//===- Loads.cpp - Local load analysis ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines simple local analyses for load instructions. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Statepoint.h" using namespace llvm; static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align, const DataLayout &DL) { APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL)); if (!BaseAlign) { Type *Ty = Base->getType()->getPointerElementType(); if (!Ty->isSized()) return false; BaseAlign = DL.getABITypeAlignment(Ty); } APInt Alignment(Offset.getBitWidth(), Align); assert(Alignment.isPowerOf2() && "must be a power of 2!"); return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); } static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { Type *Ty = Base->getType(); assert(Ty->isSized() && "must be sized"); APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); return isAligned(Base, Offset, Align, DL); } /// Test if V is always a pointer to allocated and suitably aligned memory for /// a simple load or store. static bool isDereferenceableAndAlignedPointer( const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL, const Instruction *CtxI, const DominatorTree *DT, SmallPtrSetImpl &Visited) { // Already visited? Bail out, we've likely hit unreachable code. if (!Visited.insert(V).second) return false; // Note that it is not safe to speculate into a malloc'd region because // malloc may return null. // bitcast instructions are no-ops as far as dereferenceability is concerned. if (const BitCastOperator *BC = dyn_cast(V)) return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size, DL, CtxI, DT, Visited); bool CheckForNonNull = false; APInt KnownDerefBytes(Size.getBitWidth(), V->getPointerDereferenceableBytes(DL, CheckForNonNull)); if (KnownDerefBytes.getBoolValue()) { if (KnownDerefBytes.uge(Size)) if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) return isAligned(V, Align, DL); } // For GEPs, determine if the indexing lands within the allocated object. if (const GEPOperator *GEP = dyn_cast(V)) { const Value *Base = GEP->getPointerOperand(); APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue()) return false; // If the base pointer is dereferenceable for Offset+Size bytes, then the // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base // pointer is aligned to Align bytes, and the Offset is divisible by Align // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also // aligned to Align bytes. // Offset and Size may have different bit widths if we have visited an // addrspacecast, so we can't do arithmetic directly on the APInt values. return isDereferenceableAndAlignedPointer( Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, CtxI, DT, Visited); } // For gc.relocate, look through relocations if (const GCRelocateInst *RelocateInst = dyn_cast(V)) return isDereferenceableAndAlignedPointer( RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited); if (const AddrSpaceCastInst *ASC = dyn_cast(V)) return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size, DL, CtxI, DT, Visited); if (auto CS = ImmutableCallSite(V)) if (const Value *RV = CS.getReturnedArgOperand()) return isDereferenceableAndAlignedPointer(RV, Align, Size, DL, CtxI, DT, Visited); // If we don't know, assume the worst. return false; } bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL, const Instruction *CtxI, const DominatorTree *DT) { SmallPtrSet Visited; return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT, Visited); } bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, const DataLayout &DL, const Instruction *CtxI, const DominatorTree *DT) { // When dereferenceability information is provided by a dereferenceable // attribute, we know exactly how many bytes are dereferenceable. If we can // determine the exact offset to the attributed variable, we can use that // information here. Type *VTy = V->getType(); Type *Ty = VTy->getPointerElementType(); // Require ABI alignment for loads without alignment specification if (Align == 0) Align = DL.getABITypeAlignment(Ty); if (!Ty->isSized()) return false; SmallPtrSet Visited; return ::isDereferenceableAndAlignedPointer( V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL, CtxI, DT, Visited); } bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, const Instruction *CtxI, const DominatorTree *DT) { return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT); } /// Test if A and B will obviously have the same value. /// /// This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// \code /// %t0 = getelementptr \@a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr \@a, 0, 3 /// %t2 = load i32* %t1 /// \endcode /// static bool AreEquivalentAddressValues(const Value *A, const Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come from identical arithmetic instructions. // Use isIdenticalToWhenDefined instead of isIdenticalTo because // this function is only used when one address use dominates the // other, which means that they'll always either have the same // value or one of them will have an undefined value. if (isa(A) || isa(A) || isa(A) || isa(A)) if (const Instruction *BI = dyn_cast(B)) if (cast(A)->isIdenticalToWhenDefined(BI)) return true; // Otherwise they may not be equivalent. return false; } /// Check if executing a load of this pointer value cannot trap. /// /// If DT and ScanFrom are specified this method performs context-sensitive /// analysis and returns true if it is safe to load immediately before ScanFrom. /// /// If it is not obviously safe to load from the specified pointer, we do /// a quick local scan of the basic block containing \c ScanFrom, to determine /// if the address is already accessed. /// /// This uses the pointee type to determine how many bytes need to be safe to /// load from the pointer. bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, const DataLayout &DL, Instruction *ScanFrom, const DominatorTree *DT) { // Zero alignment means that the load has the ABI alignment for the target if (Align == 0) Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); assert(isPowerOf2_32(Align)); // If DT is not specified we can't make context-sensitive query const Instruction* CtxI = DT ? ScanFrom : nullptr; if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT)) return true; int64_t