//===-- SymbolFileNativePDB.cpp ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "SymbolFileNativePDB.h" #include "clang/AST/Attr.h" #include "clang/AST/CharUnits.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/Type.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/StreamBuffer.h" #include "lldb/Core/StreamFile.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/ClangASTImporter.h" #include "lldb/Symbol/ClangExternalASTSourceCommon.h" #include "lldb/Symbol/ClangUtil.h" #include "lldb/Symbol/CompileUnit.h" #include "lldb/Symbol/LineTable.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Symbol/SymbolVendor.h" #include "lldb/Symbol/Variable.h" #include "lldb/Symbol/VariableList.h" #include "llvm/DebugInfo/CodeView/CVRecord.h" #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" #include "llvm/DebugInfo/CodeView/DebugLinesSubsection.h" #include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h" #include "llvm/DebugInfo/CodeView/RecordName.h" #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" #include "llvm/DebugInfo/CodeView/SymbolRecordHelpers.h" #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" #include "llvm/DebugInfo/PDB/Native/DbiStream.h" #include "llvm/DebugInfo/PDB/Native/GlobalsStream.h" #include "llvm/DebugInfo/PDB/Native/InfoStream.h" #include "llvm/DebugInfo/PDB/Native/ModuleDebugStream.h" #include "llvm/DebugInfo/PDB/Native/PDBFile.h" #include "llvm/DebugInfo/PDB/Native/SymbolStream.h" #include "llvm/DebugInfo/PDB/Native/TpiStream.h" #include "llvm/DebugInfo/PDB/PDBTypes.h" #include "llvm/Demangle/MicrosoftDemangle.h" #include "llvm/Object/COFF.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/MemoryBuffer.h" #include "DWARFLocationExpression.h" #include "PdbSymUid.h" #include "PdbUtil.h" #include "UdtRecordCompleter.h" using namespace lldb; using namespace lldb_private; using namespace npdb; using namespace llvm::codeview; using namespace llvm::pdb; static lldb::LanguageType TranslateLanguage(PDB_Lang lang) { switch (lang) { case PDB_Lang::Cpp: return lldb::LanguageType::eLanguageTypeC_plus_plus; case PDB_Lang::C: return lldb::LanguageType::eLanguageTypeC; default: return lldb::LanguageType::eLanguageTypeUnknown; } } static std::unique_ptr loadPDBFile(std::string PdbPath, llvm::BumpPtrAllocator &Allocator) { llvm::ErrorOr> ErrorOrBuffer = llvm::MemoryBuffer::getFile(PdbPath, /*FileSize=*/-1, /*RequiresNullTerminator=*/false); if (!ErrorOrBuffer) return nullptr; std::unique_ptr Buffer = std::move(*ErrorOrBuffer); llvm::StringRef Path = Buffer->getBufferIdentifier(); auto Stream = llvm::make_unique( std::move(Buffer), llvm::support::little); auto File = llvm::make_unique(Path, std::move(Stream), Allocator); if (auto EC = File->parseFileHeaders()) { llvm::consumeError(std::move(EC)); return nullptr; } if (auto EC = File->parseStreamData()) { llvm::consumeError(std::move(EC)); return nullptr; } return File; } static std::unique_ptr loadMatchingPDBFile(std::string exe_path, llvm::BumpPtrAllocator &allocator) { // Try to find a matching PDB for an EXE. using namespace llvm::object; auto expected_binary = createBinary(exe_path); // If the file isn't a PE/COFF executable, fail. if (!expected_binary) { llvm::consumeError(expected_binary.takeError()); return nullptr; } OwningBinary binary = std::move(*expected_binary); auto *obj = llvm::dyn_cast(binary.getBinary()); if (!obj) return nullptr; const llvm::codeview::DebugInfo *pdb_info = nullptr; // If it doesn't have a debug directory, fail. llvm::StringRef pdb_file; auto ec = obj->getDebugPDBInfo(pdb_info, pdb_file); if (ec) return nullptr; // if the file doesn't exist, is not a pdb, or doesn't have a matching guid, // fail. llvm::file_magic magic; ec = llvm::identify_magic(pdb_file, magic); if (ec || magic != llvm::file_magic::pdb) return nullptr; std::unique_ptr pdb = loadPDBFile(pdb_file, allocator); if (!pdb) return nullptr; auto expected_info = pdb->getPDBInfoStream(); if (!expected_info) { llvm::consumeError(expected_info.takeError()); return nullptr; } llvm::codeview::GUID guid; memcpy(&guid, pdb_info->PDB70.Signature, 16); if (expected_info->getGuid() != guid) return nullptr; return pdb; } static bool IsFunctionPrologue(const CompilandIndexItem &cci, lldb::addr_t addr) { // FIXME: Implement this. return false; } static bool IsFunctionEpilogue(const CompilandIndexItem &cci, lldb::addr_t addr) { // FIXME: Implement this. return false; } static clang::MSInheritanceAttr::Spelling GetMSInheritance(LazyRandomTypeCollection &tpi, const ClassRecord &record) { if (record.DerivationList == TypeIndex::None()) return clang::MSInheritanceAttr::Spelling::Keyword_single_inheritance; CVType bases = tpi.getType(record.DerivationList); ArgListRecord base_list; cantFail(TypeDeserializer::deserializeAs(bases, base_list)); if (base_list.ArgIndices.empty()) return clang::MSInheritanceAttr::Spelling::Keyword_single_inheritance; int base_count = 0; for (TypeIndex ti : base_list.ArgIndices) { CVType base = tpi.getType(ti); if (base.kind() == LF_VBCLASS || base.kind() == LF_IVBCLASS) return clang::MSInheritanceAttr::Spelling::Keyword_virtual_inheritance; ++base_count; } if (base_count > 1) return clang::MSInheritanceAttr::Keyword_multiple_inheritance; return clang::MSInheritanceAttr::Keyword_single_inheritance; } static llvm::StringRef GetSimpleTypeName(SimpleTypeKind kind) { switch (kind) { case SimpleTypeKind::Boolean128: case SimpleTypeKind::Boolean16: case SimpleTypeKind::Boolean32: case SimpleTypeKind::Boolean64: case SimpleTypeKind::Boolean8: return "bool"; case SimpleTypeKind::Byte: case SimpleTypeKind::UnsignedCharacter: return "unsigned char"; case SimpleTypeKind::NarrowCharacter: return "char"; case