//===-- RNBRemote.cpp -------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Created by Greg Clayton on 12/12/07. // //===----------------------------------------------------------------------===// #include "RNBRemote.h" #include #include #include #include #include #include #include "DNB.h" #include "DNBLog.h" #include "DNBThreadResumeActions.h" #include "RNBContext.h" #include "RNBServices.h" #include "RNBSocket.h" #include "Utility/StringExtractor.h" #include #include #include // for endianness predefines //---------------------------------------------------------------------- // std::iostream formatting macros //---------------------------------------------------------------------- #define RAW_HEXBASE std::setfill('0') << std::hex << std::right #define HEXBASE '0' << 'x' << RAW_HEXBASE #define RAWHEX8(x) RAW_HEXBASE << std::setw(2) << ((uint32_t)((uint8_t)x)) #define RAWHEX16 RAW_HEXBASE << std::setw(4) #define RAWHEX32 RAW_HEXBASE << std::setw(8) #define RAWHEX64 RAW_HEXBASE << std::setw(16) #define HEX8(x) HEXBASE << std::setw(2) << ((uint32_t)(x)) #define HEX16 HEXBASE << std::setw(4) #define HEX32 HEXBASE << std::setw(8) #define HEX64 HEXBASE << std::setw(16) #define RAW_HEX(x) RAW_HEXBASE << std::setw(sizeof(x)*2) << (x) #define HEX(x) HEXBASE << std::setw(sizeof(x)*2) << (x) #define RAWHEX_SIZE(x, sz) RAW_HEXBASE << std::setw((sz)) << (x) #define HEX_SIZE(x, sz) HEXBASE << std::setw((sz)) << (x) #define STRING_WIDTH(w) std::setfill(' ') << std::setw(w) #define LEFT_STRING_WIDTH(s, w) std::left << std::setfill(' ') << std::setw(w) << (s) << std::right #define DECIMAL std::dec << std::setfill(' ') #define DECIMAL_WIDTH(w) DECIMAL << std::setw(w) #define FLOAT(n, d) std::setfill(' ') << std::setw((n)+(d)+1) << std::setprecision(d) << std::showpoint << std::fixed #define INDENT_WITH_SPACES(iword_idx) std::setfill(' ') << std::setw((iword_idx)) << "" #define INDENT_WITH_TABS(iword_idx) std::setfill('\t') << std::setw((iword_idx)) << "" // Class to handle communications via gdb remote protocol. extern void ASLLogCallback(void *baton, uint32_t flags, const char *format, va_list args); RNBRemote::RNBRemote () : m_ctx (), m_comm (), m_continue_thread(-1), m_thread(-1), m_mutex(), m_packets_recvd(0), m_packets(), m_rx_packets(), m_rx_partial_data(), m_rx_pthread(0), m_breakpoints(), m_max_payload_size(DEFAULT_GDB_REMOTE_PROTOCOL_BUFSIZE - 4), m_extended_mode(false), m_noack_mode(false), m_thread_suffix_supported (false), m_use_native_regs (false) { DNBLogThreadedIf (LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__); CreatePacketTable (); } RNBRemote::~RNBRemote() { DNBLogThreadedIf (LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__); StopReadRemoteDataThread(); } void RNBRemote::CreatePacketTable () { // Step required to add new packets: // 1 - Add new enumeration to RNBRemote::PacketEnum // 2 - Create a the RNBRemote::HandlePacket_ function if a new function is needed // 3 - Register the Packet definition with any needed callbacks in this fucntion // - If no response is needed for a command, then use NULL for the normal callback // - If the packet is not supported while the target is running, use NULL for the async callback // 4 - If the packet is a standard packet (starts with a '$' character // followed by the payload and then '#' and checksum, then you are done // else go on to step 5 // 5 - if the packet is a fixed length packet: // - modify the switch statement for the first character in the payload // in RNBRemote::CommDataReceived so it doesn't reject the new packet // type as invalid // - modify the switch statement for the first character in the payload // in RNBRemote::GetPacketPayload and make sure the payload of the packet // is returned correctly std::vector &t = m_packets; t.push_back (Packet (ack, NULL, NULL, "+", "ACK")); t.push_back (Packet (nack, NULL, NULL, "-", "!ACK")); t.push_back (Packet (read_memory, &RNBRemote::HandlePacket_m, NULL, "m", "Read memory")); t.push_back (Packet (read_register, &RNBRemote::HandlePacket_p, NULL, "p", "Read one register")); t.push_back (Packet (read_general_regs, &RNBRemote::HandlePacket_g, NULL, "g", "Read registers")); t.push_back (Packet (write_memory, &RNBRemote::HandlePacket_M, NULL, "M", "Write memory")); t.push_back (Packet (write_register, &RNBRemote::HandlePacket_P, NULL, "P", "Write one register")); t.push_back (Packet (write_general_regs, &RNBRemote::HandlePacket_G, NULL, "G", "Write registers")); t.push_back (Packet (insert_mem_bp, &RNBRemote::HandlePacket_z, NULL, "Z0", "Insert memory breakpoint")); t.push_back (Packet (remove_mem_bp, &RNBRemote::HandlePacket_z, NULL, "z0", "Remove memory breakpoint")); t.push_back (Packet (single_step, &RNBRemote::HandlePacket_s, NULL, "s", "Single step")); t.push_back (Packet (cont, &RNBRemote::HandlePacket_c, NULL, "c", "continue")); t.push_back (Packet (single_step_with_sig, &RNBRemote::HandlePacket_S, NULL, "S", "Single step with signal")); t.push_back (Packet (set_thread, &RNBRemote::HandlePacket_H, NULL, "H", "Set thread")); t.push_back (Packet (halt, &RNBRemote::HandlePacket_last_signal, &RNBRemote::HandlePacket_stop_process, "\x03", "^C")); // t.push_back (Packet (use_extended_mode, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "!", "Use extended mode")); t.push_back (Packet (why_halted, &RNBRemote::HandlePacket_last_signal, NULL, "?", "Why did target halt")); t.push_back (Packet (set_argv, &RNBRemote::HandlePacket_A, NULL, "A", "Set argv")); // t.push_back (Packet (set_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "B", "Set/clear breakpoint")); t.push_back (Packet (continue_with_sig, &RNBRemote::HandlePacket_C, NULL, "C", "Continue with signal")); t.push_back (Packet (detach, &RNBRemote::HandlePacket_D, NULL, "D", "Detach gdb from remote system")); // t.push_back (Packet (step_inferior_one_cycle, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "i", "Step inferior by one clock cycle")); // t.push_back (Packet (signal_and_step_inf_one_cycle, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "I", "Signal inferior, then step one clock cyle")); t.push_back (Packet (kill, &RNBRemote::HandlePacket_k, NULL, "k", "Kill")); // t.push_back (Packet (restart, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "R", "Restart inferior")); // t.push_back (Packet (search_mem_backwards, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "t", "Search memory backwards")); t.push_back (Packet (thread_alive_p, &RNBRemote::HandlePacket_T, NULL, "T", "Is thread alive")); t.push_back (Packet (vattach, &RNBRemote::HandlePacket_v, NULL, "vAttach", "Attach to a new process")); t.push_back (Packet (vattachwait, &RNBRemote::HandlePacket_v, NULL, "vAttachWait", "Wait for a process to start up then attach to it")); t.push_back (Packet (vattachname, &RNBRemote::HandlePacket_v, NULL, "vAttachName", "Attach to an existing process by name")); t.push_back (Packet (vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, "vCont;", "Verbose resume with thread actions")); t.push_back (Packet (vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, "vCont?", "List valid continue-with-thread-actions actions")); // The X packet doesn't currently work. If/when it does, remove the line above and uncomment out the line below // t.push_back (Packet (write_data_to_memory, &RNBRemote::HandlePacket_X, NULL, "X", "Write data to memory")); // t.push_back (Packet (insert_hardware_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z1", "Insert hardware breakpoint")); // t.push_back (Packet (remove_hardware_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z1", "Remove hardware breakpoint")); // t.push_back (Packet (insert_write_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z2", "Insert write watchpoint")); // t.push_back (Packet (remove_write_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z2", "Remove write watchpoint")); // t.push_back (Packet (insert_read_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z3", "Insert read watchpoint")); // t.push_back (Packet (remove_read_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z3", "Remove read watchpoint")); // t.push_back (Packet (insert_access_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z4", "Insert access watchpoint")); // t.push_back (Packet (remove_access_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z4", "Remove access watchpoint")); t.push_back (Packet (query_current_thread_id, &RNBRemote::HandlePacket_qC, NULL, "qC", "Query current thread ID")); t.push_back (Packet (query_get_pid, &RNBRemote::HandlePacket_qGetPid, NULL, "qGetPid", "Query process id")); // t.push_back (Packet (query_memory_crc, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qCRC:", "Compute CRC of memory region")); t.push_back (Packet (query_thread_ids_first, &RNBRemote::HandlePacket_qThreadInfo, NULL, "qfThreadInfo", "Get list of active threads (first req)")); t.push_back (Packet (query_thread_ids_subsequent, &RNBRemote::HandlePacket_qThreadInfo, NULL, "qsThreadInfo", "Get list of active threads (subsequent req)")); // APPLE LOCAL: qThreadStopInfo // syntax: qThreadStopInfoTTTT // TTTT is hex thread ID t.push_back (Packet (query_thread_stop_info, &RNBRemote::HandlePacket_qThreadStopInfo, NULL, "qThreadStopInfo", "Get detailed info on why the specified thread stopped")); t.push_back (Packet (query_thread_extra_info, &RNBRemote::HandlePacket_qThreadExtraInfo,NULL, "qThreadExtraInfo", "Get printable status of a thread")); // t.push_back (Packet (query_image_offsets, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qOffsets", "Report offset of loaded program")); t.push_back (Packet (query_launch_success, &RNBRemote::HandlePacket_qLaunchSuccess,NULL, "qLaunchSuccess", "Report the success or failure of the launch attempt")); t.push_back (Packet (query_register_info, &RNBRemote::HandlePacket_qRegisterInfo, NULL, "qRegisterInfo", "Dynamically discover remote register context information.")); t.push_back (Packet (query_shlib_notify_info_addr, &RNBRemote::HandlePacket_qShlibInfoAddr,NULL, "qShlibInfoAddr", "Returns the address that contains info needed for getting shared library notifications")); t.push_back (Packet (query_step_packet_supported, &RNBRemote::HandlePacket_qStepPacketSupported,NULL, "qStepPacketSupported", "Replys with OK if the 's' packet is supported.")); t.push_back (Packet (query_host_info, &RNBRemote::HandlePacket_qHostInfo, NULL, "qHostInfo", "Replies with multiple 'key:value;' tuples appended to each other.")); // t.push_back (Packet (query_symbol_lookup, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qSymbol", "Notify that host debugger is ready to do symbol lookups")); t.push_back (Packet (start_noack_mode, &RNBRemote::HandlePacket_QStartNoAckMode , NULL, "QStartNoAckMode", "Request that " DEBUGSERVER_PROGRAM_NAME " stop acking remote protocol packets")); t.push_back (Packet (prefix_reg_packets_with_tid, &RNBRemote::HandlePacket_QThreadSuffixSupported , NULL, "QThreadSuffixSupported", "Check if thread specifc packets (register packets 'g', 'G', 'p', and 'P') support having the thread ID appended to the end of the command")); t.push_back (Packet (set_logging_mode, &RNBRemote::HandlePacket_QSetLogging , NULL, "QSetLogging:", "Check if register packets ('g', 'G', 'p', and 'P' support having the thread ID prefix")); t.push_back (Packet (set_max_packet_size, &RNBRemote::HandlePacket_QSetMaxPacketSize , NULL, "QSetMaxPacketSize:", "Tell " DEBUGSERVER_PROGRAM_NAME " the max sized packet gdb can handle")); t.push_back (Packet (set_max_payload_size, &RNBRemote::HandlePacket_QSetMaxPayloadSize , NULL, "QSetMaxPayloadSize:", "Tell " DEBUGSERVER_PROGRAM_NAME " the max sized payload gdb can handle")); t.push_back (Packet (set_environment_variable, &RNBRemote::HandlePacket_QEnvironment , NULL, "QEnvironment:", "Add an environment variable to the inferior's environment")); t.push_back (Packet (set_environment_variable_hex, &RNBRemote::HandlePacket_QEnvironmentHexEncoded , NULL, "QEnvironmentHexEncoded:", "Add an environment variable to the inferior's environment")); t.push_back (Packet (set_launch_arch, &RNBRemote::HandlePacket_QLaunchArch , NULL, "QLaunchArch:", "Set the architecture to use when launching a process for hosts that can run multiple architecture slices from universal files.")); t.push_back (Packet (set_disable_aslr, &RNBRemote::HandlePacket_QSetDisableASLR , NULL, "QSetDisableASLR:", "Set wether to disable ASLR when launching the process with the set argv ('A') packet")); t.push_back (Packet (set_stdin, &RNBRemote::HandlePacket_QSetSTDIO , NULL, "QSetSTDIN:", "Set the standard input for a process to be launched with the 'A' packet")); t.push_back (Packet (set_stdout, &RNBRemote::HandlePacket_QSetSTDIO , NULL, "QSetSTDOUT:", "Set the standard output for a process to be launched with the 'A' packet")); t.push_back (Packet (set_stderr, &RNBRemote::HandlePacket_QSetSTDIO , NULL, "QSetSTDERR:", "Set the standard error for a process to be launched with the 'A' packet")); t.push_back (Packet (set_working_dir, &RNBRemote::HandlePacket_QSetWorkingDir , NULL, "QSetWorkingDir:", "Set the working directory for a process to be launched with the 'A' packet")); // t.push_back (Packet (pass_signals_to_inferior, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "QPassSignals:", "Specify which signals are passed to the inferior")); t.push_back (Packet (allocate_memory, &RNBRemote::HandlePacket_AllocateMemory, NULL, "_M", "Allocate memory in the inferior process.")); t.push_back (Packet (deallocate_memory, &RNBRemote::HandlePacket_DeallocateMemory, NULL, "_m", "Deallocate memory in the inferior process.")); } void RNBRemote::FlushSTDIO () { if (m_ctx.HasValidProcessID()) { nub_process_t pid = m_ctx.ProcessID(); char buf[256]; nub_size_t count; do { count = DNBProcessGetAvailableSTDOUT(pid, buf, sizeof(buf)); if (count > 0) { SendSTDOUTPacket (buf, count); } } while (count > 0); do { count = DNBProcessGetAvailableSTDERR(pid, buf, sizeof(buf)); if (count > 0) { SendSTDERRPacket (buf, count); } } while (count > 0); } } rnb_err_t RNBRemote::SendHexEncodedBytePacket (const char *header, const void *buf, size_t buf_len, const char *footer) { std::ostringstream packet_sstrm; // Append the header cstr if there was one if (header && header[0]) packet_sstrm << header; nub_size_t i; const uint8_t *ubuf8 = (const uint8_t *)buf; for (i=0; iabbrev.size(), it->abbrev) == 0) break; } // A packet we don't have an entry for. This can happen when we // get a packet that we don't know about or support. We just reply // accordingly and go on. if (it == m_packets.end ()) { DNBLogThreadedIf (LOG_RNB_PACKETS, "unimplemented packet: '%s'", payload.c_str()); HandlePacket_UNIMPLEMENTED(payload.c_str()); return rnb_err; } else { packet_info = *it; packet_payload = payload; } } return err; } rnb_err_t RNBRemote::HandleAsyncPacket(PacketEnum *type) { DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); static DNBTimer g_packetTimer(true); rnb_err_t err = rnb_err; std::string packet_data; RNBRemote::Packet packet_info; err = GetPacket (packet_data, packet_info, false); if (err == rnb_success) { if (!packet_data.empty() && isprint(packet_data[0])) DNBLogThreadedIf (LOG_RNB_REMOTE | LOG_RNB_PACKETS, "HandleAsyncPacket (\"%s\");", packet_data.c_str()); else DNBLogThreadedIf (LOG_RNB_REMOTE | LOG_RNB_PACKETS, "HandleAsyncPacket (%s);", packet_info.printable_name.c_str()); HandlePacketCallback packet_callback = packet_info.async; if (packet_callback != NULL) { if (type != NULL) *type = packet_info.type; return (this->*packet_callback)(packet_data.c_str()); } } return err; } rnb_err_t RNBRemote::HandleReceivedPacket(PacketEnum *type) { static DNBTimer g_packetTimer(true); // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); rnb_err_t err = rnb_err; std::string packet_data; RNBRemote::Packet packet_info; err = GetPacket (packet_data, packet_info, false); if (err == rnb_success) { DNBLogThreadedIf (LOG_RNB_REMOTE, "HandleReceivedPacket (\"%s\");", packet_data.c_str()); HandlePacketCallback packet_callback = packet_info.normal; if (packet_callback != NULL) { if (type != NULL) *type = packet_info.type; return (this->*packet_callback)(packet_data.c_str()); } else { // Do not fall through to end of this function, if we have valid // packet_info and it has a NULL callback, then we need to respect // that it may not want any response or anything to be done. return err; } } return rnb_err; } void RNBRemote::CommDataReceived(const std::string& new_data) { // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); { // Put the packet data into the buffer in a thread safe fashion PThreadMutex::Locker locker(m_mutex); std::string data; // See if we have any left over data from a previous call to this // function? if (!m_rx_partial_data.empty()) { // We do, so lets start with that data data.swap(m_rx_partial_data); } // Append the new incoming data data += new_data; // Parse up the packets into gdb remote packets uint32_t idx = 0; const size_t data_size = data.size(); while (idx < data_size) { // end_idx must be one past the last valid packet byte. Start // it off with an invalid value that is the same as the current // index. size_t end_idx = idx; switch (data[idx]) { case '+': // Look for ack case '-': // Look for cancel case '\x03': // ^C to halt target end_idx = idx + 1; // The command is one byte long... break; case '$': // Look for a standard gdb packet? end_idx = data.find('#', idx + 1); if (end_idx == std::string::npos || end_idx + 2 > data_size) { end_idx = std::string::npos; } else { // Add two for the checksum bytes and 1 to point to the // byte just past the end of this packet end_idx += 2 + 1; } break; default: break; } if (end_idx == std::string::npos) { // Not all data may be here for the packet yet, save it for // next time through this function. m_rx_partial_data += data.substr(idx); //DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s saving data for later[%u, npos): '%s'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, idx, m_rx_partial_data.c_str()); idx = end_idx; } else if (idx < end_idx) { m_packets_recvd++; // Hack to get rid of initial '+' ACK??? if (m_packets_recvd == 1 && (end_idx == idx + 1) && data[idx] == '+') { //DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s throwing first ACK away....[%u, npos): '+'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, idx); } else { // We have a valid packet... m_rx_packets.push_back(data.substr(idx, end_idx - idx)); DNBLogThreadedIf (LOG_RNB_PACKETS, "getpkt: %s", m_rx_packets.back().c_str()); } idx = end_idx; } else { DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s tossing junk byte at %c",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, data[idx]); idx = idx + 1; } } } if (!m_rx_packets.empty()) { // Let the main thread know we have received a packet //DNBLogThreadedIf (LOG_RNB_EVENTS, "%8d RNBRemote::%s called events.SetEvent(RNBContext::event_read_packet_available)", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); PThreadEvent& events = m_ctx.Events(); events.SetEvents (RNBContext::event_read_packet_available); } } rnb_err_t RNBRemote::GetCommData () { // DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); std::string comm_data; rnb_err_t err = m_comm.Read (comm_data); if (err == rnb_success) { if (!comm_data.empty()) CommDataReceived (comm_data); } return err; } void RNBRemote::StartReadRemoteDataThread() { DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); PThreadEvent& events = m_ctx.Events(); if ((events.GetEventBits() & RNBContext::event_read_thread_running) == 0) { events.ResetEvents (RNBContext::event_read_thread_exiting); int err = ::pthread_create (&m_rx_pthread, NULL, ThreadFunctionReadRemoteData, this); if (err == 0) { // Our thread was successfully kicked off, wait for it to // set the started event so we can safely continue events.WaitForSetEvents (RNBContext::event_read_thread_running); } else { events.ResetEvents (RNBContext::event_read_thread_running); events.SetEvents (RNBContext::event_read_thread_exiting); } } } void RNBRemote::StopReadRemoteDataThread() { DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__); PThreadEvent& events = m_ctx.Events(); if ((events.GetEventBits() & RNBContext::event_read_thread_running) == RNBContext::event_read_thread_running) { m_comm.Disconnect(true); struct timespec timeout_abstime; DNBTimer::OffsetTimeOfDay(&timeout_abstime, 2, 0); // Wait for 2 seconds for the remote data thread to exit if (events.WaitForSetEvents(RNBContext::event_read_thread_exiting, &timeout_abstime) == 0) { // Kill the remote data thread??? } } } void* RNBRemote::ThreadFunctionReadRemoteData(void *arg) { // Keep a shared pointer reference so this doesn't go away on us before the thread is killed. DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread starting...", __FUNCTION__, arg); RNBRemoteSP remoteSP(g_remoteSP); if (remoteSP.get() != NULL) { RNBRemote* remote = remoteSP.get(); PThreadEvent& events = remote->Context().Events(); events.SetEvents (RNBContext::event_read_thread_running); // START: main receive remote command thread loop bool done = false; while (!done) { rnb_err_t err = remote->GetCommData(); switch (err) { case rnb_success: break; default: case rnb_err: DNBLogThreadedIf (LOG_RNB_REMOTE, "RNBSocket::GetCommData returned error %u", err); done = true; break; case rnb_not_connected: DNBLogThreadedIf (LOG_RNB_REMOTE, "RNBSocket::GetCommData returned not connected..."); done = true; break; } } // START: main receive remote command thread loop events.ResetEvents (RNBContext::event_read_thread_running); events.SetEvents (RNBContext::event_read_thread_exiting); } DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread exiting...", __FUNCTION__, arg); return NULL; } /* Read the bytes in STR which are GDB Remote Protocol binary encoded bytes (8-bit bytes). This encoding uses 0x7d ('}') as an escape character for 0x7d ('}'), 0x23 ('#'), and 0x24 ('$'). LEN is the number of bytes to be processed. If a character is escaped, it is 2 characters for LEN. A LEN of -1 means encode-until-nul-byte (end of string). */ std::vector decode_binary_data (const char *str, int len) { std::vector bytes; if (len == 0) { return bytes; } if (len == -1) len = strlen (str); while (len--) { unsigned char c = *str; if (c == 0x7d && len > 0) { len--; str++; c ^= 0x20; } bytes.push_back (c); } return bytes; } typedef struct register_map_entry { uint32_t gdb_regnum; // gdb register number uint32_t gdb_size; // gdb register size in bytes (can be greater than or less than to debugnub size...) const char * gdb_name; // gdb register name DNBRegisterInfo nub_info; // debugnub register info const uint8_t* fail_value; // Value to print if case we fail to reg this register (if this is NULL, we will return an error) int expedite; // expedite delivery of this register in last stop reply packets } register_map_entry_t; // If the notion of registers differs from what is handed out by the // architecture, then flavors can be defined here. static const uint32_t MAX_REGISTER_BYTE_SIZE = 16; static const uint8_t k_zero_bytes[MAX_REGISTER_BYTE_SIZE] = {0}; static std::vector g_dynamic_register_map; static register_map_entry_t *g_reg_entries = NULL; static size_t g_num_reg_entries = 0; static void RegisterEntryNotAvailable (register_map_entry_t *reg_entry) { reg_entry->fail_value = k_zero_bytes; reg_entry->nub_info.set = INVALID_NUB_REGNUM; reg_entry->nub_info.reg = INVALID_NUB_REGNUM; reg_entry->nub_info.name = NULL; reg_entry->nub_info.alt = NULL; reg_entry->nub_info.type = InvalidRegType; reg_entry->nub_info.format = InvalidRegFormat; reg_entry->nub_info.size = 0; reg_entry->nub_info.offset = 0; reg_entry->nub_info.reg_gcc = INVALID_NUB_REGNUM; reg_entry->nub_info.reg_dwarf = INVALID_NUB_REGNUM; reg_entry->nub_info.reg_generic = INVALID_NUB_REGNUM; reg_entry->nub_info.reg_gdb = INVALID_NUB_REGNUM; } //---------------------------------------------------------------------- // ARM regiseter sets as gdb knows them //---------------------------------------------------------------------- register_map_entry_t g_gdb_register_map_arm[] = { { 0, 4, "r0", {0}, NULL, 1}, { 1, 4, "r1", {0}, NULL, 1}, { 2, 4, "r2", {0}, NULL, 1}, { 3, 4, "r3", {0}, NULL, 1}, { 4, 4, "r4", {0}, NULL, 1}, { 5, 4, "r5", {0}, NULL, 1}, { 6, 4, "r6", {0}, NULL, 1}, { 7, 4, "r7", {0}, NULL, 1}, { 8, 4, "r8", {0}, NULL, 1}, { 9, 4, "r9", {0}, NULL, 1}, { 10, 4, "r10", {0}, NULL, 1}, { 11, 4, "r11", {0}, NULL, 1}, { 12, 4, "r12", {0}, NULL, 1}, { 13, 4, "sp", {0}, NULL, 1}, { 14, 4, "lr", {0}, NULL, 1}, { 15, 4, "pc", {0}, NULL, 1}, { 16, 12, "f0", {0}, k_zero_bytes, 0}, { 17, 12, "f1", {0}, k_zero_bytes, 0}, { 18, 12, "f2", {0}, k_zero_bytes, 0}, { 19, 12, "f3", {0}, k_zero_bytes, 0}, { 20, 12, "f4", {0}, k_zero_bytes, 0}, { 21, 12, "f5", {0}, k_zero_bytes, 0}, { 22, 12, "f6", {0}, k_zero_bytes, 0}, { 23, 12, "f7", {0}, k_zero_bytes, 0}, { 24, 4, "fps", {0}, k_zero_bytes, 0}, { 25, 4,"cpsr", {0}, NULL, 1}, { 26, 4, "s0", {0}, NULL, 0}, { 27, 4, "s1", {0}, NULL, 0}, { 28, 4, "s2", {0}, NULL, 0}, { 29, 4, "s3", {0}, NULL, 0}, { 30, 4, "s4", {0}, NULL, 0}, { 31, 4, "s5", {0}, NULL, 0}, { 32, 4, "s6", {0}, NULL, 0}, { 33, 4, "s7", {0}, NULL, 0}, { 34, 4, "s8", {0}, NULL, 0}, { 35, 4, "s9", {0}, NULL, 0}, { 36, 4, "s10", {0}, NULL, 0}, { 37, 4, "s11", {0}, NULL, 0}, { 38, 4, "s12", {0}, NULL, 0}, { 39, 4, "s13", {0}, NULL, 0}, { 40, 4, "s14", {0}, NULL, 0}, { 41, 4, "s15", {0}, NULL, 0}, { 42, 4, "s16", {0}, NULL, 0}, { 43, 4, "s17", {0}, NULL, 0}, { 44, 4, "s18", {0}, NULL, 0}, { 45, 4, "s19", {0}, NULL, 0}, { 46, 4, "s20", {0}, NULL, 0}, { 47, 4, "s21", {0}, NULL, 0}, { 48, 4, "s22", {0}, NULL, 0}, { 49, 4, "s23", {0}, NULL, 0}, { 50, 4, "s24", {0}, NULL, 0}, { 51, 4, "s25", {0}, NULL, 0}, { 52, 4, "s26", {0}, NULL, 0}, { 53, 4, "s27", {0}, NULL, 0}, { 54, 4, "s28", {0}, NULL, 0}, { 55, 4, "s29", {0}, NULL, 0}, { 56, 4, "s30", {0}, NULL, 0}, { 57, 4, "s31", {0}, NULL, 0}, { 58, 4, "fpscr", {0}, NULL, 0}, { 59, 8, "d16", {0}, NULL, 0}, { 60, 8, "d17", {0}, NULL, 0}, { 61, 8, "d18", {0}, NULL, 0}, { 62, 8, "d19", {0}, NULL, 0}, { 63, 8, "d20", {0}, NULL, 0}, { 64, 8, "d21", {0}, NULL, 0}, { 65, 8, "d22", {0}, NULL, 0}, { 66, 8, "d23", {0}, NULL, 0}, { 67, 8, "d24", {0}, NULL, 0}, { 68, 8, "d25", {0}, NULL, 0}, { 69, 8, "d26", {0}, NULL, 0}, { 70, 8, "d27", {0}, NULL, 0}, { 71, 8, "d28", {0}, NULL, 0}, { 72, 8, "d29", {0}, NULL, 0}, { 73, 8, "d30", {0}, NULL, 0}, { 74, 8, "d31", {0}, NULL, 0} }; register_map_entry_t g_gdb_register_map_i386[] = { { 0, 4, "eax" , {0}, NULL, 0 }, { 1, 4, "ecx" , {0}, NULL, 0 }, { 2, 4, "edx" , {0}, NULL, 0 }, { 3, 4, "ebx" , {0}, NULL, 0 }, { 4, 4, "esp" , {0}, NULL, 1 }, { 5, 4, "ebp" , {0}, NULL, 1 }, { 6, 4, "esi" , {0}, NULL, 0 }, { 7, 4, "edi" , {0}, NULL, 0 }, { 8, 4, "eip" , {0}, NULL, 1 }, { 9, 4, "eflags" , {0}, NULL, 0 }, { 10, 4, "cs" , {0}, NULL, 0 }, { 11, 4, "ss" , {0}, NULL, 0 }, { 12, 4, "ds" , {0}, NULL, 0 }, { 13, 4, "es" , {0}, NULL, 0 }, { 14, 4, "fs" , {0}, NULL, 0 }, { 15, 4, "gs" , {0}, NULL, 0 }, { 16, 10, "stmm0" , {0}, NULL, 0 }, { 17, 10, "stmm1" , {0}, NULL, 0 }, { 18, 10, "stmm2" , {0}, NULL, 0 }, { 19, 10, "stmm3" , {0}, NULL, 0 }, { 20, 10, "stmm4" , {0}, NULL, 0 }, { 21, 10, "stmm5" , {0}, NULL, 0 }, { 22, 10, "stmm6" , {0}, NULL, 0 }, { 23, 10, "stmm7" , {0}, NULL, 0 }, { 24, 4, "fctrl" , {0}, NULL, 0 }, { 25, 4, "fstat" , {0}, NULL, 0 }, { 26, 4, "ftag" , {0}, NULL, 0 }, { 27, 4, "fiseg" , {0}, NULL, 0 }, { 28, 4, "fioff" , {0}, NULL, 0 }, { 29, 4, "foseg" , {0}, NULL, 0 }, { 30, 4, "fooff" , {0}, NULL, 0 }, { 31, 4, "fop" , {0}, NULL, 0 }, { 32, 16, "xmm0" , {0}, NULL, 0 }, { 33, 16, "xmm1" , {0}, NULL, 0 }, { 34, 16, "xmm2" , {0}, NULL, 0 }, { 35, 16, "xmm3" , {0}, NULL, 0 }, { 36, 16, "xmm4" , {0}, NULL, 0 }, { 37, 16, "xmm5" , {0}, NULL, 0 }, { 38, 16, "xmm6" , {0}, NULL, 0 }, { 39, 16, "xmm7" , {0}, NULL, 0 }, { 40, 4, "mxcsr" , {0}, NULL, 0 }, }; register_map_entry_t g_gdb_register_map_x86_64[] = { { 0, 8, "rax" , {0}, NULL, 0 }, { 1, 8, "rbx" , {0}, NULL, 0 }, { 2, 8, "rcx" , {0}, NULL, 0 }, { 3, 8, "rdx" , {0}, NULL, 0 }, { 4, 8, "rsi" , {0}, NULL, 0 }, { 5, 8, "rdi" , {0}, NULL, 0 }, { 6, 8, "rbp" , {0}, NULL, 1 }, { 7, 8, "rsp" , {0}, NULL, 1 }, { 8, 8, "r8" , {0}, NULL, 0 }, { 9, 8, "r9" , {0}, NULL, 0 }, { 10, 8, "r10" , {0}, NULL, 0 }, { 11, 8, "r11" , {0}, NULL, 0 }, { 12, 8, "r12" , {0}, NULL, 0 }, { 13, 8, "r13" , {0}, NULL, 0 }, { 14, 8, "r14" , {0}, NULL, 0 }, { 15, 8, "r15" , {0}, NULL, 0 }, { 16, 8, "rip" , {0}, NULL, 1 }, { 17, 4, "rflags", {0}, NULL, 0 }, { 18, 4, "cs" , {0}, NULL, 0 }, { 19, 4, "ss" , {0}, NULL, 0 }, { 20, 4, "ds" , {0}, NULL, 0 }, { 21, 4, "es" , {0}, NULL, 0 }, { 22, 4, "fs" , {0}, NULL, 0 }, { 23, 4, "gs" , {0}, NULL, 0 }, { 24, 10, "stmm0" , {0}, NULL, 0 }, { 25, 10, "stmm1" , {0}, NULL, 0 }, { 26, 10, "stmm2" , {0}, NULL, 0 }, { 27, 10, "stmm3" , {0}, NULL, 0 }, { 28, 10, "stmm4" , {0}, NULL, 0 }, { 29, 10, "stmm5" , {0}, NULL, 0 }, { 30, 10, "stmm6" , {0}, NULL, 0 }, { 31, 10, "stmm7" , {0}, NULL, 0 }, { 32, 4, "fctrl" , {0}, NULL, 0 }, { 33, 4, "fstat" , {0}, NULL, 0 }, { 34, 4, "ftag" , {0}, NULL, 0 }, { 35, 4, "fiseg" , {0}, NULL, 0 }, { 36, 4, "fioff" , {0}, NULL, 0 }, { 37, 4, "foseg" , {0}, NULL, 0 }, { 38, 4, "fooff" , {0}, NULL, 0 }, { 39, 4, "fop" , {0}, NULL, 0 }, { 40, 16, "xmm0" , {0}, NULL, 0 }, { 41, 16, "xmm1" , {0}, NULL, 0 }, { 42, 16, "xmm2" , {0}, NULL, 0 }, { 43, 16, "xmm3" , {0}, NULL, 0 }, { 44, 16, "xmm4" , {0}, NULL, 0 }, { 45, 16, "xmm5" , {0}, NULL, 0 }, { 46, 16, "xmm6" , {0}, NULL, 0 }, { 47, 16, "xmm7" , {0}, NULL, 0 }, { 48, 16, "xmm8" , {0}, NULL, 0 }, { 49, 16, "xmm9" , {0}, NULL, 0 }, { 50, 16, "xmm10" , {0}, NULL, 0 }, { 51, 16, "xmm11" , {0}, NULL, 0 }, { 52, 16, "xmm12" , {0}, NULL, 0 }, { 53, 16, "xmm13" , {0}, NULL, 0 }, { 54, 16, "xmm14" , {0}, NULL, 0 }, { 55, 16, "xmm15" , {0}, NULL, 0 }, { 56, 4, "mxcsr" , {0}, NULL, 0 } }; void RNBRemote::Initialize() { DNBInitialize(); } bool RNBRemote::InitializeRegisters () { pid_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return false; if (m_use_native_regs) { DNBLogThreadedIf (LOG_RNB_PROC, "RNBRemote::%s() getting native registers from DNB interface", __FUNCTION__); // Discover the registers by querying the DNB interface and letting it // state the registers that it would like to export. This allows the // registers to be discovered using multiple qRegisterInfo calls to get // all register information after the architecture for the process is // determined. if (g_dynamic_register_map.empty()) { nub_size_t num_reg_sets = 0; const DNBRegisterSetInfo *reg_sets = DNBGetRegisterSetInfo (&num_reg_sets); assert (num_reg_sets > 0 && reg_sets != NULL); uint32_t regnum = 0; for (nub_size_t set = 0; set < num_reg_sets; ++set) { if (reg_sets[set].registers == NULL) continue; for (uint32_t reg=0; reg < reg_sets[set].num_registers; ++reg) { register_map_entry_t reg_entry = { regnum++, // register number starts at zero and goes up with no gaps reg_sets[set].registers[reg].size, // register size in bytes reg_sets[set].registers[reg].name, // register name reg_sets[set].registers[reg], // DNBRegisterInfo NULL, // Value to print if case we fail to reg this register (if this is NULL, we will return an error) reg_sets[set].registers[reg].reg_generic != INVALID_NUB_REGNUM}; g_dynamic_register_map.push_back (reg_entry); } } g_reg_entries = g_dynamic_register_map.data(); g_num_reg_entries = g_dynamic_register_map.size(); } return true; } else { uint32_t cpu_type = DNBProcessGetCPUType (pid); DNBLogThreadedIf (LOG_RNB_PROC, "RNBRemote::%s() getting gdb registers(%s)", __FUNCTION__, m_arch.c_str()); #if defined (__i386__) || defined (__x86_64__) if (cpu_type == CPU_TYPE_X86_64) { const size_t num_regs = sizeof (g_gdb_register_map_x86_64) / sizeof (register_map_entry_t); for (uint32_t i=0; i(p); RNBContext& ctx = Context(); while (*buf != '\0') { int arglen, argnum; std::string arg; char *c; errno = 0; arglen = strtoul (buf, &c, 10); if (errno != 0 && arglen == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "arglen not a number on 'A' pkt"); } if (*c != ',') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "arglen not followed by comma on 'A' pkt"); } buf = c + 1; errno = 0; argnum = strtoul (buf, &c, 10); if (errno != 0 && argnum == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "argnum not a number on 'A' pkt"); } if (*c != ',') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "arglen not followed by comma on 'A' pkt"); } buf = c + 1; c = buf; buf = buf + arglen; while (c < buf && *c != '\0' && c + 1 < buf && *(c + 1) != '\0') { char smallbuf[3]; smallbuf[0] = *c; smallbuf[1] = *(c + 1); smallbuf[2] = '\0'; errno = 0; int ch = strtoul (smallbuf, NULL, 16); if (errno != 0 && ch == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'A' pkt"); } arg.push_back(ch); c += 2; } ctx.PushArgument (arg.c_str()); if (*buf == ',') buf++; } SendPacket ("OK"); return rnb_success; } /* `H c t' Set the thread for subsequent actions; 'c' for step/continue ops, 'g' for other ops. -1 means all threads, 0 means any thread. */ rnb_err_t RNBRemote::HandlePacket_H (const char *p) { p++; // skip 'H' if (*p != 'c' && *p != 'g') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Missing 'c' or 'g' type in H packet"); } if (!m_ctx.HasValidProcessID()) { // We allow gdb to connect to a server that hasn't started running // the target yet. gdb still wants to ask questions about it and // freaks out if it gets an error. So just return OK here. } errno = 0; nub_thread_t tid = strtoul (p + 1, NULL, 16); if (errno != 0 && tid == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid thread number in H packet"); } if (*p == 'c') SetContinueThread (tid); if (*p == 'g') SetCurrentThread (tid); return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_qLaunchSuccess (const char *p) { if (m_ctx.HasValidProcessID() || m_ctx.LaunchStatus().Error() == 0) return SendPacket("OK"); std::ostringstream ret_str; std::string status_str; ret_str << "E" << m_ctx.LaunchStatusAsString(status_str); return SendPacket (ret_str.str()); } rnb_err_t RNBRemote::HandlePacket_qShlibInfoAddr (const char *p) { if (m_ctx.HasValidProcessID()) { nub_addr_t shlib_info_addr = DNBProcessGetSharedLibraryInfoAddress(m_ctx.ProcessID()); if (shlib_info_addr != INVALID_NUB_ADDRESS) { std::ostringstream ostrm; ostrm << RAW_HEXBASE << shlib_info_addr; return SendPacket (ostrm.str ()); } } return SendPacket ("E44"); } rnb_err_t RNBRemote::HandlePacket_qStepPacketSupported (const char *p) { // Normally the "s" packet is mandatory, yet in gdb when using ARM, they // get around the need for this packet by implementing software single // stepping from gdb. Current versions of debugserver do support the "s" // packet, yet some older versions do not. We need a way to tell if this // packet is supported so we can disable software single stepping in gdb // for remote targets (so the "s" packet will get used). return SendPacket("OK"); } rnb_err_t RNBRemote::HandlePacket_qThreadStopInfo (const char *p) { p += strlen ("qThreadStopInfo"); nub_thread_t tid = strtoul(p, 0, 16); return SendStopReplyPacketForThread (tid); } rnb_err_t RNBRemote::HandlePacket_qThreadInfo (const char *p) { // We allow gdb to connect to a server that hasn't started running // the target yet. gdb still wants to ask questions about it and // freaks out if it gets an error. So just return OK here. nub_process_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return SendPacket ("OK"); // Only "qfThreadInfo" and "qsThreadInfo" get into this function so // we only need to check the second byte to tell which is which if (p[1] == 'f') { nub_size_t numthreads = DNBProcessGetNumThreads (pid); std::ostringstream ostrm; ostrm << "m"; bool first = true; for (nub_size_t i = 0; i < numthreads; ++i) { if (first) first = false; else ostrm << ","; nub_thread_t th = DNBProcessGetThreadAtIndex (pid, i); ostrm << std::hex << th; } return SendPacket (ostrm.str ()); } else { return SendPacket ("l"); } } rnb_err_t RNBRemote::HandlePacket_qThreadExtraInfo (const char *p) { // We allow gdb to connect to a server that hasn't started running // the target yet. gdb still wants to ask questions about it and // freaks out if it gets an error. So just return OK here. nub_process_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return SendPacket ("OK"); /* This is supposed to return a string like 'Runnable' or 'Blocked on Mutex'. The returned string is formatted like the "A" packet - a sequence of letters encoded in as 2-hex-chars-per-letter. */ p += strlen ("qThreadExtraInfo"); if (*p++ != ',') return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Illformed qThreadExtraInfo packet"); errno = 0; nub_thread_t tid = strtoul (p, NULL, 16); if (errno != 0 && tid == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid thread number in qThreadExtraInfo packet"); } const char * threadInfo = DNBThreadGetInfo(pid, tid); if (threadInfo != NULL && threadInfo[0]) { return SendHexEncodedBytePacket(NULL, threadInfo, strlen(threadInfo), NULL); } else { // "OK" == 4f6b // Return "OK" as a ASCII hex byte stream if things go wrong return SendPacket ("4f6b"); } return SendPacket (""); } rnb_err_t RNBRemote::HandlePacket_qC (const char *p) { nub_process_t pid; std::ostringstream rep; // If we haven't run the process yet, we tell the debugger the // pid is 0. That way it can know to tell use to run later on. if (m_ctx.HasValidProcessID()) pid = m_ctx.ProcessID(); else pid = 0; rep << "QC" << std::hex << pid; return SendPacket (rep.str()); } rnb_err_t RNBRemote::HandlePacket_qGetPid (const char *p) { nub_process_t pid; std::ostringstream rep; // If we haven't run the process yet, we tell the debugger the // pid is 0. That way it can know to tell use to run later on. if (m_ctx.HasValidProcessID()) pid = m_ctx.ProcessID(); else pid = 0; rep << std::hex << pid; return SendPacket (rep.str()); } rnb_err_t RNBRemote::HandlePacket_qRegisterInfo (const char *p) { if (g_num_reg_entries == 0) InitializeRegisters (); p += strlen ("qRegisterInfo"); nub_size_t num_reg_sets = 0; const DNBRegisterSetInfo *reg_set_info = DNBGetRegisterSetInfo (&num_reg_sets); uint32_t reg_num = strtoul(p, 0, 16); if (reg_num < g_num_reg_entries) { const register_map_entry_t *reg_entry = &g_reg_entries[reg_num]; std::ostringstream ostrm; ostrm << "name:" << reg_entry->gdb_name << ';'; if (reg_entry->nub_info.name && ::strcmp (reg_entry->gdb_name, reg_entry->nub_info.name)) ostrm << "alt-name:" << reg_entry->nub_info.name << ';'; else if (reg_entry->nub_info.alt && ::strcmp (reg_entry->gdb_name, reg_entry->nub_info.alt)) ostrm << "alt-name:" << reg_entry->nub_info.alt << ';'; ostrm << "bitsize:" << std::dec << reg_entry->gdb_size * 8 << ';'; ostrm << "offset:" << std::dec << reg_entry->nub_info.offset << ';'; switch (reg_entry->nub_info.type) { case Uint: ostrm << "encoding:uint;"; break; case Sint: ostrm << "encoding:sint;"; break; case IEEE754: ostrm << "encoding:ieee754;"; break; case Vector: ostrm << "encoding:vector;"; break; } switch (reg_entry->nub_info.format) { case Binary: ostrm << "format:binary;"; break; case Decimal: ostrm << "format:decimal;"; break; case Hex: ostrm << "format:hex;"; break; case Float: ostrm << "format:float;"; break; case VectorOfSInt8: ostrm << "format:vector-sint8;"; break; case VectorOfUInt8: ostrm << "format:vector-uint8;"; break; case VectorOfSInt16: ostrm << "format:vector-sint16;"; break; case VectorOfUInt16: ostrm << "format:vector-uint16;"; break; case VectorOfSInt32: ostrm << "format:vector-sint32;"; break; case VectorOfUInt32: ostrm << "format:vector-uint32;"; break; case VectorOfFloat32: ostrm << "format:vector-float32;"; break; case VectorOfUInt128: ostrm << "format:vector-uint128;"; break; }; if (reg_set_info && reg_entry->nub_info.set < num_reg_sets) ostrm << "set:" << reg_set_info[reg_entry->nub_info.set].name << ';'; if (g_reg_entries != g_dynamic_register_map.data()) { if (reg_entry->nub_info.reg_gdb != INVALID_NUB_REGNUM && reg_entry->nub_info.reg_gdb != reg_num) { printf("register %s is getting gdb reg_num of %u when the register info says %u\n", reg_entry->gdb_name, reg_num, reg_entry->nub_info.reg_gdb); } } if (reg_entry->nub_info.reg_gcc != INVALID_NUB_REGNUM) ostrm << "gcc:" << std::dec << reg_entry->nub_info.reg_gcc << ';'; if (reg_entry->nub_info.reg_dwarf != INVALID_NUB_REGNUM) ostrm << "dwarf:" << std::dec << reg_entry->nub_info.reg_dwarf << ';'; switch (reg_entry->nub_info.reg_generic) { case GENERIC_REGNUM_FP: ostrm << "generic:fp;"; break; case GENERIC_REGNUM_PC: ostrm << "generic:pc;"; break; case GENERIC_REGNUM_SP: ostrm << "generic:sp;"; break; case GENERIC_REGNUM_RA: ostrm << "generic:ra;"; break; case GENERIC_REGNUM_FLAGS: ostrm << "generic:flags;"; break; case GENERIC_REGNUM_ARG1: ostrm << "generic:arg1;"; break; case GENERIC_REGNUM_ARG2: ostrm << "generic:arg2;"; break; case GENERIC_REGNUM_ARG3: ostrm << "generic:arg3;"; break; case GENERIC_REGNUM_ARG4: ostrm << "generic:arg4;"; break; case GENERIC_REGNUM_ARG5: ostrm << "generic:arg5;"; break; case GENERIC_REGNUM_ARG6: ostrm << "generic:arg6;"; break; case GENERIC_REGNUM_ARG7: ostrm << "generic:arg7;"; break; case GENERIC_REGNUM_ARG8: ostrm << "generic:arg8;"; break; default: break; } return SendPacket (ostrm.str ()); } return SendPacket ("E45"); } /* This expects a packet formatted like QSetLogging:bitmask=LOG_ALL|LOG_RNB_REMOTE; with the "QSetLogging:" already removed from the start. Maybe in the future this packet will include other keyvalue pairs like QSetLogging:bitmask=LOG_ALL;mode=asl; */ rnb_err_t set_logging (const char *p) { int bitmask = 0; while (p && *p != '\0') { if (strncmp (p, "bitmask=", sizeof ("bitmask=") - 1) == 0) { p += sizeof ("bitmask=") - 1; while (p && *p != '\0' && *p != ';') { if (*p == '|') p++; if (strncmp (p, "LOG_VERBOSE", sizeof ("LOG_VERBOSE") - 1) == 0) { p += sizeof ("LOG_VERBOSE") - 1; bitmask |= LOG_VERBOSE; } else if (strncmp (p, "LOG_PROCESS", sizeof ("LOG_PROCESS") - 1) == 0) { p += sizeof ("LOG_PROCESS") - 1; bitmask |= LOG_PROCESS; } else if (strncmp (p, "LOG_THREAD", sizeof ("LOG_THREAD") - 1) == 0) { p += sizeof ("LOG_THREAD") - 1; bitmask |= LOG_THREAD; } else if (strncmp (p, "LOG_EXCEPTIONS", sizeof ("LOG_EXCEPTIONS") - 1) == 0) { p += sizeof ("LOG_EXCEPTIONS") - 1; bitmask |= LOG_EXCEPTIONS; } else if (strncmp (p, "LOG_SHLIB", sizeof ("LOG_SHLIB") - 1) == 0) { p += sizeof ("LOG_SHLIB") - 1; bitmask |= LOG_SHLIB; } else if (strncmp (p, "LOG_MEMORY", sizeof ("LOG_MEMORY") - 1) == 0) { p += sizeof ("LOG_MEMORY") - 1; bitmask |= LOG_MEMORY; } else if (strncmp (p, "LOG_MEMORY_DATA_SHORT", sizeof ("LOG_MEMORY_DATA_SHORT") - 1) == 0) { p += sizeof ("LOG_MEMORY_DATA_SHORT") - 1; bitmask |= LOG_MEMORY_DATA_SHORT; } else if (strncmp (p, "LOG_MEMORY_DATA_LONG", sizeof ("LOG_MEMORY_DATA_LONG") - 1) == 0) { p += sizeof ("LOG_MEMORY_DATA_LONG") - 1; bitmask |= LOG_MEMORY_DATA_LONG; } else if (strncmp (p, "LOG_BREAKPOINTS", sizeof ("LOG_BREAKPOINTS") - 1) == 0) { p += sizeof ("LOG_BREAKPOINTS") - 1; bitmask |= LOG_BREAKPOINTS; } else if (strncmp (p, "LOG_ALL", sizeof ("LOG_ALL") - 1) == 0) { p += sizeof ("LOG_ALL") - 1; bitmask |= LOG_ALL; } else if (strncmp (p, "LOG_EVENTS", sizeof ("LOG_EVENTS") - 1) == 0) { p += sizeof ("LOG_EVENTS") - 1; bitmask |= LOG_EVENTS; } else if (strncmp (p, "LOG_DEFAULT", sizeof ("LOG_DEFAULT") - 1) == 0) { p += sizeof ("LOG_DEFAULT") - 