert(ValueBitWidth == ExpectedBitWidth && "BitWidth does not match"); APInt ValueMask(ValueBitWidth, 0); for (const RegisterBankInfo::PartialMapping &PartMap : BreakDown) { // Check that all the partial mapping have the same bitwidth. assert(PartMap.Mask.getBitWidth() == ValueBitWidth && "Value does not have the same size accross the partial mappings"); // Check that the union of the partial mappings covers the whole value. ValueMask |= PartMap.Mask; // Check that each register bank is big enough to hold the partial value: // this check is done by PartialMapping::verify PartMap.verify(); } assert(ValueMask.isAllOnesValue() && "Value is not fully mapped"); } void RegisterBankInfo::InstructionMapping::setOperandMapping( unsigned OpIdx, unsigned MaskSize, const RegisterBank &RegBank) { // Build the value mapping. assert(MaskSize <= RegBank.getSize() && "Register bank is too small"); APInt Mask(MaskSize, 0); // The value is represented by all the bits. Mask.flipAllBits(); // Create the mapping object. getOperandMapping(OpIdx).BreakDown.push_back(PartialMapping(Mask, RegBank)); } void RegisterBankInfo::InstructionMapping::verify( const MachineInstr &MI) const { // Check that all the register operands are properly mapped. // Check the constructor invariant. assert(NumOperands == MI.getNumOperands() && "NumOperands must match, see constructor"); assert(MI.getParent() && MI.getParent()->getParent() && "MI must be connected to a MachineFunction"); const MachineFunction &MF = *MI.getParent()->getParent(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { const MachineOperand &MO = MI.getOperand(Idx); const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx); if (!MO.isReg()) { assert(MOMapping.BreakDown.empty() && "We should not care about non-reg mapping"); continue; } unsigned Reg = MO.getReg(); if (!Reg) continue; // Register size in bits. // This size must match what the mapping expects. unsigned RegSize = getSizeInBits(Reg, MRI, TRI); MOMapping.verify(RegSize); } }