//===- ExecutionDepsFix.cpp - Fix execution domain issues ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ExecutionDomainFix.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "execution-deps-fix" char ReachingDefAnalysis::ID = 0; INITIALIZE_PASS(ReachingDefAnalysis, "reaching-deps-analysis", "ReachingDefAnalysis", false, true) char BreakFalseDeps::ID = 0; INITIALIZE_PASS_BEGIN(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", false, false) INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) INITIALIZE_PASS_END(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", false, false) iterator_range::const_iterator> ExecutionDomainFix::regIndices(unsigned Reg) const { assert(Reg < AliasMap.size() && "Invalid register"); const auto &Entry = AliasMap[Reg]; return make_range(Entry.begin(), Entry.end()); } DomainValue *ExecutionDomainFix::alloc(int domain) { DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue : Avail.pop_back_val(); if (domain >= 0) dv->addDomain(domain); assert(dv->Refs == 0 && "Reference count wasn't cleared"); assert(!dv->Next && "Chained DomainValue shouldn't have been recycled"); return dv; } void ExecutionDomainFix::release(DomainValue *DV) { while (DV) { assert(DV->Refs && "Bad DomainValue"); if (--DV->Refs) return; // There are no more DV references. Collapse any contained instructions. if (DV->AvailableDomains && !DV->isCollapsed()) collapse(DV, DV->getFirstDomain()); DomainValue *Next = DV->Next; DV->clear(); Avail.push_back(DV); // Also release the next DomainValue in the chain. DV = Next; } } DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) { DomainValue *DV = DVRef; if (!DV || !DV->Next) return DV; // DV has a chain. Find the end. do DV = DV->Next; while (DV->Next); // Update DVRef to point to DV. retain(DV); release(DVRef); DVRef = DV; return DV; } void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) { assert(unsigned(rx) < NumRegs && "Invalid index"); assert(!LiveRegs.empty() && "Must enter basic block first."); if (LiveRegs[rx] == dv) return; if (LiveRegs[rx]) release(LiveRegs[rx]); LiveRegs[rx] = retain(dv); } void ExecutionDomainFix::kill(int rx) { assert(unsigned(rx) < NumRegs && "Invalid index"); assert(!LiveRegs.empty() && "Must enter basic block first."); if (!LiveRegs[rx]) return; release(LiveRegs[rx]); LiveRegs[rx] = nullptr; } void ExecutionDomainFix::force(int rx, unsigned domain) { assert(unsigned(rx) < NumRegs && "Invalid index"); assert(!LiveRegs.empty() && "Must enter basic block first."); if (DomainValue *dv = LiveRegs[rx]) { if (dv->isCollapsed()) dv->addDomain(domain); else if (dv->hasDomain(domain)) collapse(dv, domain); else { // This is an incompatible open DomainValue. Collapse it to whatever and // force the new value into domain. This costs a domain crossing. collapse(dv, dv->getFirstDomain()); assert(LiveRegs[rx] && "Not live after collapse?"); LiveRegs[rx]->addDomain(domain); } } else { // Set up basic collapsed DomainValue. setLiveReg(rx, alloc(domain)); } } void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) { assert(dv->hasDomain(domain) && "Cannot collapse"); // Collapse all the instructions. while (!dv->Instrs.empty()) TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain); dv->setSingleDomain(domain); // If there are multiple users, give them new, unique DomainValues. if (!LiveRegs.empty() && dv->Refs > 1) for (unsigned rx = 0; rx != NumRegs; ++rx) if (LiveRegs[rx] == dv) setLiveReg(rx, alloc(domain)); } bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) { assert(!A->isCollapsed() && "Cannot merge into collapsed"); assert(!B->isCollapsed() && "Cannot merge from collapsed"); if (A == B) return true; // Restrict to the domains that A and B have in common. unsigned common = A->getCommonDomains(B->AvailableDomains); if (!common) return false; A->AvailableDomains = common; A->Instrs.append(B->Instrs.begin(), B->Instrs.end()); // Clear the old DomainValue so we won't try to swizzle instructions twice. B->clear(); // All uses of B are referred to A. B->Next = retain(A); for (unsigned rx = 0; rx != NumRegs; ++rx) { assert(!LiveRegs.empty() && "no space allocated