SimpleTypeKind::SignedCharacter: case SimpleTypeKind::SByte: return "signed char"; case SimpleTypeKind::Character16: return "char16_t"; case SimpleTypeKind::Character32: return "char32_t"; case SimpleTypeKind::Complex80: case SimpleTypeKind::Complex64: case SimpleTypeKind::Complex32: return "complex"; case SimpleTypeKind::Float128: case SimpleTypeKind::Float80: return "long double"; case SimpleTypeKind::Float64: return "double"; case SimpleTypeKind::Float32: return "float"; case SimpleTypeKind::Float16: return "single"; case SimpleTypeKind::Int128: return "__int128"; case SimpleTypeKind::Int64: case SimpleTypeKind::Int64Quad: return "int64_t"; case SimpleTypeKind::Int32: return "int"; case SimpleTypeKind::Int16: return "short"; case SimpleTypeKind::UInt128: return "unsigned __int128"; case SimpleTypeKind::UInt64: case SimpleTypeKind::UInt64Quad: return "uint64_t"; case SimpleTypeKind::HResult: return "HRESULT"; case SimpleTypeKind::UInt32: return "unsigned"; case SimpleTypeKind::UInt16: case SimpleTypeKind::UInt16Short: return "unsigned short"; case SimpleTypeKind::Int32Long: return "long"; case SimpleTypeKind::UInt32Long: return "unsigned long"; case SimpleTypeKind::Void: return "void"; case SimpleTypeKind::WideCharacter: return "wchar_t"; default: return ""; } } static bool IsClassRecord(TypeLeafKind kind) { switch (kind) { case LF_STRUCTURE: case LF_CLASS: case LF_INTERFACE: return true; default: return false; } } static bool IsCVarArgsFunction(llvm::ArrayRef args) { if (args.empty()) return false; return args.back() == TypeIndex::None(); } static clang::TagTypeKind TranslateUdtKind(const TagRecord &cr) { switch (cr.Kind) { case TypeRecordKind::Class: return clang::TTK_Class; case TypeRecordKind::Struct: return clang::TTK_Struct; case TypeRecordKind::Union: return clang::TTK_Union; case TypeRecordKind::Interface: return clang::TTK_Interface; case TypeRecordKind::Enum: return clang::TTK_Enum; default: lldbassert(false && "Invalid tag record kind!"); return clang::TTK_Struct; } } static llvm::Optional TranslateCallingConvention(llvm::codeview::CallingConvention conv) { using CC = llvm::codeview::CallingConvention; switch (conv) { case CC::NearC: case CC::FarC: return clang::CallingConv::CC_C; case CC::NearPascal: case CC::FarPascal: return clang::CallingConv::CC_X86Pascal; case CC::NearFast: case CC::FarFast: return clang::CallingConv::CC_X86FastCall; case CC::NearStdCall: case CC::FarStdCall: return clang::CallingConv::CC_X86StdCall; case CC::ThisCall: return clang::CallingConv::CC_X86ThisCall; case CC::NearVector: return clang::CallingConv::CC_X86VectorCall; default: return llvm::None; } } void SymbolFileNativePDB::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, DebuggerInitialize); } void SymbolFileNativePDB::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } void SymbolFileNativePDB::DebuggerInitialize(Debugger &debugger) {} ConstString SymbolFileNativePDB::GetPluginNameStatic() { static ConstString g_name("native-pdb"); return g_name; } const char *SymbolFileNativePDB::GetPluginDescriptionStatic() { return "Microsoft PDB debug symbol cross-platform file reader."; } SymbolFile *SymbolFileNativePDB::CreateInstance(ObjectFile *obj_file) { return new SymbolFileNativePDB(obj_file); } SymbolFileNativePDB::SymbolFileNativePDB(ObjectFile *object_file) : SymbolFile(object_file) {} SymbolFileNativePDB::~SymbolFileNativePDB() {} uint32_t SymbolFileNativePDB::CalculateAbilities() { uint32_t abilities = 0; if (!m_obj_file) return 0; if (!m_index) { // Lazily load and match the PDB file, but only do this once. std::unique_ptr file_up = loadMatchingPDBFile(m_obj_file->GetFileSpec().GetPath(), m_allocator); if (!file_up) { auto module_sp = m_obj_file->GetModule(); if (!module_sp) return 0; // See if any symbol file is specified through `--symfile` option. FileSpec symfile = module_sp->GetSymbolFileFileSpec(); if (!symfile) return 0; file_up = loadPDBFile(symfile.GetPath(), m_allocator); } if (!file_up) return 0; auto expected_index = PdbIndex::create(std::move(file_up)); if (!expected_index) { llvm::consumeError(expected_index.takeError()); return 0; } m_index = std::move(*expected_index); } if (!m_index) return 0; // We don't especially have to be precise here. We only distinguish between // stripped and not stripped. abilities = kAllAbilities; if (m_index->dbi().isStripped()) abilities &= ~(Blocks | LocalVariables); return abilities; } void SymbolFileNativePDB::InitializeObject() { m_obj_load_address = m_obj_file->GetFileOffset(); m_index->SetLoadAddress(m_obj_load_address); m_index->ParseSectionContribs(); TypeSystem *ts = GetTypeSystemForLanguage(eLanguageTypeC_plus_plus); m_clang = llvm::dyn_cast_or_null(ts); m_importer = llvm::make_unique(); PreprocessTpiStream(); lldbassert(m_clang); } static llvm::Optional GetNestedTagRecord(const NestedTypeRecord &Record, const CVTagRecord &parent, TpiStream &tpi) { // An LF_NESTTYPE is essentially a nested typedef / using declaration, but it // is also used to indicate the primary definition of a nested class. That is // to say, if you have: // struct A { // struct B {}; // using C = B; // }; // Then in the debug info, this will appear as: // LF_STRUCTURE `A::B` [type index = N] // LF_STRUCTURE `A` // LF_NESTTYPE [name = `B`, index = N] // LF_NESTTYPE [name = `C`, index = N] // In order to accurately reconstruct the decl context hierarchy, we need to // know which ones are actual definitions and which ones are just aliases. // If it's a simple type, then this is something like `using foo = int`. if (Record.Type.isSimple()) return llvm::None; CVType cvt = tpi.getType(Record.Type); if (!IsTagRecord(cvt)) return llvm::None; // If it's an inner definition, then