//===-- Symtab.cpp ----------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #include "lldb/Core/Module.h" #include "lldb/Core/RegularExpression.h" #include "lldb/Core/Timer.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/Symtab.h" using namespace lldb; using namespace lldb_private; Symtab::Symtab(ObjectFile *objfile) : m_objfile(objfile), m_symbols(), m_addr_indexes(), m_name_to_index() { } Symtab::~Symtab() { } void Symtab::Reserve(uint32_t count) { m_symbols.reserve (count); } Symbol * Symtab::Resize(uint32_t count) { m_symbols.resize (count); return &m_symbols[0]; } uint32_t Symtab::AddSymbol(const Symbol& symbol) { uint32_t symbol_idx = m_symbols.size(); m_name_to_index.Clear(); m_addr_indexes.clear(); m_symbols.push_back(symbol); return symbol_idx; } size_t Symtab::GetNumSymbols() const { return m_symbols.size(); } void Symtab::Dump(Stream *s, Process *process) const { const_iterator pos; s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); const FileSpec &file_spec = m_objfile->GetFileSpec(); const char * object_name = NULL; if (m_objfile->GetModule()) object_name = m_objfile->GetModule()->GetObjectName().GetCString(); if (file_spec) s->Printf("Symtab, file = %s/%s%s%s%s, num_symbols = %u:\n", file_spec.GetDirectory().AsCString(), file_spec.GetFilename().AsCString(), object_name ? "(" : "", object_name ? object_name : "", object_name ? ")" : "", m_symbols.size()); else s->Printf("Symtab, num_symbols = %u:\n", m_symbols.size()); s->IndentMore(); if (!m_symbols.empty()) { const_iterator begin = m_symbols.begin(); const_iterator end = m_symbols.end(); DumpSymbolHeader (s); for (pos = m_symbols.begin(); pos != end; ++pos) { s->Indent(); pos->Dump(s, process, std::distance(begin, pos)); } } s->IndentLess (); } void Symtab::Dump(Stream *s, Process *process, std::vector& indexes) const { const size_t num_symbols = GetNumSymbols(); s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); s->Printf("Symtab %u symbol indexes (%u symbols total):\n", indexes.size(), m_symbols.size()); s->IndentMore(); if (!indexes.empty()) { std::vector::const_iterator pos; std::vector::const_iterator end = indexes.end(); DumpSymbolHeader (s); for (pos = indexes.begin(); pos != end; ++pos) { uint32_t idx = *pos; if (idx < num_symbols) { s->Indent(); m_symbols[idx].Dump(s, process, idx); } } } s->IndentLess (); } void Symtab::DumpSymbolHeader (Stream *s) { s->Indent(" Debug symbol\n"); s->Indent(" |Synthetic symbol\n"); s->Indent(" ||Externally Visible\n"); s->Indent(" |||\n"); s->Indent("Index UserID DSX Type File Address/Value Load Address Size Flags Name\n"); s->Indent("------- ------ --- ------------ ------------------ ------------------ ------------------ ---------- ----------------------------------\n"); } Symbol * Symtab::SymbolAtIndex(uint32_t idx) { if (idx < m_symbols.size()) return &m_symbols[idx]; return NULL; } const Symbol * Symtab::SymbolAtIndex(uint32_t idx) const { if (idx < m_symbols.size()) return &m_symbols[idx]; return NULL; } //---------------------------------------------------------------------- // InitNameIndexes //---------------------------------------------------------------------- void Symtab::InitNameIndexes() { Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); // Create the name index vector to be able to quickly search by name const size_t count = m_symbols.size(); assert(m_objfile != NULL); assert(m_objfile->GetModule() != NULL); m_name_to_index.Reserve (count); UniqueCStringMap::Entry entry; for (entry.value = 0; entry.value < count; ++entry.value) { const Symbol *symbol = &m_symbols[entry.value]; // Don't let trampolines get into the lookup by name map // If we ever need the trampoline symbols to be searchable by name // we can remove this and then possibly add a new bool to any of the // Symtab functions that lookup symbols by name to indicate if they // want trampolines. if (symbol->IsTrampoline()) continue; const Mangled &mangled = symbol->GetMangled(); entry.cstring = mangled.GetMangledName().GetCString(); if (entry.cstring && entry.cstring[0]) m_name_to_index.Append (entry); entry.cstring = mangled.GetDemangledName().GetCString(); if (entry.cstring && entry.cstring[0]) m_name_to_index.Append (entry); } m_name_to_index.Sort(); } uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, std::vector& indexes, uint32_t start_idx, uint32_t end_index) const { uint32_t prev_size = indexes.size(); const uint32_t count = std::min (m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) indexes.push_back(i); } return indexes.size() - prev_size; } struct SymbolSortInfo { const bool sort_by_load_addr; const Symbol *symbols; }; namespace { struct SymbolIndexComparator { const std::vector& symbols; SymbolIndexComparator(const std::vector& s) : symbols(s) { } bool operator()(uint32_t index_a, uint32_t index_b) { addr_t value_a; addr_t value_b; if (symbols[index_a].GetValue().GetSection() == symbols[index_b].GetValue().GetSection()) { value_a = symbols[index_a].GetValue ().GetOffset(); value_b = symbols[index_b].GetValue ().GetOffset(); } else { value_a = symbols[index_a].GetValue ().GetFileAddress(); value_b = symbols[index_b].GetValue ().GetFileAddress(); } if (value_a == value_b) { // The if the values are equal, use the original symbol user ID lldb::user_id_t uid_a = symbols[index_a].GetID(); lldb::user_id_t uid_b = symbols[index_b].GetID(); if (uid_a < uid_b) return true; if (uid_a > uid_b) return false; return false; } else if (value_a < value_b) return true; return false; } }; } void Symtab::SortSymbolIndexesByValue (std::vector& indexes, bool remove_duplicates) const { Timer scoped_timer (__PRETTY_FUNCTION__,__PRETTY_FUNCTION__); // No need to sort if we have zero or one items... if (indexes.size() <= 1) return; // Sort the indexes in place using std::stable_sort. // NOTE: The use of std::stable_sort instead of std::sort here is strictly for performance, // not correctness. The indexes vector tends to be "close" to sorted, which the // stable sort handles better. std::stable_sort(indexes.begin(), indexes.end(), SymbolIndexComparator(m_symbols)); // Remove any duplicates if requested if (remove_duplicates) std::unique(indexes.begin(), indexes.end()); } uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString& symbol_name, std::vector& indexes) { Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); if (symbol_name) { const size_t old_size = indexes.size(); if (m_name_to_index.IsEmpty()) InitNameIndexes(); const char *symbol_cstr = symbol_name.GetCString(); const UniqueCStringMap::Entry *entry_ptr; for (entry_ptr = m_name_to_index.FindFirstValueForName (symbol_cstr); entry_ptr!= NULL; entry_ptr = m_name_to_index.FindNextValueForName (symbol_cstr, entry_ptr)) { indexes.push_back (entry_ptr->value); } return indexes.size() - old_size; } return 0; } uint32_t Symtab::AppendSymbolIndexesWithNameAndType(const ConstString& symbol_name, SymbolType symbol_type, std::vector& indexes) { if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { std::vector::iterator pos = indexes.begin(); while (pos != indexes.end()) { if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type) ++pos; else indexes.erase(pos); } } return indexes.size(); } uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression ®exp, SymbolType symbol_type, std::vector& indexes) { uint32_t prev_size = indexes.size(); uint32_t sym_end = m_symbols.size(); for (int i = 0; i < sym_end; i++) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { const char *name = m_symbols[i].GetMangled().GetName().AsCString(); if (name) { if (regexp.Execute (name)) indexes.push_back(i); } } } return indexes.size() - prev_size; } Symbol * Symtab::FindSymbolWithType(SymbolType symbol_type, uint32_t& start_idx) { const size_t count = m_symbols.size(); for (uint32_t idx = start_idx; idx < count; ++idx) { if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type) { start_idx = idx; return &m_symbols[idx]; } } return NULL; } const Symbol * Symtab::FindSymbolWithType(SymbolType symbol_type, uint32_t& start_idx) const { const size_t count = m_symbols.size(); for (uint32_t idx = start_idx; idx < count; ++idx) { if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type) { start_idx = idx; return &m_symbols[idx]; } } return NULL; } size_t Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, std::vector& symbol_indexes) { Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); // Initialize all of the lookup by name indexes before converting NAME // to a uniqued string NAME_STR below. if (m_name_to_index.IsEmpty()) InitNameIndexes(); if (name) { // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); } return symbol_indexes.size(); } size_t Symtab::FindAllSymbolsMatchingRexExAndType (const RegularExpression ®ex, SymbolType symbol_type, std::vector& symbol_indexes) { AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_indexes); return symbol_indexes.size(); } Symbol * Symtab::FindFirstSymbolWithNameAndType (const ConstString &name, SymbolType symbol_type) { Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); if (m_name_to_index.IsEmpty()) InitNameIndexes(); if (name) { std::vector matching_indexes; // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. if (AppendSymbolIndexesWithNameAndType(name, symbol_type, matching_indexes)) { std::vector::const_iterator pos, end = matching_indexes.end(); for (pos = matching_indexes.begin(); pos != end; ++pos) { Symbol *symbol = SymbolAtIndex(*pos); if (symbol->Compare(name, symbol_type)) return symbol; } } } return NULL; } typedef struct { const Symtab *symtab; const addr_t file_addr; Symbol *match_symbol; const uint32_t *match_index_ptr; addr_t match_offset; } SymbolSearchInfo; static int SymbolWithFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr) { const Symbol *curr_symbol = info->symtab->SymbolAtIndex (index_ptr[0]); if (curr_symbol == NULL) return -1; const addr_t info_file_addr = info->file_addr; // lldb::Symbol::GetAddressRangePtr() will only return a non NULL address // range if the symbol has a section! const AddressRange *curr_range = curr_symbol->GetAddressRangePtr(); if (curr_range) { const addr_t curr_file_addr = curr_range->GetBaseAddress().GetFileAddress(); if (info_file_addr < curr_file_addr) return -1; if (info_file_addr > curr_file_addr) return +1; info->match_symbol = const_cast(curr_symbol); info->match_index_ptr = index_ptr; return 0; } return -1; } static int SymbolWithClosestFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr) { const Symbol *symbol = info->symtab->SymbolAtIndex (index_ptr[0]); if (symbol == NULL) return -1; const addr_t info_file_addr = info->file_addr; const AddressRange *curr_range = symbol->GetAddressRangePtr(); if (curr_range) { const addr_t curr_file_addr = curr_range->GetBaseAddress().GetFileAddress(); if (info_file_addr < curr_file_addr) return -1; // Since we are finding the closest symbol that is greater than or equal // to 'info->file_addr' we set the symbol here. This will get set // multiple times, but after the search is done it will contain the best // symbol match info->match_symbol = const_cast(symbol); info->match_index_ptr = index_ptr; info->match_offset = info_file_addr - curr_file_addr; if (info_file_addr > curr_file_addr) return +1; return 0; } return -1; } static SymbolSearchInfo FindIndexPtrForSymbolContainingAddress(Symtab* symtab, addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes) { SymbolSearchInfo info = { symtab, file_addr, NULL, NULL, 0 }; bsearch(&info, indexes, num_indexes, sizeof(uint32_t), (comparison_function)SymbolWithClosestFileAddress); return info; } void Symtab::InitAddressIndexes() { if (m_addr_indexes.empty()) { AppendSymbolIndexesWithType (eSymbolTypeFunction, m_addr_indexes); AppendSymbolIndexesWithType (eSymbolTypeGlobal, m_addr_indexes); AppendSymbolIndexesWithType (eSymbolTypeStatic, m_addr_indexes); AppendSymbolIndexesWithType (eSymbolTypeCode, m_addr_indexes); AppendSymbolIndexesWithType (eSymbolTypeTrampoline, m_addr_indexes); AppendSymbolIndexesWithType (eSymbolTypeData, m_addr_indexes); SortSymbolIndexesByValue(m_addr_indexes, true); m_addr_indexes.push_back(UINT32_MAX); // Terminator for bsearch since we might need to look at the next symbol } } size_t Symtab::CalculateSymbolSize (Symbol *symbol) { if (m_symbols.empty()) return 0; // Make sure this symbol is from this symbol table... if (symbol < &m_symbols.front() || symbol > &m_symbols.back()) return 0; // See if this symbol already has a byte size? size_t byte_size = symbol->GetByteSize(); if (byte_size) { // It does, just return it return byte_size; } // Else if this is an address based symbol, figure out the delta between // it and the next address based symbol if (symbol->GetAddressRangePtr()) { if (m_addr_indexes.empty()) InitAddressIndexes(); const size_t num_addr_indexes = m_addr_indexes.size(); SymbolSearchInfo info = FindIndexPtrForSymbolContainingAddress(this, symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress(), &m_addr_indexes.front(), num_addr_indexes); if (info.match_index_ptr != NULL) { const lldb::addr_t curr_file_addr = symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress(); // We can figure out the address range of all symbols except the // last one by taking the delta between the current symbol and // the next symbol for (uint32_t addr_index = info.match_index_ptr - &m_addr_indexes.front() + 1; addr_index < num_addr_indexes; ++addr_index) { Symbol *next_symbol = SymbolAtIndex(m_addr_indexes[addr_index]); if (next_symbol == NULL) break; assert (next_symbol->GetAddressRangePtr()); const lldb::addr_t next_file_addr = next_symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress(); if (next_file_addr > curr_file_addr) { byte_size = next_file_addr - curr_file_addr; symbol->GetAddressRangePtr()->SetByteSize(byte_size); symbol->SetSizeIsSynthesized(true); break; } } } } return byte_size; } Symbol * Symtab::FindSymbolWithFileAddress (addr_t file_addr) { if (m_addr_indexes.empty()) InitAddressIndexes(); SymbolSearchInfo info = { this, file_addr, NULL, NULL, 0 }; uint32_t* match = (uint32_t*)bsearch(&info, &m_addr_indexes[0], m_addr_indexes.size(), sizeof(uint32_t), (comparison_function)SymbolWithFileAddress); if (match) return SymbolAtIndex (*match); return NULL; } Symbol * Symtab::FindSymbolContainingFileAddress (addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes) { SymbolSearchInfo info = { this, file_addr, NULL, NULL, 0 }; bsearch(&info, indexes, num_indexes, sizeof(uint32_t), (comparison_function)SymbolWithClosestFileAddress); if (info.match_symbol) { if (info.match_offset < CalculateSymbolSize(info.match_symbol)) return info.match_symbol; } return NULL; } Symbol * Symtab::FindSymbolContainingFileAddress (addr_t file_addr) { if (m_addr_indexes.empty()) InitAddressIndexes(); return FindSymbolContainingFileAddress (file_addr, &m_addr_indexes[0], m_addr_indexes.size()); }