ByteOffset = 0; Value *Base = V; Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); if (ByteOffset < 0) // out of bounds return false; Type *BaseType = nullptr; unsigned BaseAlign = 0; if (const AllocaInst *AI = dyn_cast(Base)) { // An alloca is safe to load from as load as it is suitably aligned. BaseType = AI->getAllocatedType(); BaseAlign = AI->getAlignment(); } else if (const GlobalVariable *GV = dyn_cast(Base)) { // Global variables are not necessarily safe to load from if they are // interposed arbitrarily. Their size may change or they may be weak and // require a test to determine if they were in fact provided. if (!GV->isInterposable()) { BaseType = GV->getType()->getElementType(); BaseAlign = GV->getAlignment(); } } PointerType *AddrTy = cast(V->getType()); uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); // If we found a base allocated type from either an alloca or global variable, // try to see if we are definitively within the allocated region. We need to // know the size of the base type and the loaded type to do anything in this // case. if (BaseType && BaseType->isSized()) { if (BaseAlign == 0) BaseAlign = DL.getPrefTypeAlignment(BaseType); if (Align <= BaseAlign) { // Check if the load is within the bounds of the underlying object. if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && ((ByteOffset % Align) == 0)) return true; } } if (!ScanFrom) return false; // Otherwise, be a little bit aggressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom->getIterator(), E = ScanFrom->getParent()->begin(); // We can at least always strip pointer casts even though we can't use the // base here. V = V->stripPointerCasts(); while (BBI != E) { --BBI; // If we see a free or a call which may write to memory (i.e. which might do // a free) the pointer could be marked invalid. if (isa(BBI) && BBI->mayWriteToMemory() && !isa(BBI)) return false; Value *AccessedPtr; unsigned AccessedAlign; if (LoadInst *LI = dyn_cast(BBI)) { AccessedPtr = LI->getPointerOperand(); AccessedAlign = LI->getAlignment(); } else if (StoreInst *SI = dyn_cast(BBI)) { AccessedPtr = SI->getPointerOperand(); AccessedAlign = SI->getAlignment(); } else continue; Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); if (AccessedAlign == 0) AccessedAlign = DL.getABITypeAlignment(AccessedTy); if (AccessedAlign < Align) continue; // Handle trivial cases. if (AccessedPtr == V) return true; if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && LoadSize <= DL.getTypeStoreSize(AccessedTy)) return true; } return false; } /// DefMaxInstsToScan - the default number of maximum instructions /// to scan in the block, used by FindAvailableLoadedValue(). /// FindAvailableLoadedValue() was introduced in r60148, to improve jump /// threading in part by eliminating partially redundant loads. /// At that point, the value of MaxInstsToScan was already set to '6' /// without documented explanation. cl::opt llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, cl::desc("Use this to specify the default maximum number of instructions " "to scan backward from a given instruction, when searching for " "available loaded value")); Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AliasAnalysis *AA, bool *IsLoad, unsigned *NumScanedInst) { // Don't CSE load that is volatile or anything stronger than unordered. if (!Load->isUnordered()) return nullptr; return FindAvailablePtrLoadStore( Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); } Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, bool AtLeastAtomic, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AliasAnalysis *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { if (MaxInstsToScan == 0) MaxInstsToScan = ~0U; const DataLayout &DL = ScanBB->getModule()->getDataLayout(); // Try to get the store size for the type. uint64_t AccessSize = DL.getTypeStoreSize(AccessTy); Value *StrippedPtr = Ptr->stripPointerCasts(); while (ScanFrom != ScanBB->begin()) { // We must ignore debug info directives when counting (otherwise they // would affect codegen). Instruction *Inst = &*--ScanFrom; if (isa(Inst)) continue; // Restore ScanFrom to expected value in case next test succeeds ScanFrom++; if (NumScanedInst) ++(*NumScanedInst); // Don't scan huge blocks. if (MaxInstsToScan-- == 0) return nullptr; --ScanFrom; // If this is a load of Ptr, the loaded value is available. // (This is true even if the load is volatile or atomic, although // those cases are unlikely.) if (LoadInst *LI = dyn_cast(Inst)) if (AreEquivalentAddressValues( LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { // We can value forward from an atomic to a non-atomic, but not the // other way around. if (LI->isAtomic() < AtLeastAtomic) return nullptr; if (IsLoadCSE) *IsLoadCSE = true; return LI; } if (StoreInst *SI = dyn_cast(Inst)) { Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); // If this is a store through Ptr, the value is available! // (This is true even if the store is volatile or atomic, although // those cases are unlikely.) if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), AccessTy, DL)) { // We can value forward from an atomic to a non-atomic, but not the // other way around. if (SI->isAtomic() < AtLeastAtomic) return nullptr; if (IsLoadCSE) *IsLoadCSE = false; return SI->getOperand(0); } // If both StrippedPtr and StorePtr reach all the way to an alloca or // global and they are different, ignore the store. This is a trivial form // of alias analysis that is important for reg2mem'd code. if ((isa(StrippedPtr) || isa(StrippedPtr)) && (isa(StorePtr) || isa(StorePtr)) && StrippedPtr != StorePtr) continue; // If we have alias analysis and it says the store won't modify the loaded // value, ignore the store. if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) continue; // Otherwise the store that may or may not alias the pointer, bail out. ++ScanFrom; return nullptr; } // If this is some other instruction that may clobber Ptr, bail out. if (Inst->mayWriteToMemory()) { // If alias analysis claims that it really won't modify the load, // ignore it. if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) continue; // May modify the pointer, bail out. ++ScanFrom; return nullptr; } } // Got to the start of the block, we didn't find it, but are done for this // block. return nullptr; }