treat whatever name we have here as a // single component of a mangled name. So we can inject it into the parent's // mangled name to see if it matches. CVTagRecord child = CVTagRecord::create(cvt); std::string qname = parent.asTag().getUniqueName(); if (qname.size() < 4 || child.asTag().getUniqueName().size() < 4) return llvm::None; // qname[3] is the tag type identifier (struct, class, union, etc). Since the // inner tag type is not necessarily the same as the outer tag type, re-write // it to match the inner tag type. qname[3] = child.asTag().getUniqueName()[3]; std::string piece = Record.Name; piece.push_back('@'); qname.insert(4, std::move(piece)); if (qname != child.asTag().UniqueName) return llvm::None; return std::move(child); } void SymbolFileNativePDB::PreprocessTpiStream() { LazyRandomTypeCollection &types = m_index->tpi().typeCollection(); for (auto ti = types.getFirst(); ti; ti = types.getNext(*ti)) { CVType type = types.getType(*ti); if (!IsTagRecord(type)) continue; CVTagRecord tag = CVTagRecord::create(type); // We're looking for LF_NESTTYPE records in the field list, so ignore // forward references (no field list), and anything without a nested class // (since there won't be any LF_NESTTYPE records). if (tag.asTag().isForwardRef() || !tag.asTag().containsNestedClass()) continue; struct ProcessTpiStream : public TypeVisitorCallbacks { ProcessTpiStream(PdbIndex &index, TypeIndex parent, const CVTagRecord &parent_cvt, llvm::DenseMap &parents) : index(index), parents(parents), parent(parent), parent_cvt(parent_cvt) {} PdbIndex &index; llvm::DenseMap &parents; TypeIndex parent; const CVTagRecord &parent_cvt; llvm::Error visitKnownMember(CVMemberRecord &CVR, NestedTypeRecord &Record) override { llvm::Optional tag = GetNestedTagRecord(Record, parent_cvt, index.tpi()); if (!tag) return llvm::ErrorSuccess(); parents[Record.Type] = parent; if (!tag->asTag().isForwardRef()) return llvm::ErrorSuccess(); llvm::Expected full_decl = index.tpi().findFullDeclForForwardRef(Record.Type); if (!full_decl) { llvm::consumeError(full_decl.takeError()); return llvm::ErrorSuccess(); } parents[*full_decl] = parent; return llvm::ErrorSuccess(); } }; CVType field_list = m_index->tpi().getType(tag.asTag().FieldList); ProcessTpiStream process(*m_index, *ti, tag, m_parent_types); llvm::Error error = visitMemberRecordStream(field_list.data(), process); if (error) llvm::consumeError(std::move(error)); } } uint32_t SymbolFileNativePDB::GetNumCompileUnits() { const DbiModuleList &modules = m_index->dbi().modules(); uint32_t count = modules.getModuleCount(); if (count == 0) return count; // The linker can inject an additional "dummy" compilation unit into the // PDB. Ignore this special compile unit for our purposes, if it is there. // It is always the last one. DbiModuleDescriptor last = modules.getModuleDescriptor(count - 1); if (last.getModuleName() == "* Linker *") --count; return count; } lldb::FunctionSP SymbolFileNativePDB::CreateFunction(PdbCompilandSymId func_id, const SymbolContext &sc) { const CompilandIndexItem *cci = m_index->compilands().GetCompiland(func_id.modi); lldbassert(cci); CVSymbol sym_record = cci->m_debug_stream.readSymbolAtOffset(func_id.offset); lldbassert(sym_record.kind() == S_LPROC32 || sym_record.kind() == S_GPROC32); SegmentOffsetLength sol = GetSegmentOffsetAndLength(sym_record); auto file_vm_addr = m_index->MakeVirtualAddress(sol.so); if (file_vm_addr == LLDB_INVALID_ADDRESS || file_vm_addr == 0) return nullptr; AddressRange func_range(file_vm_addr, sol.length, sc.module_sp->GetSectionList()); if (!func_range.GetBaseAddress().IsValid()) return nullptr; ProcSym proc(static_cast(sym_record.kind())); cantFail(SymbolDeserializer::deserializeAs(sym_record, proc)); TypeSP func_type = GetOrCreateType(proc.FunctionType); PdbTypeSymId sig_id(proc.FunctionType, false); Mangled mangled(proc.Name); FunctionSP func_sp = std::make_shared( sc.comp_unit, toOpaqueUid(func_id), toOpaqueUid(sig_id), mangled, func_type.get(), func_range); sc.comp_unit->AddFunction(func_sp); clang::StorageClass storage = clang::SC_None; if (sym_record.kind() == S_LPROC32) storage = clang::SC_Static; // There are two ways we could retrieve the parameter list. The first is by // iterating the arguments on the function signature type, however that would // only tell us the types of the arguments and not the names. The second is // to iterate the CVSymbol records that follow the S_GPROC32 / S_LPROC32 until // we have the correct number of arguments as stated by the function // signature. The latter has more potential to go wrong in the face of // improper debug info simply because we're assuming more about the layout of // the records, but it is the only way to get argument names. CVType sig_cvt; CVType arg_list_cvt; ProcedureRecord sig_record; ArgListRecord arg_list_record; sig_cvt = m_index->tpi().getType(proc.FunctionType); if (sig_cvt.kind() != LF_PROCEDURE) return func_sp; cantFail( TypeDeserializer::deserializeAs(sig_cvt, sig_record)); CompilerDeclContext context = GetDeclContextContainingUID(toOpaqueUid(func_id)); clang::DeclContext *decl_context = static_cast(context.GetOpaqueDeclContext()); clang::FunctionDecl *function_decl = m_clang->CreateFunctionDeclaration( decl_context, proc.Name.str().c_str(), func_type->GetForwardCompilerType(), storage, false); lldbassert(m_uid_to_decl.count(toOpaqueUid(func_id)) == 0); m_uid_to_decl[toOpaqueUid(func_id)] = function_decl; CVSymbolArray scope = limitSymbolArrayToScope( cci->m_debug_stream.getSymbolArray(), func_id.offset); uint32_t params_remaining = sig_record.getParameterCount(); auto begin = scope.begin(); auto end = scope.end(); std::vector params; while (begin != end && params_remaining > 0) { uint32_t record_offset = begin.offset(); CVSymbol sym = *begin++; TypeIndex param_type; llvm::StringRef param_name; switch (sym.kind()) { case S_REGREL32: { RegRelativeSym reg(SymbolRecordKind::RegRelativeSym); cantFail(SymbolDeserializer::deserializeAs(sym, reg)); param_type = reg.Type; param_name = reg.Name; break; } case S_REGISTER: { RegisterSym reg(SymbolRecordKind::RegisterSym); cantFail(SymbolDeserializer::deserializeAs(sym, reg)); param_type = reg.Index; param_name = reg.Name; break; } case S_LOCAL: { LocalSym local(SymbolRecordKind::LocalSym); cantFail(SymbolDeserializer::deserializeAs(sym, local)); if ((local.Flags & LocalSymFlags::IsParameter) == LocalSymFlags::None) continue; param_type = local.Type; param_name = local.Name; break; } case S_BLOCK32: // All parameters should come before the first block. If that isn't the // case, then perhaps this is bad debug info that doesn't contain // information about all parameters. params_remaining = 0; continue; default: continue; } PdbCompilandSymId param_uid(func_id.modi, record_offset); TypeSP type_sp = GetOrCreateType(param_type); clang::ParmVarDecl *param = m_clang->CreateParameterDeclaration( param_name.str().c_str(), type_sp->GetForwardCompilerType(), clang::SC_None); lldbassert(m_uid_to_decl.count(toOpaqueUid(param_uid)) == 0); m_uid_to_decl[toOpaqueUid(param_uid)] = param; params.push_back(param); --params_remaining; } if (!params.empty()) m_clang->SetFunctionParameters(function_decl, params.data(), params.size()); return func_sp; } CompUnitSP SymbolFileNativePDB::CreateCompileUnit(const CompilandIndexItem &cci) { lldb::LanguageType lang = cci.m_compile_opts ? TranslateLanguage(cci.m_compile_opts->getLanguage()) : lldb::eLanguageTypeUnknown; LazyBool optimized = eLazyBoolNo; if (cci.m_compile_opts && cci.m_compile_opts->hasOptimizations()) optimized = eLazyBoolYes; llvm::StringRef source_file_name = m_index->compilands().GetMainSourceFile(cci); FileSpec fs(source_file_name); CompUnitSP cu_sp = std::make_shared(m_obj_file->GetModule(), nullptr, fs, toOpaqueUid(cci.m_id), lang, optimized); m_obj_file->GetModule()->GetSymbolVendor()->SetCompileUnitAtIndex( cci.m_id.modi, cu_sp); return cu_sp; } lldb::TypeSP SymbolFileNativePDB::CreateModifierType(PdbTypeSymId type_id, const ModifierRecord &mr) { TpiStream &stream = m_index->tpi(); TypeSP t = GetOrCreateType(mr.ModifiedType); CompilerType ct = t->GetForwardCompilerType(); if ((mr.Modifiers & ModifierOptions::Const) != ModifierOptions::None) ct = ct.AddConstModifier(); if ((mr.Modifiers & ModifierOptions::Volatile) != ModifierOptions::None) ct = ct.AddVolatileModifier(); std::string name; if (mr.ModifiedType.isSimple()) name = GetSimpleTypeName(mr.ModifiedType.getSimpleKind()); else name = computeTypeName(stream.typeCollection(), mr.ModifiedType); Declaration decl; return std::make_shared(toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(name), t->GetByteSize(), nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, ct, Type::eResolveStateFull); } lldb::TypeSP SymbolFileNativePDB::CreatePointerType( PdbTypeSymId type_id, const llvm::codeview::PointerRecord &pr) { TypeSP pointee = GetOrCreateType(pr.ReferentType); if (!pointee) return nullptr; CompilerType pointee_ct = pointee->GetForwardCompilerType(); lldbassert(pointee_ct); Declaration decl; if (pr.isPointerToMember()) { MemberPointerInfo mpi = pr.getMemberInfo(); TypeSP class_type = GetOrCreateType(mpi.ContainingType); CompilerType ct = ClangASTContext::CreateMemberPointerType( class_type->GetLayoutCompilerType(), pointee_ct); return std::make_shared( toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(), pr.getSize(), nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, ct, Type::eResolveStateFull); } CompilerType pointer_ct = pointee_ct; if (pr.getMode() == PointerMode::LValueReference) pointer_ct = pointer_ct.GetLValueReferenceType(); else if (pr.getMode() == PointerMode::RValueReference) pointer_ct = pointer_ct.GetRValueReferenceType(); else pointer_ct = pointer_ct.GetPointerType(); if ((pr.getOptions() & PointerOptions::Const) != PointerOptions::None) pointer_ct = pointer_ct.AddConstModifier(); if ((pr.getOptions() & PointerOptions::Volatile) != PointerOptions::None) pointer_ct = pointer_ct.AddVolatileModifier(); if ((pr.getOptions() & PointerOptions::Restrict) != PointerOptions::None) pointer_ct = pointer_ct.AddRestrictModifier(); return std::make_shared(toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(), pr.getSize(), nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, pointer_ct, Type::eResolveStateFull); } lldb::TypeSP SymbolFileNativePDB::CreateSimpleType(TypeIndex ti) { uint64_t uid = toOpaqueUid(PdbTypeSymId(ti, false)); if (ti == TypeIndex::NullptrT()) { CompilerType ct = m_clang->GetBasicType(eBasicTypeNullPtr); Declaration decl; return std::make_shared( uid, this, ConstString("std::nullptr_t"), 0, nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, ct, Type::eResolveStateFull); } if (ti.getSimpleMode() != SimpleTypeMode::Direct) { TypeSP direct_sp = GetOrCreateType(ti.makeDirect()); CompilerType ct = direct_sp->GetFullCompilerType(); ct = ct.GetPointerType(); uint32_t pointer_size = 0; switch (ti.getSimpleMode()) { case SimpleTypeMode::FarPointer32: case SimpleTypeMode::NearPointer32: pointer_size = 4; break; case SimpleTypeMode::NearPointer64: pointer_size = 8; break; default: // 128-bit and 16-bit pointers unsupported. return nullptr; } Declaration decl; return std::make_shared(uid, m_clang->GetSymbolFile(), ConstString(), pointer_size, nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, ct, Type::eResolveStateFull); } if (ti.getSimpleKind() == SimpleTypeKind::NotTranslated) return