for live registers"); if (LiveRegs[rx] == B) setLiveReg(rx, A); } return true; } void ReachingDefAnalysis::enterBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { MachineBasicBlock *MBB = TraversedMBB.MBB; int MBBNumber = MBB->getNumber(); assert(MBBNumber < MBBReachingDefs.size() && "Unexpected basic block number."); MBBReachingDefs[MBBNumber].resize(NumRegUnits); // Reset instruction counter in each basic block. CurInstr = 0; // Set up LiveRegs to represent registers entering MBB. // Default values are 'nothing happened a long time ago'. if (LiveRegs.empty()) LiveRegs.assign(NumRegUnits, ReachingDedDefaultVal); // This is the entry block. if (MBB->pred_empty()) { for (const auto &LI : MBB->liveins()) { for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) { // Treat function live-ins as if they were defined just before the first // instruction. Usually, function arguments are set up immediately // before the call. LiveRegs[*Unit] = -1; MBBReachingDefs[MBBNumber][*Unit].push_back(LiveRegs[*Unit]); } } DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); return; } // Try to coalesce live-out registers from predecessors. for (MachineBasicBlock *pred : MBB->predecessors()) { assert(pred->getNumber() < MBBOutRegsInfos.size() && "Should have pre-allocated MBBInfos for all MBBs"); const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; // Incoming is null if this is a backedge from a BB // we haven't processed yet if (Incoming.empty()) continue; for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) { // Use the most recent predecessor def for each register. LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]); if ((LiveRegs[Unit] != ReachingDedDefaultVal)) MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]); } } DEBUG(dbgs() << printMBBReference(*MBB) << (!TraversedMBB.IsDone ? ": incomplete\n" : ": all preds known\n")); } void ExecutionDomainFix::enterBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { MachineBasicBlock *MBB = TraversedMBB.MBB; // Set up LiveRegs to represent registers entering MBB. // Set default domain values to 'no domain' (nullptr) if (LiveRegs.empty()) LiveRegs.assign(NumRegs, nullptr); // This is the entry block. if (MBB->pred_empty()) { DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); return; } // Try to coalesce live-out registers from predecessors. for (MachineBasicBlock *pred : MBB->predecessors()) { assert(pred->getNumber() < MBBOutRegsInfos.size() && "Should have pre-allocated MBBInfos for all MBBs"); LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; // Incoming is null if this is a backedge from a BB // we haven't processed yet if (Incoming.empty()) continue; for (unsigned rx = 0; rx != NumRegs; ++rx) { DomainValue *pdv = resolve(Incoming[rx]); if (!pdv) continue; if (!LiveRegs[rx]) { setLiveReg(rx, pdv); continue; } // We have a live DomainValue from more than one predecessor. if (LiveRegs[rx]->isCollapsed()) { // We are already collapsed, but predecessor is not. Force it. unsigned Domain = LiveRegs[rx]->getFirstDomain(); if (!pdv->isCollapsed() && pdv->hasDomain(Domain)) collapse(pdv, Domain); continue; } // Currently open, merge in predecessor. if (!pdv->isCollapsed()) merge(LiveRegs[rx], pdv); else force(rx, pdv->getFirstDomain()); } } DEBUG(dbgs() << printMBBReference(*MBB) << (!TraversedMBB.IsDone ? ": incomplete\n" : ": all preds known\n")); } void ReachingDefAnalysis::leaveBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { assert(!LiveRegs.empty() && "Must enter basic block first."); int MBBNumber = TraversedMBB.MBB->getNumber(); assert(MBBNumber < MBBOutRegsInfos.size() && "Unexpected basic block number."); // Save register clearances at end of MBB - used by enterBasicBlock(). MBBOutRegsInfos[MBBNumber] = LiveRegs; // While processing the basic block, we kept `Def` relative to the start // of the basic block for convenience. However, future use of this information // only cares about the clearance from the end of the block, so adjust // everything to be relative to the end of the basic block. for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber]) OutLiveReg -= CurInstr; LiveRegs.clear(); } void ExecutionDomainFix::leaveBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { assert(!LiveRegs.empty() && "Must enter basic block first."); int MBBNumber = TraversedMBB.MBB->getNumber(); assert(MBBNumber < MBBOutRegsInfos.size() && "Unexpected basic block number."); // Save register clearances at end of MBB - used by enterBasicBlock(). for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) { release(OldLiveReg); } MBBOutRegsInfos[MBBNumber] = LiveRegs; LiveRegs.clear(); } bool ExecutionDomainFix::visitInstr(MachineInstr *MI) { // Update instructions with explicit execution domains. std::pair DomP = TII->getExecutionDomain(*MI); if (DomP.first) { if (DomP.second) visitSoftInstr(MI, DomP.second); else visitHardInstr(MI, DomP.first); } return !DomP.first; } bool BreakFalseDeps::pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx, unsigned Pref) { MachineOperand &MO = MI->getOperand(OpIdx); assert(MO.isUndef() && "Expected undef machine operand"); unsigned OriginalReg = MO.getReg(); // Update only undef operands that have reg units that are mapped to one root. for (MCRegUnitIterator Unit(OriginalReg, TRI); Unit.isValid(); ++Unit) { unsigned NumRoots = 0; for (MCRegUnitRootIterator Root(*Unit, TRI); Root.isValid(); ++Root) { NumRoots++; if (NumRoots > 1) return false; } } // Get the undef operand's register class const TargetRegisterClass *OpRC = TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF); // If the instruction has a true dependency, we can hide the false depdency // behind it. for (MachineOperand &CurrMO : MI->operands()) { if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() || !OpRC->contains(CurrMO.getReg())) continue; // We found a true dependency - replace the undef register with the true // dependency. MO.setReg(CurrMO.getReg()); return true; } // Go over all registers in the register class and find the register with // max clearance or clearance higher than Pref. unsigned MaxClearance = 0; unsigned MaxClearanceReg = OriginalReg; ArrayRef Order = RegClassInfo.getOrder(OpRC); for (MCPhysReg Reg : Order) { unsigned Clearance = RDA->getClearance(MI, Reg); if (Clearance <= MaxClearance) continue; MaxClearance = Clearance; MaxClearanceReg = Reg; if (MaxClearance > Pref) break; } // Update the operand if we found a register with better clearance. if (MaxClearanceReg != OriginalReg) MO.setReg(MaxClearanceReg); return false; } bool BreakFalseDeps::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx, unsigned Pref) { unsigned reg = MI->getOperand(OpIdx).getReg(); unsigned Clearance = RDA->getClearance(MI, reg); DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref); if (Pref > Clearance) { DEBUG(dbgs() << ": Break dependency.\n"); return true; } DEBUG(dbgs() << ": OK .\n"); return false; } void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) { assert(!MI->isDebugValue() && "Won't process debug values"); const MCInstrDesc &MCID = MI->getDesc(); for (unsigned i = 0, e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; if (MO.isUse()) continue; for (int rx : regIndices(MO.getReg())) { // This instruction explicitly defines rx. DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI); // Kill off domains redefined by generic instructions. if (Kill) kill(rx); } } } void ReachingDefAnalysis::processDefs(MachineInstr *MI) { assert(!MI->isDebugValue() && "Won't process debug values"); int MBBNumber = MI->getParent()->getNumber(); assert(MBBNumber < MBBReachingDefs.size() && "Unexpected basic block number."); const MCInstrDesc &MCID = MI->getDesc(); for (unsigned i = 0, e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.getReg()) continue; if (MO.isUse()) continue; for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) { // This instruction explicitly defines the current reg unit. DEBUG(dbgs() << printReg(MO.getReg(), TRI) << ":\t" << CurInstr << '\t' << *MI); // How many instructions since this reg unit was last written? LiveRegs[*Unit] = CurInstr; MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr); } } InstIds[MI] = CurInstr; ++CurInstr; } void BreakFalseDeps::processDefs(MachineInstr *MI) { assert(!MI->isDebugValue() && "Won't process debug values"); // Break dependence on undef uses. Do this before updating LiveRegs below. unsigned OpNum; unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI); if (Pref) { bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref); // We don't need to bother trying to break a dependency if this // instruction has a true dependency on that register through another // operand - we'll have to wait for it to be available regardless. if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref)) UndefReads.push_back(std::make_pair(MI, OpNum)); } const MCInstrDesc &MCID = MI->getDesc(); for (unsigned i = 0, e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.getReg()) continue; if (MO.isUse()) continue; // Check clearance before partial register updates. unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI); if (Pref && shouldBreakDependence(MI, i, Pref)) TII->breakPartialRegDependency(*MI, i, TRI); } } void BreakFalseDeps::processUndefReads(MachineBasicBlock *MBB) { if (UndefReads.empty()) return; // Collect this block's live out register units. LiveRegSet.init(*TRI); // We do not need to care about pristine registers as they are just preserved // but not actually used in the function. LiveRegSet.addLiveOutsNoPristines(*MBB); MachineInstr *UndefMI = UndefReads.back().first; unsigned OpIdx = UndefReads.back().second; for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) { // Update liveness, including the current instruction's defs. LiveRegSet.stepBackward(I); if (UndefMI == &I) { if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg())) TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI); UndefReads.pop_back(); if (UndefReads.empty()) return; UndefMI = UndefReads.back().first; OpIdx = UndefReads.back().second; } } } void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) { // Collapse all uses. for (unsigned i = mi->getDesc().getNumDefs(), e = mi->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { force(rx, domain); } } // Kill all defs and force them. for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { kill(rx); force(rx, domain); } } } void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) { // Bitmask of available domains for this instruction after taking collapsed // operands into account. unsigned available = mask; // Scan the explicit use operands for incoming domains. SmallVector used; if (!LiveRegs.empty()) for (unsigned i = mi->getDesc().getNumDefs(), e = mi->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { DomainValue *dv = LiveRegs[rx]; if (dv == nullptr) continue; // Bitmask of domains that dv and available have in common. unsigned common = dv->getCommonDomains(available); // Is it possible to use this collapsed register for free? if (dv->isCollapsed()) { // Restrict available domains to the ones in common with the operand. // If there are no common domains, we must pay the cross-domain // penalty for this operand. if (common) available = common; } else if (common) // Open DomainValue is compatible, save it for merging. used.push_back(rx); else // Open DomainValue is not compatible with instruction. It is useless // now. kill(rx); } } // If the collapsed operands force a single domain, propagate the collapse. if (isPowerOf2_32(available)) { unsigned domain = countTrailingZeros(available); TII->setExecutionDomain(*mi, domain); visitHardInstr(mi, domain); return; } // Kill off any remaining uses that don't match available, and build a list of // incoming DomainValues that we want to merge. SmallVector Regs; for (int rx : used) { assert(!LiveRegs.empty() && "no space allocated for live registers"); DomainValue *&LR = LiveRegs[rx]; // This useless DomainValue could have been missed above. if (!LR->getCommonDomains(available)) { kill(rx); continue; } // Sorted insertion. // Enables giving priority to the latest domains during merging. auto I = std::upper_bound( Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) { return RDA->getReachingDef(mi, RC->getRegister(LHS)) < RDA->getReachingDef(mi, RC->getRegister(RHS)); }); Regs.insert(I, rx); } // doms are now sorted in