//===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the IRTranslator class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Function.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetLowering.h" #define DEBUG_TYPE "irtranslator" using namespace llvm; char IRTranslator::ID = 0; INITIALIZE_PASS(IRTranslator, "irtranslator", "IRTranslator LLVM IR -> MI", false, false) IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); } unsigned IRTranslator::getOrCreateVReg(const Value &Val) { unsigned &ValReg = ValToVReg[&Val]; // Check if this is the first time we see Val. if (!ValReg) { // Fill ValRegsSequence with the sequence of registers // we need to concat together to produce the value. assert(Val.getType()->isSized() && "Don't know how to create an empty vreg"); assert(!Val.getType()->isAggregateType() && "Not yet implemented"); unsigned Size = DL->getTypeSizeInBits(Val.getType()); unsigned VReg = MRI->createGenericVirtualRegister(Size); ValReg = VReg; if (auto CV = dyn_cast(&Val)) { bool Success = translate(*CV, VReg); if (!Success) report_fatal_error("unable to translate constant"); } } return ValReg; } unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { unsigned Alignment = 0; Type *ValTy = nullptr; if (const StoreInst *SI = dyn_cast(&I)) { Alignment = SI->getAlignment(); ValTy = SI->getValueOperand()->getType(); } else if (const LoadInst *LI = dyn_cast(&I)) { Alignment = LI->getAlignment(); ValTy = LI->getType(); } else llvm_unreachable("unhandled memory instruction"); return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); } MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { MachineBasicBlock *&MBB = BBToMBB[&BB]; if (!MBB) { MachineFunction &MF = MIRBuilder.getMF(); MBB = MF.CreateMachineBasicBlock(); MF.push_back(MBB); } return *MBB; } bool IRTranslator::translateBinaryOp(unsigned Opcode, const BinaryOperator &Inst) { // FIXME: handle signed/unsigned wrapping flags. // Get or create a virtual register for each value. // Unless the value is a Constant => loadimm cst? // or inline constant each time? // Creation of a virtual register needs to have a size. unsigned Op0 = getOrCreateVReg(*Inst.getOperand(0)); unsigned Op1 = getOrCreateVReg(*Inst.getOperand(1)); unsigned Res = getOrCreateVReg(Inst); MIRBuilder.buildInstr(Opcode, LLT{*Inst.getType()}) .addDef(Res) .addUse(Op0) .addUse(Op1); return true; } bool IRTranslator::translateReturn(const ReturnInst &RI) { const Value *Ret = RI.getReturnValue(); // The target may mess up with the insertion point, but // this is not important as a return is the last instruction // of the block anyway. return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); } bool IRTranslator::translateBr(const BranchInst &BrInst) { unsigned Succ = 0; if (!BrInst.isUnconditional()) { // We want a G_BRCOND to the true BB followed by an unconditional branch. unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); const BasicBlock &TrueTgt = *cast(BrInst.getSuccessor(Succ++)); MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); MIRBuilder.buildBrCond(LLT{*BrInst.getCondition()->getType()}, Tst, TrueBB); } const BasicBlock &BrTgt = *cast(BrInst.getSuccessor(Succ)); MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); MIRBuilder.buildBr(TgtBB); // Link successors. MachineBasicBlock &CurBB = MIRBuilder.getMBB(); for (const BasicBlock *Succ : BrInst.successors()) CurBB.addSuccessor(&getOrCreateBB(*Succ)); return true; } bool IRTranslator::translateLoad(const LoadInst &LI) { assert(LI.isSimple() && "only simple loads are supported at the moment"); MachineFunction &MF = MIRBuilder.getMF(); unsigned Res = getOrCreateVReg(LI); unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); LLT