1; bitmask |= LOG_DEFAULT; } else if (strncmp (p, "LOG_NONE", sizeof ("LOG_NONE") - 1) == 0) { p += sizeof ("LOG_NONE") - 1; bitmask = 0; } else if (strncmp (p, "LOG_RNB_MINIMAL", sizeof ("LOG_RNB_MINIMAL") - 1) == 0) { p += sizeof ("LOG_RNB_MINIMAL") - 1; bitmask |= LOG_RNB_MINIMAL; } else if (strncmp (p, "LOG_RNB_MEDIUM", sizeof ("LOG_RNB_MEDIUM") - 1) == 0) { p += sizeof ("LOG_RNB_MEDIUM") - 1; bitmask |= LOG_RNB_MEDIUM; } else if (strncmp (p, "LOG_RNB_MAX", sizeof ("LOG_RNB_MAX") - 1) == 0) { p += sizeof ("LOG_RNB_MAX") - 1; bitmask |= LOG_RNB_MAX; } else if (strncmp (p, "LOG_RNB_COMM", sizeof ("LOG_RNB_COMM") - 1) == 0) { p += sizeof ("LOG_RNB_COMM") - 1; bitmask |= LOG_RNB_COMM; } else if (strncmp (p, "LOG_RNB_REMOTE", sizeof ("LOG_RNB_REMOTE") - 1) == 0) { p += sizeof ("LOG_RNB_REMOTE") - 1; bitmask |= LOG_RNB_REMOTE; } else if (strncmp (p, "LOG_RNB_EVENTS", sizeof ("LOG_RNB_EVENTS") - 1) == 0) { p += sizeof ("LOG_RNB_EVENTS") - 1; bitmask |= LOG_RNB_EVENTS; } else if (strncmp (p, "LOG_RNB_PROC", sizeof ("LOG_RNB_PROC") - 1) == 0) { p += sizeof ("LOG_RNB_PROC") - 1; bitmask |= LOG_RNB_PROC; } else if (strncmp (p, "LOG_RNB_PACKETS", sizeof ("LOG_RNB_PACKETS") - 1) == 0) { p += sizeof ("LOG_RNB_PACKETS") - 1; bitmask |= LOG_RNB_PACKETS; } else if (strncmp (p, "LOG_RNB_ALL", sizeof ("LOG_RNB_ALL") - 1) == 0) { p += sizeof ("LOG_RNB_ALL") - 1; bitmask |= LOG_RNB_ALL; } else if (strncmp (p, "LOG_RNB_DEFAULT", sizeof ("LOG_RNB_DEFAULT") - 1) == 0) { p += sizeof ("LOG_RNB_DEFAULT") - 1; bitmask |= LOG_RNB_DEFAULT; } else if (strncmp (p, "LOG_RNB_NONE", sizeof ("LOG_RNB_NONE") - 1) == 0) { p += sizeof ("LOG_RNB_NONE") - 1; bitmask = 0; } else { /* Unrecognized logging bit; ignore it. */ const char *c = strchr (p, '|'); if (c) { p = c; } else { c = strchr (p, ';'); if (c) { p = c; } else { // Improperly terminated word; just go to end of str p = strchr (p, '\0'); } } } } // Did we get a properly formatted logging bitmask? if (*p == ';') { // Enable DNB logging DNBLogSetLogCallback(ASLLogCallback, NULL); DNBLogSetLogMask (bitmask); p++; } } // We're not going to support logging to a file for now. All logging // goes through ASL. #if 0 else if (strncmp (p, "mode=", sizeof ("mode=") - 1) == 0) { p += sizeof ("mode=") - 1; if (strncmp (p, "asl;", sizeof ("asl;") - 1) == 0) { DNBLogToASL (); p += sizeof ("asl;") - 1; } else if (strncmp (p, "file;", sizeof ("file;") - 1) == 0) { DNBLogToFile (); p += sizeof ("file;") - 1; } else { // Ignore unknown argument const char *c = strchr (p, ';'); if (c) p = c + 1; else p = strchr (p, '\0'); } } else if (strncmp (p, "filename=", sizeof ("filename=") - 1) == 0) { p += sizeof ("filename=") - 1; const char *c = strchr (p, ';'); if (c == NULL) { c = strchr (p, '\0'); continue; } char *fn = (char *) alloca (c - p + 1); strncpy (fn, p, c - p); fn[c - p] = '\0'; // A file name of "asl" is special and is another way to indicate // that logging should be done via ASL, not by file. if (strcmp (fn, "asl") == 0) { DNBLogToASL (); } else { FILE *f = fopen (fn, "w"); if (f) { DNBLogSetLogFile (f); DNBEnableLogging (f, DNBLogGetLogMask ()); DNBLogToFile (); } } p = c + 1; } #endif /* #if 0 to enforce ASL logging only. */ else { // Ignore unknown argument const char *c = strchr (p, ';'); if (c) p = c + 1; else p = strchr (p, '\0'); } } return rnb_success; } rnb_err_t RNBRemote::HandlePacket_QThreadSuffixSupported (const char *p) { m_thread_suffix_supported = true; return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_QStartNoAckMode (const char *p) { // Send the OK packet first so the correct checksum is appended... rnb_err_t result = SendPacket ("OK"); m_noack_mode = true; return result; } rnb_err_t RNBRemote::HandlePacket_QSetLogging (const char *p) { p += sizeof ("QSetLogging:") - 1; rnb_err_t result = set_logging (p); if (result == rnb_success) return SendPacket ("OK"); else return SendPacket ("E35"); } rnb_err_t RNBRemote::HandlePacket_QSetDisableASLR (const char *p) { extern int g_disable_aslr; p += sizeof ("QSetDisableASLR:") - 1; switch (*p) { case '0': g_disable_aslr = 0; break; case '1': g_disable_aslr = 1; break; default: return SendPacket ("E56"); } return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_QSetSTDIO (const char *p) { // Only set stdin/out/err if we don't already have a process if (!m_ctx.HasValidProcessID()) { bool success = false; // Check the seventh character since the packet will be one of: // QSetSTDIN // QSetSTDOUT // QSetSTDERR StringExtractor packet(p); packet.SetFilePos (7); char ch = packet.GetChar(); while (packet.GetChar() != ':') /* Do nothing. */; switch (ch) { case 'I': // STDIN packet.GetHexByteString (m_ctx.GetSTDIN()); success = !m_ctx.GetSTDIN().empty(); break; case 'O': // STDOUT packet.GetHexByteString (m_ctx.GetSTDOUT()); success = !m_ctx.GetSTDOUT().empty(); break; case 'E': // STDERR packet.GetHexByteString (m_ctx.GetSTDERR()); success = !m_ctx.GetSTDERR().empty(); break; default: break; } if (success) return SendPacket ("OK"); return SendPacket ("E57"); } return SendPacket ("E58"); } rnb_err_t RNBRemote::HandlePacket_QSetWorkingDir (const char *p) { // Only set the working directory if we don't already have a process if (!m_ctx.HasValidProcessID()) { StringExtractor packet(p += sizeof ("QSetWorkingDir:") - 1); if (packet.GetHexByteString (m_ctx.GetWorkingDir())) { struct stat working_dir_stat; if (::stat(m_ctx.GetWorkingDirPath(), &working_dir_stat) == -1) { m_ctx.GetWorkingDir().clear(); return SendPacket ("E61"); // Working directory doesn't exist... } else if ((working_dir_stat.st_mode & S_IFMT) == S_IFDIR) { return SendPacket ("OK"); } else { m_ctx.GetWorkingDir().clear(); return SendPacket ("E62"); // Working directory isn't a directory... } } return SendPacket ("E59"); // Invalid path } return SendPacket ("E60"); // Already had a process, too late to set working dir } rnb_err_t RNBRemote::HandlePacket_QSetMaxPayloadSize (const char *p) { /* The number of characters in a packet payload that gdb is prepared to accept. The packet-start char, packet-end char, 2 checksum chars and terminating null character are not included in this size. */ p += sizeof ("QSetMaxPayloadSize:") - 1; errno = 0; uint32_t size = strtoul (p, NULL, 16); if (errno != 0 && size == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in QSetMaxPayloadSize packet"); } m_max_payload_size = size; return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_QSetMaxPacketSize (const char *p) { /* This tells us the largest packet that gdb can handle. i.e. the size of gdb's packet-reading buffer. QSetMaxPayloadSize is preferred because it is less ambiguous. */ p += sizeof ("QSetMaxPacketSize:") - 1; errno = 0; uint32_t size = strtoul (p, NULL, 16); if (errno != 0 && size == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in QSetMaxPacketSize packet"); } m_max_payload_size = size - 5; return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_QEnvironment (const char *p) { /* This sets the environment for the target program. The packet is of the form: QEnvironment:VARIABLE=VALUE */ DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s Handling QEnvironment: \"%s\"", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, p); p += sizeof ("QEnvironment:") - 1; RNBContext& ctx = Context(); ctx.PushEnvironment (p); return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_QEnvironmentHexEncoded (const char *p) { /* This sets the environment for the target program. The packet is of the form: QEnvironmentHexEncoded:VARIABLE=VALUE The VARIABLE=VALUE part is sent hex-encoded so chracters like '#' with special meaning in the remote protocol won't break it. */ DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s Handling QEnvironmentHexEncoded: \"%s\"", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, p); p += sizeof ("QEnvironmentHexEncoded:") - 1; std::string arg; const char *c; c = p; while (*c != '\0') { if (*(c + 1) == '\0') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'QEnvironmentHexEncoded' pkt"); } char smallbuf[3]; smallbuf[0] = *c; smallbuf[1] = *(c + 1); smallbuf[2] = '\0'; errno = 0; int ch = strtoul (smallbuf, NULL, 16); if (errno != 0 && ch == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'QEnvironmentHexEncoded' pkt"); } arg.push_back(ch); c += 2; } RNBContext& ctx = Context(); if (arg.length() > 0) ctx.PushEnvironment (arg.c_str()); return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_QLaunchArch (const char *p) { p += sizeof ("QLaunchArch:") - 1; if (DNBSetArchitecture(p)) return SendPacket ("OK"); return SendPacket ("E63"); } void append_hex_value (std::ostream& ostrm, const uint8_t* buf, size_t buf_size, bool swap) { int i; if (swap) { for (i = buf_size-1; i >= 0; i--) ostrm << RAWHEX8(buf[i]); } else { for (i = 0; i < buf_size; i++) ostrm << RAWHEX8(buf[i]); } } void register_value_in_hex_fixed_width (std::ostream& ostrm, nub_process_t pid, nub_thread_t tid, const register_map_entry_t* reg) { if (reg != NULL) { DNBRegisterValue val; if (DNBThreadGetRegisterValueByID (pid, tid, reg->nub_info.set, reg->nub_info.reg, &val)) { append_hex_value (ostrm, val.value.v_uint8, reg->gdb_size, false); } else { // If we fail to read a regiser value, check if it has a default // fail value. If it does, return this instead in case some of // the registers are not available on the current system. if (reg->gdb_size > 0) { if (reg->fail_value != NULL) { append_hex_value (ostrm, reg->fail_value, reg->gdb_size, false); } else { std::basic_string zeros(reg->gdb_size, '\0'); append_hex_value (ostrm, zeros.data(), zeros.size(), false); } } } } } void gdb_regnum_with_fixed_width_hex_register_value (std::ostream& ostrm, nub_process_t pid, nub_thread_t tid, const register_map_entry_t* reg) { // Output the register number as 'NN:VVVVVVVV;' where NN is a 2 bytes HEX // gdb register number, and VVVVVVVV is the correct number of hex bytes // as ASCII for the register value. if (reg != NULL) { ostrm << RAWHEX8(reg->gdb_regnum) << ':'; register_value_in_hex_fixed_width (ostrm, pid, tid, reg); ostrm << ';'; } } rnb_err_t RNBRemote::SendStopReplyPacketForThread (nub_thread_t tid) { const nub_process_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return SendPacket("E50"); struct DNBThreadStopInfo tid_stop_info; /* Fill the remaining space in this packet with as many registers as we can stuff in there. */ if (DNBThreadGetStopReason (pid, tid, &tid_stop_info)) { std::ostringstream ostrm; // Output the T packet with the thread ostrm << 'T'; int signum = tid_stop_info.details.signal.signo; DNBLogThreadedIf (LOG_RNB_PROC, "%8d %s got signal signo = %u, exc_type = %u", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, signum, tid_stop_info.details.exception.type); // Translate any mach exceptions to gdb versions, unless they are // common exceptions like a breakpoint or a soft signal. switch (tid_stop_info.details.exception.type) { default: signum = 0; break; case EXC_BREAKPOINT: signum = SIGTRAP; break; case EXC_BAD_ACCESS: signum = TARGET_EXC_BAD_ACCESS; break; case EXC_BAD_INSTRUCTION: signum = TARGET_EXC_BAD_INSTRUCTION; break; case EXC_ARITHMETIC: signum = TARGET_EXC_ARITHMETIC; break; case EXC_EMULATION: signum = TARGET_EXC_EMULATION; break; case EXC_SOFTWARE: if (tid_stop_info.details.exception.data_count == 2 && tid_stop_info.details.exception.data[0] == EXC_SOFT_SIGNAL) signum = tid_stop_info.details.exception.data[1]; else signum = TARGET_EXC_SOFTWARE; break; } ostrm << RAWHEX8(signum & 0xff); ostrm << std::hex << "thread:" << tid << ';'; const char *thread_name = DNBThreadGetName (pid, tid); if (thread_name && thread_name[0]) { size_t thread_name_len = strlen(thread_name); if (::strcspn (thread_name, "$#+-;:") == thread_name_len) ostrm << std::hex << "name:" << thread_name << ';'; else { // the thread name contains special chars, send as hex bytes ostrm << std::hex << "hexname:"; uint8_t *u_thread_name = (uint8_t *)thread_name; for (int i = 0; i < thread_name_len; i++) ostrm << RAWHEX8(u_thread_name[i]); ostrm << ';'; } } thread_identifier_info_data_t thread_ident_info; if (DNBThreadGetIdentifierInfo (pid, tid, &thread_ident_info)) { if (thread_ident_info.dispatch_qaddr != 0) ostrm << std::hex << "qaddr:" << thread_ident_info.dispatch_qaddr << ';'; } if (g_num_reg_entries == 0) InitializeRegisters (); DNBRegisterValue reg_value; for (uint32_t reg = 0; reg < g_num_reg_entries; reg++) { if (g_reg_entries[reg].expedite) { if (!DNBThreadGetRegisterValueByID (pid, tid, g_reg_entries[reg].nub_info.set, g_reg_entries[reg].nub_info.reg, ®_value)) continue; gdb_regnum_with_fixed_width_hex_register_value (ostrm, pid, tid, &g_reg_entries[reg]); } } if (tid_stop_info.details.exception.type) { ostrm << "metype:" << std::hex << tid_stop_info.details.exception.type << ";"; ostrm << "mecount:" << std::hex << tid_stop_info.details.exception.data_count << ";"; for (int i = 0; i < tid_stop_info.details.exception.data_count; ++i) ostrm << "medata:" << std::hex << tid_stop_info.details.exception.data[i] << ";"; } return SendPacket (ostrm.str ()); } return SendPacket("E51"); } /* `?' The stop reply packet - tell gdb what the status of the inferior is. Often called the questionmark_packet. */ rnb_err_t RNBRemote::HandlePacket_last_signal (const char *unused) { if (!m_ctx.HasValidProcessID()) { // Inferior is not yet specified/running return SendPacket ("E02"); } nub_process_t pid = m_ctx.ProcessID(); nub_state_t pid_state = DNBProcessGetState (pid); switch (pid_state) { case eStateAttaching: case eStateLaunching: case eStateRunning: case eStateStepping: case eStateDetached: return rnb_success; // Ignore case eStateSuspended: case eStateStopped: case eStateCrashed: { nub_thread_t tid = DNBProcessGetCurrentThread (pid); // Make sure we set the current thread so g and p packets return // the data the gdb will expect. SetCurrentThread (tid); SendStopReplyPacketForThread (tid); } break; case eStateInvalid: case eStateUnloaded: case eStateExited: { char pid_exited_packet[16] = ""; int pid_status = 0; // Process exited with exit status if (!DNBProcessGetExitStatus(pid, &pid_status)) pid_status = 0; if (pid_status) { if (WIFEXITED (pid_status)) snprintf (pid_exited_packet, sizeof(pid_exited_packet), "W%02x", WEXITSTATUS (pid_status)); else if (WIFSIGNALED (pid_status)) snprintf (pid_exited_packet, sizeof(pid_exited_packet), "X%02x", WEXITSTATUS (pid_status)); else if (WIFSTOPPED (pid_status)) snprintf (pid_exited_packet, sizeof(pid_exited_packet), "S%02x", WSTOPSIG (pid_status)); } // If we have an empty exit packet, lets fill one in to be safe. if (!pid_exited_packet[0]) { strncpy (pid_exited_packet, "W00", sizeof(pid_exited_packet)-1); pid_exited_packet[sizeof(pid_exited_packet)-1] = '\0'; } return SendPacket (pid_exited_packet); } break; } return rnb_success; } rnb_err_t RNBRemote::HandlePacket_M (const char *p) { if (p == NULL || p[0] == '\0' || strlen (p) < 3) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Too short M packet"); } char *c; p++; errno = 0; nub_addr_t addr = strtoull (p, &c, 16); if (errno != 0 && addr == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in M packet"); } if (*c != ',') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma sep missing in M packet"); } /* Advance 'p' to the length part of the packet. */ p += (c - p) + 1; errno = 0; uint32_t length = strtoul (p, &c, 16); if (errno != 0 && length == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in M packet"); } if (length == 0) { return SendPacket ("OK"); } if (*c != ':') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Missing colon in M packet"); } /* Advance 'p' to the data part of the packet. */ p += (c - p) + 1; int datalen = strlen (p); if (datalen & 0x1) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Uneven # of hex chars for data in M packet"); } if (datalen == 0) { return SendPacket ("OK"); } uint8_t *buf = (uint8_t *) alloca (datalen / 2); uint8_t *i = buf; while (*p != '\0' && *(p + 1) != '\0') { char hexbuf[3]; hexbuf[0] = *p; hexbuf[1] = *(p + 1); hexbuf[2] = '\0'; errno = 0; uint8_t byte = strtoul (hexbuf, NULL, 16); if (errno != 0 && byte == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid hex byte in M packet"); } *i++ = byte; p += 2; } nub_size_t wrote = DNBProcessMemoryWrite (m_ctx.ProcessID(), addr, length, buf); if (wrote != length) return SendPacket ("E09"); else return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_m (const char *p) { if (p == NULL || p[0] == '\0' || strlen (p) < 3) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Too short m packet"); } char *c; p++; errno = 0; nub_addr_t addr = strtoull (p, &c, 16); if (errno != 0 && addr == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in m packet"); } if (*c != ',') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma sep missing in m packet"); } /* Advance 'p' to the length part of the packet. */ p += (c - p) + 1; errno = 0; uint32_t length = strtoul (p, NULL, 16); if (errno != 0 && length == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in m packet"); } if (length == 0) { return SendPacket (""); } uint8_t buf[length]; int bytes_read = DNBProcessMemoryRead (m_ctx.ProcessID(), addr, length, buf); if (bytes_read == 0) { return SendPacket ("E08"); } // "The reply may contain fewer bytes than requested if the server was able // to read only part of the region of memory." length = bytes_read; std::ostringstream ostrm; for (int i = 0; i < length; i++) ostrm << RAWHEX8(buf[i]); return SendPacket (ostrm.str ()); } rnb_err_t RNBRemote::HandlePacket_X (const char *p) { if (p == NULL || p[0] == '\0' || strlen (p) < 3) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Too short X packet"); } char *c; p++; errno = 0; nub_addr_t addr = strtoull (p, &c, 16); if (errno != 0 && addr == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in X packet"); } if (*c != ',') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma sep missing in X packet"); } /* Advance 'p' to the length part of the packet. */ p += (c - p) + 1; errno = 0; int length = strtoul (p, NULL, 16); if (errno != 0 && length == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in m packet"); } // I think gdb sends a zero length write request to test whether this // packet is accepted. if (length == 0) { return SendPacket ("OK"); } std::vector data = decode_binary_data (c, -1); std::vector::const_iterator it; uint8_t *buf = (uint8_t *) alloca (data.size ()); uint8_t *i = buf; for (it = data.begin (); it != data.end (); ++it) { *i++ = *it; } nub_size_t wrote = DNBProcessMemoryWrite (m_ctx.ProcessID(), addr, data.size(), buf); if (wrote != data.size ()) return SendPacket ("E08"); return SendPacket ("OK"); } /* `g' -- read registers Get the contents of the registers for the current thread, send them to gdb. Should the setting of the Hg packet determine which thread's registers are returned? */ rnb_err_t RNBRemote::HandlePacket_g (const char *p) { std::ostringstream ostrm; if (!m_ctx.HasValidProcessID()) { return SendPacket ("E11"); } if (g_num_reg_entries == 0) InitializeRegisters (); nub_process_t pid = m_ctx.ProcessID (); nub_thread_t tid = ExtractThreadIDFromThreadSuffix (p + 1); if (tid == INVALID_NUB_THREAD) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet"); if (m_use_native_regs) { // Get the register context size first by calling with NULL buffer nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0); if (reg_ctx_size) { // Now allocate enough space for the entire register context std::vector reg_ctx; reg_ctx.resize(reg_ctx_size); // Now read the register context reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, ®_ctx[0], reg_ctx.size()); if (reg_ctx_size) { append_hex_value (ostrm, reg_ctx.data(), reg_ctx.size(), false); return SendPacket (ostrm.str ()); } } } for (uint32_t reg = 0; reg < g_num_reg_entries; reg++) register_value_in_hex_fixed_width (ostrm, pid, tid, &g_reg_entries[reg]); return SendPacket (ostrm.str ()); } /* `G XXX...' -- write registers How is the thread for these specified, beyond "the current thread"? Does gdb actually use the Hg packet to set this? */ rnb_err_t RNBRemote::HandlePacket_G (const char *p) { if (!m_ctx.HasValidProcessID()) { return SendPacket ("E11"); } if (g_num_reg_entries == 0) InitializeRegisters (); StringExtractor packet(p); packet.SetFilePos(1); // Skip the 'G' nub_process_t pid = m_ctx.ProcessID(); nub_thread_t tid = ExtractThreadIDFromThreadSuffix (p); if (tid == INVALID_NUB_THREAD) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet"); if (m_use_native_regs) { // Get the register context size first by calling with NULL buffer nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0); if (reg_ctx_size) { // Now allocate enough space for the entire register context std::vector reg_ctx; reg_ctx.resize(reg_ctx_size); if (packet.GetHexBytes (®_ctx[0], reg_ctx.size(), 0xcc) == reg_ctx.size()) { // Now write the register context reg_ctx_size = DNBThreadSetRegisterContext(pid, tid, reg_ctx.data(), reg_ctx.size()); if (reg_ctx_size == reg_ctx.size()) return SendPacket ("OK"); else return SendPacket ("E55"); } } } DNBRegisterValue reg_value; for (uint32_t reg = 0; reg < g_num_reg_entries; reg++) { const register_map_entry_t *reg_entry = &g_reg_entries[reg]; reg_value.info = reg_entry->nub_info; if (packet.GetHexBytes (reg_value.value.v_sint8, reg_entry->gdb_size, 0xcc) != reg_entry->gdb_size) break; if (!DNBThreadSetRegisterValueByID (pid, tid, reg_entry->nub_info.set, reg_entry->nub_info.reg, ®_value)) return SendPacket ("E15"); } return SendPacket ("OK"); } static bool RNBRemoteShouldCancelCallback (void *not_used) { RNBRemoteSP remoteSP(g_remoteSP); if (remoteSP.get() != NULL) { RNBRemote* remote = remoteSP.get(); if (remote->Comm().IsConnected()) return