order of appearance. Try to merge them all, giving // priority to the latest ones. DomainValue *dv = nullptr; while (!Regs.empty()) { if (!dv) { dv = LiveRegs[Regs.pop_back_val()]; // Force the first dv to match the current instruction. dv->AvailableDomains = dv->getCommonDomains(available); assert(dv->AvailableDomains && "Domain should have been filtered"); continue; } DomainValue *Latest = LiveRegs[Regs.pop_back_val()]; // Skip already merged values. if (Latest == dv || Latest->Next) continue; if (merge(dv, Latest)) continue; // If latest didn't merge, it is useless now. Kill all registers using it. for (int i : used) { assert(!LiveRegs.empty() && "no space allocated for live registers"); if (LiveRegs[i] == Latest) kill(i); } } // dv is the DomainValue we are going to use for this instruction. if (!dv) { dv = alloc(); dv->AvailableDomains = available; } dv->Instrs.push_back(mi); // Finally set all defs and non-collapsed uses to dv. We must iterate through // all the operators, including imp-def ones. for (MachineOperand &mo : mi->operands()) { if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) { kill(rx); setLiveReg(rx, dv); } } } } void ExecutionDomainFix::processBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { enterBasicBlock(TraversedMBB); // If this block is not done, it makes little sense to make any decisions // based on clearance information. We need to make a second pass anyway, // and by then we'll have better information, so we can avoid doing the work // to try and break dependencies now. for (MachineInstr &MI : *TraversedMBB.MBB) { if (!MI.isDebugValue()) { bool Kill = false; if (TraversedMBB.PrimaryPass) Kill = visitInstr(&MI); processDefs(&MI, Kill); } } leaveBasicBlock(TraversedMBB); } void ReachingDefAnalysis::processBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { enterBasicBlock(TraversedMBB); for (MachineInstr &MI : *TraversedMBB.MBB) { if (!MI.isDebugValue()) processDefs(&MI); } leaveBasicBlock(TraversedMBB); } void BreakFalseDeps::processBasicBlock(MachineBasicBlock *MBB) { UndefReads.clear(); // If this block is not done, it makes little sense to make any decisions // based on clearance information. We need to make a second pass anyway, // and by then we'll have better information, so we can avoid doing the work // to try and break dependencies now. for (MachineInstr &MI : *MBB) { if (!MI.isDebugValue()) processDefs(&MI); } processUndefReads(MBB); } bool LoopTraversal::isBlockDone(MachineBasicBlock *MBB) { int MBBNumber = MBB->getNumber(); assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number."); return MBBInfos[MBBNumber].PrimaryCompleted && MBBInfos[MBBNumber].IncomingCompleted == MBBInfos[MBBNumber].PrimaryIncoming && MBBInfos[MBBNumber].IncomingProcessed == MBB->pred_size(); } LoopTraversal::TraversalOrder LoopTraversal::traverse(MachineFunction &MF) { // Initialize the MMBInfos MBBInfos.assign(MF.getNumBlockIDs(), MBBInfo()); MachineBasicBlock *Entry = &*MF.begin(); ReversePostOrderTraversal RPOT(Entry); SmallVector Workqueue; SmallVector MBBTraversalOrder; for (MachineBasicBlock *MBB : RPOT) { // N.B: IncomingProcessed and IncomingCompleted were already updated while // processing this block's predecessors. int MBBNumber = MBB->getNumber(); assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number."); MBBInfos[MBBNumber].PrimaryCompleted = true; MBBInfos[MBBNumber].PrimaryIncoming = MBBInfos[MBBNumber].IncomingProcessed; bool Primary = true; Workqueue.push_back(MBB); while (!Workqueue.empty()) { MachineBasicBlock *ActiveMBB = &*Workqueue.back(); Workqueue.pop_back(); bool Done = isBlockDone(ActiveMBB); MBBTraversalOrder.push_back(TraversedMBBInfo(ActiveMBB, Primary, Done)); for (MachineBasicBlock *Succ : ActiveMBB->successors()) { int SuccNumber = Succ->getNumber(); assert(SuccNumber < MBBInfos.size() && "Unexpected basic block number."); if (!isBlockDone(Succ)) { if (Primary) MBBInfos[SuccNumber].IncomingProcessed++; if (Done) MBBInfos[SuccNumber].IncomingCompleted++; if (isBlockDone(Succ)) Workqueue.push_back(Succ); } } Primary = false; } } // We need to go through again and finalize any blocks