VTy{*LI.getType()}, PTy{*LI.getPointerOperand()->getType()}; MIRBuilder.buildLoad( VTy, PTy, Res, Addr, *MF.getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), MachineMemOperand::MOLoad, VTy.getSizeInBits() / 8, getMemOpAlignment(LI))); return true; } bool IRTranslator::translateStore(const StoreInst &SI) { assert(SI.isSimple() && "only simple loads are supported at the moment"); MachineFunction &MF = MIRBuilder.getMF(); unsigned Val = getOrCreateVReg(*SI.getValueOperand()); unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); LLT VTy{*SI.getValueOperand()->getType()}, PTy{*SI.getPointerOperand()->getType()}; MIRBuilder.buildStore( VTy, PTy, Val, Addr, *MF.getMachineMemOperand(MachinePointerInfo(SI.getPointerOperand()), MachineMemOperand::MOStore, VTy.getSizeInBits() / 8, getMemOpAlignment(SI))); return true; } bool IRTranslator::translateBitCast(const CastInst &CI) { if (LLT{*CI.getDestTy()} == LLT{*CI.getSrcTy()}) { unsigned &Reg = ValToVReg[&CI]; if (Reg) MIRBuilder.buildCopy(Reg, getOrCreateVReg(*CI.getOperand(0))); else Reg = getOrCreateVReg(*CI.getOperand(0)); return true; } return translateCast(TargetOpcode::G_BITCAST, CI); } bool IRTranslator::translateCast(unsigned Opcode, const CastInst &CI) { unsigned Op = getOrCreateVReg(*CI.getOperand(0)); unsigned Res = getOrCreateVReg(CI); MIRBuilder.buildInstr(Opcode, {LLT{*CI.getDestTy()}, LLT{*CI.getSrcTy()}}) .addDef(Res) .addUse(Op); return true; } bool IRTranslator::translateCall(const CallInst &CI) { auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo(); const Function &F = *CI.getCalledFunction(); Intrinsic::ID ID = F.getIntrinsicID(); if (TII && ID == Intrinsic::not_intrinsic) ID = static_cast(TII->getIntrinsicID(&F)); assert(ID != Intrinsic::not_intrinsic && "FIXME: support real calls"); // Need types (starting with return) & args. SmallVector Tys; Tys.emplace_back(*CI.getType()); for (auto &Arg : CI.arg_operands()) Tys.emplace_back(*Arg->getType()); unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(Tys, ID, Res, !CI.doesNotAccessMemory()); for (auto &Arg : CI.arg_operands()) { if (ConstantInt *CI = dyn_cast(Arg)) MIB.addImm(CI->getSExtValue()); else MIB.addUse(getOrCreateVReg(*Arg)); } return true; } bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) { assert(AI.isStaticAlloca() && "only handle static allocas now"); MachineFunction &MF = MIRBuilder.getMF(); unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); unsigned Size = ElementSize * cast(AI.getArraySize())->getZExtValue(); // Always allocate at least one byte. Size = std::max(Size, 1u); unsigned Alignment = AI.getAlignment(); if (!Alignment) Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); unsigned Res = getOrCreateVReg(AI); int FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); MIRBuilder.buildFrameIndex(LLT::pointer(0), Res, FI); return true; } bool IRTranslator::translatePhi(const PHINode &PI) { MachineInstrBuilder MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); MIB.addDef(getOrCreateVReg(PI)); PendingPHIs.emplace_back(&PI, MIB.getInstr()); return true; } void IRTranslator::finishPendingPhis() { for (std::pair &Phi : PendingPHIs) { const PHINode *PI = Phi.first; MachineInstrBuilder MIB(MIRBuilder.getMF(), Phi.second); // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator // won't create extra control flow here, otherwise we need to find the // dominating predecessor here (or perhaps force the weirder IRTranslators // to provide a simple boundary). for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { assert(BBToMBB[PI->getIncomingBlock(i)]->isSuccessor(MIB->getParent()) && "I appear to