false; else return true; } return true; } // FORMAT: _MXXXXXX,PPP // XXXXXX: big endian hex chars // PPP: permissions can be any combo of r w x chars // // RESPONSE: XXXXXX // XXXXXX: hex address of the newly allocated memory // EXX: error code // // EXAMPLES: // _M123000,rw // _M123000,rwx // _M123000,xw rnb_err_t RNBRemote::HandlePacket_AllocateMemory (const char *p) { StringExtractor packet (p); packet.SetFilePos(2); // Skip the "_M" nub_addr_t size = packet.GetHexMaxU64 (StringExtractor::BigEndian, 0); if (size != 0) { if (packet.GetChar() == ',') { uint32_t permissions = 0; char ch; bool success = true; while (success && (ch = packet.GetChar()) != '\0') { switch (ch) { case 'r': permissions |= eMemoryPermissionsReadable; break; case 'w': permissions |= eMemoryPermissionsWritable; break; case 'x': permissions |= eMemoryPermissionsExecutable; break; default: success = false; break; } } if (success) { nub_addr_t addr = DNBProcessMemoryAllocate (m_ctx.ProcessID(), size, permissions); if (addr != INVALID_NUB_ADDRESS) { std::ostringstream ostrm; ostrm << RAW_HEXBASE << addr; return SendPacket (ostrm.str ()); } } } } return SendPacket ("E53"); } // FORMAT: _mXXXXXX // XXXXXX: address that was previosly allocated // // RESPONSE: XXXXXX // OK: address was deallocated // EXX: error code // // EXAMPLES: // _m123000 rnb_err_t RNBRemote::HandlePacket_DeallocateMemory (const char *p) { StringExtractor packet (p); packet.SetFilePos(2); // Skip the "_m" nub_addr_t addr = packet.GetHexMaxU64 (StringExtractor::BigEndian, INVALID_NUB_ADDRESS); if (addr != INVALID_NUB_ADDRESS) { if (DNBProcessMemoryDeallocate (m_ctx.ProcessID(), addr)) return SendPacket ("OK"); } return SendPacket ("E54"); } /* vAttach;pid Attach to a new process with the specified process ID. pid is a hexadecimal integer identifying the process. If the stub is currently controlling a process, it is killed. The attached process is stopped.This packet is only available in extended mode (see extended mode). Reply: "ENN" for an error "Any Stop Reply Packet" for success */ rnb_err_t RNBRemote::HandlePacket_v (const char *p) { if (strcmp (p, "vCont;c") == 0) { // Simple continue return RNBRemote::HandlePacket_c("c"); } else if (strcmp (p, "vCont;s") == 0) { // Simple step return RNBRemote::HandlePacket_s("s"); } else if (strstr (p, "vCont") == p) { rnb_err_t rnb_err = rnb_success; typedef struct { nub_thread_t tid; char action; int signal; } vcont_action_t; DNBThreadResumeActions thread_actions; char *c = (char *)(p += strlen("vCont")); char *c_end = c + strlen(c); if (*c == '?') return SendPacket ("vCont;c;C;s;S"); while (c < c_end && *c == ';') { ++c; // Skip the semi-colon DNBThreadResumeAction thread_action; thread_action.tid = INVALID_NUB_THREAD; thread_action.state = eStateInvalid; thread_action.signal = 0; thread_action.addr = INVALID_NUB_ADDRESS; char action = *c++; switch (action) { case 'C': errno = 0; thread_action.signal = strtoul (c, &c, 16); if (errno != 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in vCont packet"); // Fall through to next case... case 'c': // Continue thread_action.state = eStateRunning; break; case 'S': errno = 0; thread_action.signal = strtoul (c, &c, 16); if (errno != 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in vCont packet"); // Fall through to next case... case 's': // Step thread_action.state = eStateStepping; break; break; default: rnb_err = HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Unsupported action in vCont packet"); break; } if (*c == ':') { errno = 0; thread_action.tid = strtoul (++c, &c, 16); if (errno != 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse thread number in vCont packet"); } thread_actions.Append (thread_action); } // If a default action for all other threads wasn't mentioned // then we should stop the threads thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0); DNBProcessResume(m_ctx.ProcessID(), thread_actions.GetFirst (), thread_actions.GetSize()); return rnb_success; } else if (strstr (p, "vAttach") == p) { nub_process_t attach_pid = INVALID_NUB_PROCESS; char err_str[1024]={'\0'}; if (strstr (p, "vAttachWait;") == p) { p += strlen("vAttachWait;"); std::string attach_name; while (*p != '\0') { char smallbuf[3]; smallbuf[0] = *p; smallbuf[1] = *(p + 1); smallbuf[2] = '\0'; errno = 0; int ch = strtoul (smallbuf, NULL, 16); if (errno != 0 && ch == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'vAttachWait' pkt"); } attach_name.push_back(ch); p += 2; } attach_pid = DNBProcessAttachWait(attach_name.c_str (), m_ctx.LaunchFlavor(), NULL, 1000, err_str, sizeof(err_str), RNBRemoteShouldCancelCallback); } else if (strstr (p, "vAttachName;") == p) { p += strlen("vAttachName;"); std::string attach_name; while (*p != '\0') { char smallbuf[3]; smallbuf[0] = *p; smallbuf[1] = *(p + 1); smallbuf[2] = '\0'; errno = 0; int ch = strtoul (smallbuf, NULL, 16); if (errno != 0 && ch == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'vAttachWait' pkt"); } attach_name.push_back(ch); p += 2; } attach_pid = DNBProcessAttachByName (attach_name.c_str(), NULL, err_str, sizeof(err_str)); } else if (strstr (p, "vAttach;") == p) { p += strlen("vAttach;"); char *end = NULL; attach_pid = strtoul (p, &end, 16); // PID will be in hex, so use base 16 to decode if (p != end && *end == '\0') { // Wait at most 30 second for attach struct timespec attach_timeout_abstime; DNBTimer::OffsetTimeOfDay(&attach_timeout_abstime, 30, 0); attach_pid = DNBProcessAttach(attach_pid, &attach_timeout_abstime, err_str, sizeof(err_str)); } } else return HandlePacket_UNIMPLEMENTED(p); if (attach_pid != INVALID_NUB_PROCESS) { if (m_ctx.ProcessID() != attach_pid) m_ctx.SetProcessID(attach_pid); // Send a stop reply packet to indicate we successfully attached! NotifyThatProcessStopped (); return rnb_success; } else { m_ctx.LaunchStatus().SetError(-1, DNBError::Generic); if (err_str[0]) m_ctx.LaunchStatus().SetErrorString(err_str); else m_ctx.LaunchStatus().SetErrorString("attach failed"); return SendPacket ("E01"); // E01 is our magic error value for attach failed. } } // All other failures come through here return HandlePacket_UNIMPLEMENTED(p); } /* `T XX' -- status of thread Check if the specified thread is alive. The thread number is in hex? */ rnb_err_t RNBRemote::HandlePacket_T (const char *p) { p++; if (p == NULL || *p == '\0') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in T packet"); } if (!m_ctx.HasValidProcessID()) { return SendPacket ("E15"); } errno = 0; nub_thread_t tid = strtoul (p, NULL, 16); if (errno != 0 && tid == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse thread number in T packet"); } nub_state_t state = DNBThreadGetState (m_ctx.ProcessID(), tid); if (state == eStateInvalid || state == eStateExited || state == eStateCrashed) { return SendPacket ("E16"); } return SendPacket ("OK"); } rnb_err_t RNBRemote::HandlePacket_z (const char *p) { if (p == NULL || *p == '\0') return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in z packet"); if (!m_ctx.HasValidProcessID()) return SendPacket ("E15"); char packet_cmd = *p++; char break_type = *p++; if (*p++ != ',') return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma separator missing in z packet"); char *c = NULL; nub_process_t pid = m_ctx.ProcessID(); errno = 0; nub_addr_t addr = strtoull (p, &c, 16); if (errno != 0 && addr == 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in z packet"); p = c; if (*p++ != ',') return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma separator missing in z packet"); errno = 0; uint32_t byte_size = strtoul (p, &c, 16); if (errno != 0 && byte_size == 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in z packet"); if (packet_cmd == 'Z') { // set switch (break_type) { case '0': // set software breakpoint case '1': // set hardware breakpoint { // gdb can send multiple Z packets for the same address and // these calls must be ref counted. bool hardware = (break_type == '1'); // Check if we currently have a breakpoint already set at this address BreakpointMapIter pos = m_breakpoints.find(addr); if (pos != m_breakpoints.end()) { // We do already have a breakpoint at this address, increment // its reference count and return OK pos->second.Retain(); return SendPacket ("OK"); } else { // We do NOT already have a breakpoint at this address, So lets // create one. nub_break_t break_id = DNBBreakpointSet (pid, addr, byte_size, hardware); if (break_id != INVALID_NUB_BREAK_ID) { // We successfully created a breakpoint, now lets full out // a ref count structure with the breakID and add it to our // map. Breakpoint rnbBreakpoint(break_id); m_breakpoints[addr] = rnbBreakpoint; return SendPacket ("OK"); } else { // We failed to set the software breakpoint return SendPacket ("E09"); } } } break; case '2': // set write watchpoint case '3': // set read watchpoint case '4': // set access watchpoint { bool hardware = true; uint32_t watch_flags = 0; if (break_type == '2') watch_flags = WATCH_TYPE_WRITE; else if (break_type == '3') watch_flags = WATCH_TYPE_READ; else watch_flags = WATCH_TYPE_READ | WATCH_TYPE_WRITE; // Check if we currently have a watchpoint already set at this address BreakpointMapIter pos = m_watchpoints.find(addr); if (pos != m_watchpoints.end()) { // We do already have a watchpoint at this address, increment // its reference count and return OK pos->second.Retain(); return SendPacket ("OK"); } else { // We do NOT already have a breakpoint at this address, So lets // create one. nub_watch_t watch_id = DNBWatchpointSet (pid, addr, byte_size, watch_flags, hardware); if (watch_id != INVALID_NUB_BREAK_ID) { // We successfully created a watchpoint, now lets full out // a ref count structure with the watch_id and add it to our // map. Breakpoint rnbWatchpoint(watch_id); m_watchpoints[addr] = rnbWatchpoint; return SendPacket ("OK"); } else { // We failed to set the watchpoint return SendPacket ("E09"); } } } break; default: break; } } else if (packet_cmd == 'z') { // remove switch (break_type) { case '0': // remove software breakpoint case '1': // remove hardware breakpoint { // gdb can send multiple z packets for the same address and // these calls must be ref counted. BreakpointMapIter pos = m_breakpoints.find(addr); if (pos != m_breakpoints.end()) { // We currently have a breakpoint at address ADDR. Decrement // its reference count, and it that count is now zero we // can clear the breakpoint. pos->second.Release(); if (pos->second.RefCount() == 0) { if (DNBBreakpointClear (pid, pos->second.BreakID())) { m_breakpoints.erase(pos); return SendPacket ("OK"); } else { return SendPacket ("E08"); } } else { // We still have references to this breakpoint don't // delete it, just decrementing the reference count // is enough. return SendPacket ("OK"); } } else { // We don't know about any breakpoints at this address return SendPacket ("E08"); } } break; case '2': // remove write watchpoint case '3': // remove read watchpoint case '4': // remove access watchpoint { // gdb can send multiple z packets for the same address and // these calls must be ref counted. BreakpointMapIter pos = m_watchpoints.find(addr); if (pos != m_watchpoints.end()) { // We currently have a watchpoint at address ADDR. Decrement // its reference count, and it that count is now zero we // can clear the watchpoint. pos->second.Release(); if (pos->second.RefCount() == 0) { if (DNBWatchpointClear (pid, pos->second.BreakID())) { m_watchpoints.erase(pos); return SendPacket ("OK"); } else { return SendPacket ("E08"); } } else { // We still have references to this watchpoint don't // delete it, just decrementing the reference count // is enough. return SendPacket ("OK"); } } else { // We don't know about any watchpoints at this address return SendPacket ("E08"); } } break; default: break; } } return HandlePacket_UNIMPLEMENTED(p); } // Extract the thread number from the thread suffix that might be appended to // thread specific packets. This will only be enabled if m_thread_suffix_supported // is true. nub_thread_t RNBRemote::ExtractThreadIDFromThreadSuffix (const char *p) { if (m_thread_suffix_supported) { nub_thread_t tid = INVALID_NUB_THREAD; if (p) { const char *tid_cstr = strstr (p, "thread:"); if (tid_cstr) { tid_cstr += strlen ("thread:"); tid = strtoul(tid_cstr, NULL, 16); } } return tid; } return GetCurrentThread(); } /* `p XX' print the contents of register X */ rnb_err_t RNBRemote::HandlePacket_p (const char *p) { if (g_num_reg_entries == 0) InitializeRegisters (); if (p == NULL || *p == '\0') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet"); } if (!m_ctx.HasValidProcessID()) { return SendPacket ("E15"); } nub_process_t pid = m_ctx.ProcessID(); errno = 0; char *tid_cstr = NULL; uint32_t reg = strtoul (p + 1, &tid_cstr, 16); if (errno != 0 && reg == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse register number in p packet"); } nub_thread_t tid = ExtractThreadIDFromThreadSuffix (tid_cstr); if (tid == INVALID_NUB_THREAD) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet"); const register_map_entry_t *reg_entry; if (reg < g_num_reg_entries) reg_entry = &g_reg_entries[reg]; else reg_entry = NULL; std::ostringstream ostrm; if (reg_entry == NULL) { DNBLogError("RNBRemote::HandlePacket_p(%s): unknown register number %u requested\n", p, reg); ostrm << "00000000"; } else if (reg_entry->nub_info.reg == -1) { if (reg_entry->gdb_size > 0) { if (reg_entry->fail_value != NULL) { append_hex_value(ostrm, reg_entry->fail_value, reg_entry->gdb_size, false); } else { std::basic_string zeros(reg_entry->gdb_size, '\0'); append_hex_value(ostrm, zeros.data(), zeros.size(), false); } } } else { register_value_in_hex_fixed_width (ostrm, pid, tid, reg_entry); } return SendPacket (ostrm.str()); } /* `Pnn=rrrrr' Set register number n to value r. n and r are hex strings. */ rnb_err_t RNBRemote::HandlePacket_P (const char *p) { if (g_num_reg_entries == 0) InitializeRegisters (); if (p == NULL || *p == '\0') { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Empty P packet"); } if (!m_ctx.HasValidProcessID()) { return SendPacket ("E28"); } nub_process_t pid = m_ctx.ProcessID(); StringExtractor packet (p); const char cmd_char = packet.GetChar(); // Register ID is always in big endian const uint32_t reg = packet.GetHexMaxU32 (false, UINT32_MAX); const char equal_char = packet.GetChar(); if (cmd_char != 'P') return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Improperly formed P packet"); if (reg == UINT32_MAX) return SendPacket ("E29"); if (equal_char != '=') return SendPacket ("E30"); const register_map_entry_t *reg_entry; if (reg >= g_num_reg_entries) return SendPacket("E47"); reg_entry = &g_reg_entries[reg]; if (reg_entry->nub_info.set == -1 && reg_entry->nub_info.reg == -1) { DNBLogError("RNBRemote::HandlePacket_P(%s): unknown register number %u requested\n", p, reg); return SendPacket("E48"); } DNBRegisterValue reg_value; reg_value.info = reg_entry->nub_info; packet.GetHexBytes (reg_value.value.v_sint8, reg_entry->gdb_size, 0xcc); nub_thread_t tid = ExtractThreadIDFromThreadSuffix (p); if (tid == INVALID_NUB_THREAD) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet"); if (!DNBThreadSetRegisterValueByID (pid, tid, reg_entry->nub_info.set, reg_entry->nub_info.reg, ®_value)) { return SendPacket ("E32"); } return SendPacket ("OK"); } /* `c [addr]' Continue, optionally from a specified address. */ rnb_err_t RNBRemote::HandlePacket_c (const char *p) { const nub_process_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return SendPacket ("E23"); DNBThreadResumeAction action = { INVALID_NUB_THREAD, eStateRunning, 0, INVALID_NUB_ADDRESS }; if (*(p + 1) != '\0') { action.tid = GetContinueThread(); errno = 0; action.addr = strtoull (p + 1, NULL, 16); if (errno != 0 && action.addr == 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse address in c packet"); } DNBThreadResumeActions thread_actions; thread_actions.Append(action); thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, 0); if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize())) return SendPacket ("E25"); // Don't send an "OK" packet; response is the stopped/exited message. return rnb_success; } /* `C sig [;addr]' Resume with signal sig, optionally at address addr. */ rnb_err_t RNBRemote::HandlePacket_C (const char *p) { const nub_process_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return SendPacket ("E36"); DNBThreadResumeAction action = { INVALID_NUB_THREAD, eStateRunning, 0, INVALID_NUB_ADDRESS }; int process_signo = -1; if (*(p + 1) != '\0') { action.tid = GetContinueThread(); char *end = NULL; errno = 0; process_signo = strtoul (p + 1, &end, 16); if (errno != 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in C packet"); else if (*end == ';') { errno = 0; action.addr = strtoull (end + 1, NULL, 16); if (errno != 0 && action.addr == 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse address in C packet"); } } DNBThreadResumeActions thread_actions; thread_actions.Append (action); thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, action.signal); if (!DNBProcessSignal(pid, process_signo)) return SendPacket ("E52"); if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize())) return SendPacket ("E38"); /* Don't send an "OK" packet; response is the stopped/exited message. */ return rnb_success; } //---------------------------------------------------------------------- // 'D' packet // Detach from gdb. //---------------------------------------------------------------------- rnb_err_t RNBRemote::HandlePacket_D (const char *p) { // We are not supposed to send a response for deatch. //SendPacket ("OK"); if (m_ctx.HasValidProcessID()) DNBProcessDetach(m_ctx.ProcessID()); return rnb_success; } /* `k' Kill the inferior process. */ rnb_err_t RNBRemote::HandlePacket_k (const char *p) { // No response to should be sent to the kill packet if (m_ctx.HasValidProcessID()) DNBProcessKill (m_ctx.ProcessID()); SendPacket ("W09"); return rnb_success; } rnb_err_t RNBRemote::HandlePacket_stop_process (const char *p) { DNBProcessSignal (m_ctx.ProcessID(), SIGSTOP); //DNBProcessSignal (m_ctx.ProcessID(), SIGINT); // Do not send any response packet! Wait for the stop reply packet to naturally happen return rnb_success; } /* `s' Step the inferior process. */ rnb_err_t RNBRemote::HandlePacket_s (const char *p) { const nub_process_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return SendPacket ("E32"); // Hardware supported stepping not supported on arm nub_thread_t tid = GetContinueThread (); if (tid == 0 || tid == -1) tid = GetCurrentThread(); if (tid == INVALID_NUB_THREAD) return SendPacket ("E33"); DNBThreadResumeActions thread_actions; thread_actions.AppendAction(tid, eStateStepping); // Make all other threads stop when we are stepping thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0); if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize())) return SendPacket ("E49"); // Don't send an "OK" packet; response is the stopped/exited message. return rnb_success; } /* `S sig [;addr]' Step with signal sig, optionally at address addr. */ rnb_err_t RNBRemote::HandlePacket_S (const char *p) { const nub_process_t pid = m_ctx.ProcessID(); if (pid == INVALID_NUB_PROCESS) return SendPacket ("E36"); DNBThreadResumeAction action = { INVALID_NUB_THREAD, eStateStepping, 0, INVALID_NUB_ADDRESS }; if (*(p + 1) != '\0') { char *end = NULL; errno = 0; action.signal = strtoul (p + 1, &end, 16); if (errno != 0) return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in S packet"); else if (*end == ';') { errno = 0; action.addr = strtoull (end + 1, NULL, 16); if (errno != 0 && action.addr == 0) { return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse address in S packet"); } } } action.tid = GetContinueThread (); if (action.tid == 0 || action.tid == -1) return SendPacket ("E40"); nub_state_t tstate = DNBThreadGetState (pid, action.tid); if (tstate == eStateInvalid || tstate == eStateExited) return SendPacket ("E37"); DNBThreadResumeActions thread_actions; thread_actions.Append (action); // Make all other threads stop when we are stepping thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0); if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize())) return SendPacket ("E39"); // Don't send an "OK" packet; response is the stopped/exited message. return rnb_success; } rnb_err_t RNBRemote::HandlePacket_qHostInfo (const char *p) { std::ostringstream strm; uint32_t cputype, is_64_bit_capable; size_t len = sizeof(cputype); bool promoted_to_64 = false; if (::sysctlbyname("hw.cputype", &cputype, &len, NULL, 0) == 0) { len = sizeof (is_64_bit_capable); if (::sysctlbyname("hw.cpu64bit_capable", &is_64_bit_capable, &len, NULL, 0) == 0) { if (is_64_bit_capable && ((cputype & CPU_ARCH_ABI64) == 0)) { promoted_to_64 = true; cputype |= CPU_ARCH_ABI64; } } strm << "cputype:" << std::dec << cputype << ';'; } uint32_t cpusubtype; len = sizeof(cpusubtype); if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) { if (promoted_to_64 && cputype == CPU_TYPE_X86_64 && cpusubtype == CPU_SUBTYPE_486) cpusubtype = CPU_SUBTYPE_X86_64_ALL; strm << "cpusubtype:" << std::dec << cpusubtype << ';'; } char ostype[64]; len = sizeof(ostype); if (::sysctlbyname("kern.ostype", &ostype, &len, NULL, 0) == 0) { len = strlen(ostype); std::transform (ostype, ostype + len, ostype, tolower); strm << "ostype:" << std::dec << ostype << ';'; } strm << "vendor:apple;"; #if defined (__LITTLE_ENDIAN__) strm << "endian:little;"; #elif defined (__BIG_ENDIAN__) strm << "endian:big;"; #elif defined (__PDP_ENDIAN__) strm << "endian:pdp;"; #endif if (promoted_to_64) strm << "ptrsize:8;"; else strm << "ptrsize:" << std::dec << sizeof(void *) << ';'; return SendPacket (strm.str()); }