that are not done yet. // This is possible if blocks have dead predecessors, so we didn't visit them // above. for (MachineBasicBlock *MBB : RPOT) { if (!isBlockDone(MBB)) MBBTraversalOrder.push_back(TraversedMBBInfo(MBB, false, true)); // Don't update successors here. We'll get to them anyway through this // loop. } MBBInfos.clear(); return MBBTraversalOrder; } bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) { if (skipFunction(mf.getFunction())) return false; MF = &mf; TII = MF->getSubtarget().getInstrInfo(); TRI = MF->getSubtarget().getRegisterInfo(); LiveRegs.clear(); assert(NumRegs == RC->getNumRegs() && "Bad regclass"); DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: " << TRI->getRegClassName(RC) << " **********\n"); // If no relevant registers are used in the function, we can skip it // completely. bool anyregs = false; const MachineRegisterInfo &MRI = mf.getRegInfo(); for (unsigned Reg : *RC) { if (MRI.isPhysRegUsed(Reg)) { anyregs = true; break; } } if (!anyregs) return false; RDA = &getAnalysis(); // Initialize the AliasMap on the first use. if (AliasMap.empty()) { // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and // therefore the LiveRegs array. AliasMap.resize(TRI->getNumRegs()); for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i) for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid(); ++AI) AliasMap[*AI].push_back(i); } // Initialize the MBBOutRegsInfos MBBOutRegsInfos.resize(mf.getNumBlockIDs()); // Traverse the basic blocks. LoopTraversal Traversal; LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf); for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) { processBasicBlock(TraversedMBB); } for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) { for (DomainValue *OutLiveReg : OutLiveRegs) { if (OutLiveReg) release(OutLiveReg); } } MBBOutRegsInfos.clear(); Avail.clear(); Allocator.DestroyAll(); return false; } bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) { if (skipFunction(mf.getFunction())) return false; MF = &mf; TII = MF->getSubtarget().getInstrInfo(); TRI = MF->getSubtarget().getRegisterInfo(); LiveRegs.clear(); NumRegUnits = TRI->getNumRegUnits(); MBBReachingDefs.resize(mf.getNumBlockIDs()); DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n"); // Initialize the MBBOutRegsInfos MBBOutRegsInfos.resize(mf.getNumBlockIDs()); // Traverse the basic blocks. LoopTraversal Traversal; LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf); for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) { processBasicBlock(TraversedMBB); } // Sorting all reaching defs found for a ceartin reg unit in a given BB. for (MBBDefsInfo &MBBDefs : MBBReachingDefs) { for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) std::sort(RegUnitDefs.begin(), RegUnitDefs.end()); } return false; } void ReachingDefAnalysis::releaseMemory() { // Clear the internal vectors. MBBOutRegsInfos.clear(); MBBReachingDefs.clear(); InstIds.clear(); } bool BreakFalseDeps::runOnMachineFunction(MachineFunction &mf) { if (skipFunction(mf.getFunction())) return false; MF = &mf; TII = MF->getSubtarget().getInstrInfo(); TRI = MF->getSubtarget().getRegisterInfo(); RDA = &getAnalysis(); RegClassInfo.runOnMachineFunction(mf); DEBUG(dbgs() << "********** BREAK FALSE DEPENDENCIES **********\n"); // Traverse the basic blocks. for (MachineBasicBlock &MBB : mf) { processBasicBlock(&MBB); } return false; } int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) { assert(InstIds.count(MI) && "Unexpected machine instuction."); int InstId = InstIds[MI]; int DefRes = ReachingDedDefaultVal; int MBBNumber = MI->getParent()->getNumber(); assert(MBBNumber < MBBReachingDefs.size() && "Unexpected basic block number."); int LatestDef = ReachingDedDefaultVal; for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) { for (int Def : MBBReachingDefs[MBBNumber][*Unit]) { if (Def >= InstId) break; DefRes = Def; } LatestDef = std::max(LatestDef, DefRes); } return LatestDef; } int ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) { assert(InstIds.count(MI) && "Unexpected machine instuction."); return InstIds[MI] - getReachingDef(MI, PhysReg); }