have misunderstood Machine PHIs"); MIB.addUse(getOrCreateVReg(*PI->getIncomingValue(i))); MIB.addMBB(BBToMBB[PI->getIncomingBlock(i)]); } } PendingPHIs.clear(); } bool IRTranslator::translate(const Instruction &Inst) { MIRBuilder.setDebugLoc(Inst.getDebugLoc()); switch(Inst.getOpcode()) { // Arithmetic operations. case Instruction::Add: return translateBinaryOp(TargetOpcode::G_ADD, cast(Inst)); case Instruction::Sub: return translateBinaryOp(TargetOpcode::G_SUB, cast(Inst)); // Bitwise operations. case Instruction::And: return translateBinaryOp(TargetOpcode::G_AND, cast(Inst)); case Instruction::Mul: return translateBinaryOp(TargetOpcode::G_MUL, cast(Inst)); case Instruction::Or: return translateBinaryOp(TargetOpcode::G_OR, cast(Inst)); case Instruction::Xor: return translateBinaryOp(TargetOpcode::G_XOR, cast(Inst)); // Branch operations. case Instruction::Br: return translateBr(cast(Inst)); case Instruction::Ret: return translateReturn(cast(Inst)); // Calls case Instruction::Call: return translateCall(cast(Inst)); // Casts and allied operations case Instruction::BitCast: return translateBitCast(cast(Inst)); case Instruction::IntToPtr: return translateCast(TargetOpcode::G_INTTOPTR, cast(Inst)); case Instruction::PtrToInt: return translateCast(TargetOpcode::G_PTRTOINT, cast(Inst)); case Instruction::Trunc: return translateCast(TargetOpcode::G_TRUNC, cast(Inst)); // Memory ops. case Instruction::Load: return translateLoad(cast(Inst)); case Instruction::Store: return translateStore(cast(Inst)); case Instruction::Alloca: return translateStaticAlloca(cast(Inst)); case Instruction::PHI: return translatePhi(cast(Inst)); case Instruction::Unreachable: return true; default: llvm_unreachable("Opcode not supported"); } } bool IRTranslator::translate(const Constant &C, unsigned Reg) { if (auto CI = dyn_cast(&C)) EntryBuilder.buildConstant(LLT{*CI->getType()}, Reg, CI->getZExtValue()); else if (isa(C)) EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg); else llvm_unreachable("unhandled constant kind"); return true; } void IRTranslator::finalize() { // Release the memory used by the different maps we // needed during the translation. ValToVReg.clear(); Constants.clear(); } bool IRTranslator::runOnMachineFunction(MachineFunction &MF) { const Function &F = *MF.getFunction(); if (F.empty()) return false; CLI = MF.getSubtarget().getCallLowering(); MIRBuilder.setMF(MF); EntryBuilder.setMF(MF); MRI = &MF.getRegInfo(); DL = &F.getParent()->getDataLayout(); assert(PendingPHIs.empty() && "stale PHIs"); // Setup the arguments. MachineBasicBlock &MBB = getOrCreateBB(F.front()); MIRBuilder.setMBB(MBB); SmallVector VRegArgs; for (const Argument &Arg: F.args()) VRegArgs.push_back(getOrCreateVReg(Arg)); bool Succeeded = CLI->lowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs); if (!Succeeded) report_fatal_error("Unable to lower arguments"); // Now that we've got the ABI handling code, it's safe to set a location for // any Constants we find in the IR. if (MBB.empty()) EntryBuilder.setMBB(MBB); else EntryBuilder.setInstr(MBB.back(), /* Before */ false); for (const BasicBlock &BB: F) { MachineBasicBlock &MBB = getOrCreateBB(BB); // Set the insertion point of all the following translations to // the end of this basic block. MIRBuilder.setMBB(MBB); for (const Instruction &Inst: BB) { bool Succeeded = translate(Inst); if (!Succeeded) { DEBUG(dbgs() << "Cannot translate: " << Inst << '\n'); report_fatal_error("Unable to translate instruction"); } } } finishPendingPhis(); // Now that the MachineFrameInfo has been configured, no further changes to // the reserved registers are possible. MRI->freezeReservedRegs(MF); return false; }