nullptr; lldb::BasicType bt = GetCompilerTypeForSimpleKind(ti.getSimpleKind()); if (bt == lldb::eBasicTypeInvalid) return nullptr; CompilerType ct = m_clang->GetBasicType(bt); size_t size = GetTypeSizeForSimpleKind(ti.getSimpleKind()); llvm::StringRef type_name = GetSimpleTypeName(ti.getSimpleKind()); Declaration decl; return std::make_shared(uid, m_clang->GetSymbolFile(), ConstString(type_name), size, nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, ct, Type::eResolveStateFull); } static std::string RenderDemanglerNode(llvm::ms_demangle::Node *n) { OutputStream OS; initializeOutputStream(nullptr, nullptr, OS, 1024); n->output(OS, llvm::ms_demangle::OF_Default); OS << '\0'; return {OS.getBuffer()}; } static bool AnyScopesHaveTemplateParams(llvm::ArrayRef scopes) { for (llvm::ms_demangle::Node *n : scopes) { auto *idn = static_cast(n); if (idn->TemplateParams) return true; } return false; } std::pair SymbolFileNativePDB::CreateDeclInfoForType(const TagRecord &record, TypeIndex ti) { // FIXME: Move this to GetDeclContextContainingUID. llvm::ms_demangle::Demangler demangler; StringView sv(record.UniqueName.begin(), record.UniqueName.size()); llvm::ms_demangle::TagTypeNode *ttn = demangler.parseTagUniqueName(sv); llvm::ms_demangle::IdentifierNode *idn = ttn->QualifiedName->getUnqualifiedIdentifier(); std::string uname = RenderDemanglerNode(idn); llvm::ms_demangle::NodeArrayNode *name_components = ttn->QualifiedName->Components; llvm::ArrayRef scopes(name_components->Nodes, name_components->Count - 1); clang::DeclContext *context = m_clang->GetTranslationUnitDecl(); // If this type doesn't have a parent type in the debug info, then the best we // can do is to say that it's either a series of namespaces (if the scope is // non-empty), or the translation unit (if the scope is empty). auto parent_iter = m_parent_types.find(ti); if (parent_iter == m_parent_types.end()) { if (scopes.empty()) return {context, uname}; // If there is no parent in the debug info, but some of the scopes have // template params, then this is a case of bad debug info. See, for // example, llvm.org/pr39607. We don't want to create an ambiguity between // a NamespaceDecl and a CXXRecordDecl, so instead we create a class at // global scope with the fully qualified name. if (AnyScopesHaveTemplateParams(scopes)) return {context, record.Name}; for (llvm::ms_demangle::Node *scope : scopes) { auto *nii = static_cast(scope); std::string str = RenderDemanglerNode(nii); context = m_clang->GetUniqueNamespaceDeclaration(str.c_str(), context); } return {context, uname}; } // Otherwise, all we need to do is get the parent type of this type and // recurse into our lazy type creation / AST reconstruction logic to get an // LLDB TypeSP for the parent. This will cause the AST to automatically get // the right DeclContext created for any parent. TypeSP parent = GetOrCreateType(parent_iter->second); if (!parent) return {context, uname}; CompilerType parent_ct = parent->GetForwardCompilerType(); clang::QualType qt = ClangUtil::GetCanonicalQualType(parent_ct); context = clang::TagDecl::castToDeclContext(qt->getAsTagDecl()); return {context, uname}; } lldb::TypeSP SymbolFileNativePDB::CreateClassStructUnion( PdbTypeSymId type_id, const llvm::codeview::TagRecord &record, size_t size, clang::TagTypeKind ttk, clang::MSInheritanceAttr::Spelling inheritance) { clang::DeclContext *decl_context = nullptr; std::string uname; std::tie(decl_context, uname) = CreateDeclInfoForType(record, type_id.index); lldb::AccessType access = (ttk == clang::TTK_Class) ? lldb::eAccessPrivate : lldb::eAccessPublic; ClangASTMetadata metadata; metadata.SetUserID(toOpaqueUid(type_id)); metadata.SetIsDynamicCXXType(false); CompilerType ct = m_clang->CreateRecordType(decl_context, access, uname.c_str(), ttk, lldb::eLanguageTypeC_plus_plus, &metadata); lldbassert(ct.IsValid()); clang::CXXRecordDecl *record_decl = m_clang->GetAsCXXRecordDecl(ct.GetOpaqueQualType()); lldbassert(record_decl); clang::MSInheritanceAttr *attr = clang::MSInheritanceAttr::CreateImplicit( *m_clang->getASTContext(), inheritance); record_decl->addAttr(attr); ClangASTContext::StartTagDeclarationDefinition(ct); // Even if it's possible, don't complete it at this point. Just mark it // forward resolved, and if/when LLDB needs the full definition, it can // ask us. ClangASTContext::SetHasExternalStorage(ct.GetOpaqueQualType(), true); // FIXME: Search IPI stream for LF_UDT_MOD_SRC_LINE. Declaration decl; return std::make_shared(toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(uname), size, nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, ct, Type::eResolveStateForward); } lldb::TypeSP SymbolFileNativePDB::CreateTagType(PdbTypeSymId type_id, const ClassRecord &cr) { clang::TagTypeKind ttk = TranslateUdtKind(cr); clang::MSInheritanceAttr::Spelling inheritance = GetMSInheritance(m_index->tpi().typeCollection(), cr); return CreateClassStructUnion(type_id, cr, cr.getSize(), ttk, inheritance); } lldb::TypeSP SymbolFileNativePDB::CreateTagType(PdbTypeSymId type_id, const UnionRecord &ur) { return CreateClassStructUnion( type_id, ur, ur.getSize(), clang::TTK_Union, clang::MSInheritanceAttr::Spelling::Keyword_single_inheritance); } lldb::TypeSP SymbolFileNativePDB::CreateTagType(PdbTypeSymId type_id, const EnumRecord &er) { clang::DeclContext *decl_context = nullptr; std::string uname; std::tie(decl_context, uname) = CreateDeclInfoForType(er, type_id.index); Declaration decl; TypeSP underlying_type = GetOrCreateType(er.UnderlyingType); CompilerType enum_ct = m_clang->CreateEnumerationType( uname.c_str(), decl_context, decl, underlying_type->GetFullCompilerType(), er.isScoped()); ClangASTContext::StartTagDeclarationDefinition(enum_ct); ClangASTContext::SetHasExternalStorage(enum_ct.GetOpaqueQualType(), true); // We're just going to forward resolve this for now. We'll complete // it only if the user requests. return std::make_shared( toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(uname), underlying_type->GetByteSize(), nullptr, LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID, decl, enum_ct, lldb_private::Type::eResolveStateForward); } TypeSP SymbolFileNativePDB::CreateArrayType(PdbTypeSymId type_id, const ArrayRecord &ar) { TypeSP element_type = GetOrCreateType(ar.ElementType); uint64_t element_count = ar.Size / element_type->GetByteSize(); CompilerType element_ct = element_type->GetFullCompilerType(); CompilerType array_ct = m_clang->CreateArrayType(element_ct, element_count, false); Declaration decl; TypeSP array_sp = std::make_shared( toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(), ar.Size, nullptr, LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID, decl, array_ct, lldb_private::Type::eResolveStateFull); array_sp->SetEncodingType(element_type.get()); return array_sp; } TypeSP SymbolFileNativePDB::CreateProcedureType(PdbTypeSymId type_id, const ProcedureRecord &pr) { TpiStream &stream = m_index->tpi(); CVType args_cvt = stream.getType(pr.ArgumentList); ArgListRecord args; llvm::cantFail( TypeDeserializer::deserializeAs(args_cvt, args)); llvm::ArrayRef arg_indices = llvm::makeArrayRef(args.ArgIndices); bool is_variadic = IsCVarArgsFunction(arg_indices); if (is_variadic) arg_indices = arg_indices.drop_back(); std::vector arg_list; arg_list.reserve(arg_list.size()); for (TypeIndex arg_index : arg_indices) { TypeSP arg_sp = GetOrCreateType(arg_index); if (!arg_sp) return nullptr; arg_list.push_back(arg_sp->GetFullCompilerType()); } TypeSP return_type_sp = GetOrCreateType(pr.ReturnType); if (!return_type_sp) return nullptr; llvm::Optional cc = TranslateCallingConvention(pr.CallConv); if (!cc) return nullptr; CompilerType return_ct = return_type_sp->GetFullCompilerType(); CompilerType func_sig_ast_type = m_clang->CreateFunctionType( return_ct, arg_list.data(), arg_list.size(), is_variadic, 0, *cc); Declaration decl; return std::make_shared( toOpaqueUid(type_id), this, ConstString(), 0, nullptr, LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID, decl, func_sig_ast_type, lldb_private::Type::eResolveStateFull); } TypeSP SymbolFileNativePDB::CreateType(PdbTypeSymId type_id) { if (type_id.index.isSimple()) return CreateSimpleType(type_id.index); TpiStream &stream = type_id.is_ipi ? m_index->ipi() : m_index->tpi(); CVType cvt = stream.getType(type_id.index); if (cvt.kind() == LF_MODIFIER) { ModifierRecord modifier; llvm::cantFail( TypeDeserializer::deserializeAs(cvt, modifier)); return CreateModifierType(type_id, modifier); } if (cvt.kind() == LF_POINTER) { PointerRecord pointer; llvm::cantFail( TypeDeserializer::deserializeAs(cvt, pointer)); return CreatePointerType(type_id, pointer); } if (IsClassRecord(cvt.kind())) { ClassRecord cr; llvm::cantFail(TypeDeserializer::deserializeAs(cvt, cr)); return CreateTagType(type_id, cr); } if (cvt.kind() == LF_ENUM) { EnumRecord er; llvm::cantFail(TypeDeserializer::deserializeAs(cvt, er)); return CreateTagType(type_id, er); } if (cvt.kind() == LF_UNION) { UnionRecord ur; llvm::cantFail(TypeDeserializer::deserializeAs(cvt, ur)); return CreateTagType(type_id, ur); } if (cvt.kind() == LF_ARRAY) { ArrayRecord ar; llvm::cantFail(TypeDeserializer::deserializeAs(cvt, ar)); return CreateArrayType(type_id, ar); } if (cvt.kind() == LF_PROCEDURE) { ProcedureRecord pr; llvm::cantFail(TypeDeserializer::deserializeAs(cvt, pr)); return CreateProcedureType(type_id, pr); } return nullptr; } TypeSP SymbolFileNativePDB::CreateAndCacheType(PdbTypeSymId type_id) { // If they search for a UDT which is a forward ref, try and resolve the full // decl and just map the forward ref uid to the full decl record. llvm::Optional full_decl_uid; if (IsForwardRefUdt(type_id, m_index->tpi())) { auto expected_full_ti = m_index->tpi().findFullDeclForForwardRef(type_id.index); if (!expected_full_ti) llvm::consumeError(expected_full_ti.takeError()); else if (*expected_full_ti != type_id.index) { full_decl_uid = PdbTypeSymId(*expected_full_ti, false); // It's possible that a lookup would occur for the full decl causing it // to be cached, then a second lookup would occur for the forward decl. // We don't want to create a second full decl, so make sure the full // decl hasn't already been cached. auto full_iter = m_types.find(toOpaqueUid(*full_decl_uid)); if (full_iter != m_types.end()) { TypeSP result = full_iter->second; // Map the forward decl to the TypeSP for the full decl so we can take // the fast path next time. m_types[toOpaqueUid(type_id)] = result; return result; } } } PdbTypeSymId best_decl_id = full_decl_uid ? *full_decl_uid : type_id; TypeSP result = CreateType(best_decl_id); if (!result) return nullptr; uint64_t best_uid = toOpaqueUid(best_decl_id); m_types[best_uid] = result; // If we had both a forward decl and a full decl, make both point to the new // type. if (full_decl_uid) m_types[toOpaqueUid(type_id)] = result; if (IsTagRecord(best_decl_id, m_index->tpi())) { clang::TagDecl *record_decl = m_clang->GetAsTagDecl(result->GetForwardCompilerType()); lldbassert(record_decl); m_uid_to_decl[best_uid] = record_decl; m_decl_to_status[record_decl] = DeclStatus(best_uid, Type::eResolveStateForward); } return result; } TypeSP SymbolFileNativePDB::GetOrCreateType(PdbTypeSymId type_id) { // We can't use try_emplace / overwrite here because the process of creating // a type could create nested types, which could invalidate iterators. So // we have to do a 2-phase lookup / insert. auto iter = m_types.find(toOpaqueUid(type_id)); if (iter != m_types.end()) return iter->second; return CreateAndCacheType(type_id); } VariableSP SymbolFileNativePDB::CreateGlobalVariable(PdbGlobalSymId var_id) { CVSymbol sym = m_index->symrecords().readRecord(var_id.offset); if (sym.kind() == S_CONSTANT) return CreateConstantSymbol(var_id, sym); lldb::ValueType scope = eValueTypeInvalid; TypeIndex ti; llvm::StringRef name; lldb::addr_t addr = 0; uint16_t section = 0; uint32_t offset = 0; bool is_external = false; switch (sym.kind()) { case S_GDATA32: is_external = true; LLVM_FALLTHROUGH; case S_LDATA32: { DataSym ds(sym.kind()); llvm::cantFail(SymbolDeserializer::deserializeAs(sym, ds)); ti = ds.Type; scope = (sym.kind() == S_GDATA32) ? eValueTypeVariableGlobal : eValueTypeVariableStatic; name = ds.Name; section = ds.Segment; offset = ds.DataOffset; addr = m_index->MakeVirtualAddress(ds.Segment, ds.DataOffset); break; } case S_GTHREAD32: is_external = true; LLVM_FALLTHROUGH; case S_LTHREAD32: { ThreadLocalDataSym tlds(sym.kind()); llvm::cantFail( SymbolDeserializer::deserializeAs(sym, tlds)); ti = tlds.Type; name = tlds.Name; section = tlds.Segment; offset = tlds.DataOffset; addr = m_index->MakeVirtualAddress(tlds.Segment, tlds.DataOffset); scope = eValueTypeVariableThreadLocal; break; } default: llvm_unreachable("unreachable!"); } CompUnitSP comp_unit; llvm::Optional modi = m_index->GetModuleIndexForVa(addr); if (modi) { CompilandIndexItem &cci = m_index->compilands().GetOrCreateCompiland(*modi); comp_unit = GetOrCreateCompileUnit(cci); } Declaration decl; PdbTypeSymId tid(ti, false); SymbolFileTypeSP type_sp = std::make_shared(*this, toOpaqueUid(tid)); Variable::RangeList ranges; DWARFExpression location = MakeGlobalLocationExpression( section, offset, GetObjectFile()->GetModule()); std::string global_name("::"); global_name += name; VariableSP var_sp = std::make_shared( toOpaqueUid(var_id), name.str().c_str(), global_name.c_str(), type_sp, scope, comp_unit.get(), ranges, &decl, location, is_external, false, false); var_sp->SetLocationIsConstantValueData(false); return var_sp; } lldb::VariableSP SymbolFileNativePDB::CreateConstantSymbol(PdbGlobalSymId var_id, const CVSymbol &cvs) { TpiStream &tpi = m_index->tpi(); ConstantSym constant(cvs.kind()); llvm::cantFail(SymbolDeserializer::deserializeAs(cvs, constant)); std::string global_name("::"); global_name += constant.Name; PdbTypeSymId tid(constant.Type, false); SymbolFileTypeSP type_sp = std::make_shared(*this, toOpaqueUid(tid)); Declaration decl; Variable::RangeList ranges; ModuleSP module = GetObjectFile()->GetModule(); DWARFExpression location = MakeConstantLocationExpression( constant.Type, tpi, constant.Value, module); VariableSP var_sp = std::make_shared( toOpaqueUid(var_id), constant.Name.str().c_str(), global_name.c_str(), type_sp, eValueTypeVariableGlobal, module.get(), ranges, &decl, location, false, false, false); var_sp->SetLocationIsConstantValueData(true); return var_sp; } VariableSP SymbolFileNativePDB::GetOrCreateGlobalVariable(PdbGlobalSymId var_id) { auto emplace_result = m_global_vars.try_emplace(toOpaqueUid(var_id), nullptr); if (emplace_result.second) emplace_result.first->second = CreateGlobalVariable(var_id); return emplace_result.first->second; } lldb::TypeSP SymbolFileNativePDB::GetOrCreateType(TypeIndex ti) { return GetOrCreateType(PdbTypeSymId(ti, false)); } FunctionSP SymbolFileNativePDB::GetOrCreateFunction(PdbCompilandSymId func_id, const SymbolContext &sc) { auto emplace_result = m_functions.try_emplace(toOpaqueUid(func_id), nullptr); if (emplace_result.second) emplace_result.first->second = CreateFunction(func_id, sc); lldbassert(emplace_result.first->second); return emplace_result.first->second; } CompUnitSP SymbolFileNativePDB::GetOrCreateCompileUnit(const CompilandIndexItem &cci) { auto emplace_result = m_compilands.try_emplace(toOpaqueUid(cci.m_id), nullptr); if (emplace_result.second) emplace_result.first->second = CreateCompileUnit(cci); lldbassert(emplace_result.first->second); return emplace_result.first->second; } lldb::CompUnitSP SymbolFileNativePDB::ParseCompileUnitAtIndex(uint32_t index) { if (index >= GetNumCompileUnits()) return CompUnitSP(); lldbassert(index < UINT16_MAX); if (index >= UINT16_MAX) return nullptr; CompilandIndexItem &item = m_index->compilands().GetOrCreateCompiland(index); return GetOrCreateCompileUnit(item); } lldb::LanguageType SymbolFileNativePDB::ParseCompileUnitLanguage(const SymbolContext &sc) { // What fields should I expect to be filled out on the SymbolContext? Is it // safe to assume that `sc.comp_unit` is valid? if (!sc.comp_unit) return lldb::eLanguageTypeUnknown; PdbSymUid uid(sc.comp_unit->GetID()); lldbassert(uid.kind() == PdbSymUidKind::Compiland); CompilandIndexItem *item = m_index->compilands().GetCompiland(uid.asCompiland().modi); lldbassert(item); if (!item->m_compile_opts) return lldb::eLanguageTypeUnknown; return TranslateLanguage(item->m_compile_opts->getLanguage()); } size_t SymbolFileNativePDB::ParseCompileUnitFunctions(const SymbolContext &sc) { lldbassert(sc.comp_unit); return false; } static bool NeedsResolvedCompileUnit(uint32_t resolve_scope) { // If any of these flags are set, we need to resolve the compile unit. uint32_t flags = eSymbolContextCompUnit; flags |= eSymbolContextVariable; flags |= eSymbolContextFunction; flags |= eSymbolContextBlock; flags |= eSymbolContextLineEntry; return (resolve_scope & flags) != 0; } uint32_t SymbolFileNativePDB::ResolveSymbolContext( const Address &addr, SymbolContextItem resolve_scope, SymbolContext &sc) { uint32_t resolved_flags = 0; lldb::addr_t file_addr = addr.GetFileAddress(); if (NeedsResolvedCompileUnit(resolve_scope)) { llvm::Optional modi = m_index->GetModuleIndexForVa(file_addr); if (!modi) return 0; CompilandIndexItem *cci = m_index->compilands().GetCompiland(*modi); if (!cci) return 0; sc.comp_unit = GetOrCreateCompileUnit(*cci).get(); resolved_flags |= eSymbolContextCompUnit; } if (resolve_scope & eSymbolContextFunction) { lldbassert(sc.comp_unit); std::vector matches = m_index->FindSymbolsByVa(file_addr); for (const auto &match : matches) { if (match.uid.kind() != PdbSymUidKind::CompilandSym) continue; PdbCompilandSymId csid = match.uid.asCompilandSym(); CVSymbol cvs = m_index->ReadSymbolRecord(csid); if (CVSymToPDBSym(cvs.kind()) != PDB_SymType::Function) continue; sc.function = GetOrCreateFunction(csid, sc).get(); } resolved_flags |= eSymbolContextFunction; } if (resolve_scope & eSymbolContextLineEntry) { lldbassert(sc.comp_unit); if (auto *line_table = sc.comp_unit->GetLineTable()) { if (line_table->FindLineEntryByAddress(addr, sc.line_entry)) resolved_flags |= eSymbolContextLineEntry; } } return resolved_flags; } static void AppendLineEntryToSequence(LineTable &table, LineSequence &sequence, const CompilandIndexItem &cci, lldb::addr_t base_addr, uint32_t file_number, const LineFragmentHeader &block, const LineNumberEntry &cur) { LineInfo cur_info(cur.Flags); if (cur_info.isAlwaysStepInto() || cur_info.isNeverStepInto()) return; uint64_t addr = base_addr + cur.Offset; bool is_statement = cur_info.isStatement(); bool is_prologue = IsFunctionPrologue(cci, addr); bool is_epilogue = IsFunctionEpilogue(cci, addr); uint32_t lno = cur_info.getStartLine(); table.AppendLineEntryToSequence(&sequence, addr, lno, 0, file_number, is_statement, false, is_prologue, is_epilogue, false); } static void TerminateLineSequence(LineTable &table, const LineFragmentHeader &block, lldb::addr_t base_addr, uint32_t file_number, uint32_t last_line, std::unique_ptr seq) { // The end is always a terminal entry, so insert it regardless. table.AppendLineEntryToSequence(seq.get(), base_addr + block.CodeSize, last_line, 0, file_number, false, false, false, false, true); table.InsertSequence(seq.release()); } bool SymbolFileNativePDB::ParseCompileUnitLineTable(const SymbolContext &sc) { // Unfortunately LLDB is set up to parse the entire compile unit line table // all at once, even if all it really needs is line info for a specific // function. In the future it would be nice if it could set the sc.m_function // member, and we could only get the line info for the function in question. lldbassert(sc.comp_unit); PdbSymUid cu_id(sc.comp_unit->GetID()); lldbassert(cu_id.kind() == PdbSymUidKind::Compiland); CompilandIndexItem *cci = m_index->compilands().GetCompiland(cu_id.asCompiland().modi); lldbassert(cci); auto line_table = llvm::make_unique(sc.comp_unit); // This is basically a copy of the .debug$S subsections from all original COFF // object files merged together with address relocations applied. We are // looking for all DEBUG_S_LINES subsections. for (const DebugSubsectionRecord &dssr : cci->m_debug_stream.getSubsectionsArray()) { if (dssr.kind() != DebugSubsectionKind::Lines) continue; DebugLinesSubsectionRef lines; llvm::BinaryStreamReader reader(dssr.getRecordData()); if (auto EC = lines.initialize(reader)) { llvm::consumeError(std::move(EC)); return false; } const LineFragmentHeader *lfh = lines.header(); uint64_t virtual_addr = m_index->MakeVirtualAddress(lfh->RelocSegment, lfh->RelocOffset); const auto &checksums = cci->m_strings.checksums().getArray(); const auto &strings = cci->m_strings.strings(); for (const LineColumnEntry &group : lines) { // Indices in this structure are actually offsets of records in the // DEBUG_S_FILECHECKSUMS subsection. Those entries then have an index // into the global PDB string table. auto iter = checksums.at(group.NameIndex); if (iter == checksums.end()) continue; llvm::Expected efn = strings.getString(iter->FileNameOffset); if (!efn) { llvm::consumeError(efn.takeError()); continue; } // LLDB wants the index of the file in the list of support files. auto fn_iter = llvm::find(cci->m_file_list, *efn); lldbassert(fn_iter != cci->m_file_list.end()); uint32_t file_index = std::distance(cci->m_file_list.begin(), fn_iter); std::unique_ptr sequence( line_table->CreateLineSequenceContainer()); lldbassert(!group.LineNumbers.empty()); for (const LineNumberEntry &entry : group.LineNumbers) { AppendLineEntryToSequence(*line_table, *sequence, *cci, virtual_addr, file_index, *lfh, entry); } LineInfo last_line(group.LineNumbers.back().Flags); TerminateLineSequence(*line_table, *lfh, virtual_addr, file_index, last_line.getEndLine(), std::move(sequence)); } } if (line_table->GetSize() == 0) return false; sc.comp_unit->SetLineTable(line_table.release()); return true; } bool SymbolFileNativePDB::ParseCompileUnitDebugMacros(const SymbolContext &sc) { // PDB doesn't contain information about macros return false; } bool SymbolFileNativePDB::ParseCompileUnitSupportFiles( const SymbolContext &sc, FileSpecList &support_files) { lldbassert(sc.comp_unit); PdbSymUid cu_id(sc.comp_unit->GetID()); lldbassert(cu_id.kind() == PdbSymUidKind::Compiland); CompilandIndexItem *cci = m_index->compilands().GetCompiland(cu_id.asCompiland().modi); lldbassert(cci); for (llvm::StringRef f : cci->m_file_list) { FileSpec::Style style = f.startswith("/") ? FileSpec::Style::posix : FileSpec::Style::windows; FileSpec spec(f, style); support_files.Append(spec); } return true; } bool SymbolFileNativePDB::ParseImportedModules( const SymbolContext &sc, std::vector &imported_modules) { // PDB does not yet support module debug info return false; } size_t SymbolFileNativePDB::ParseFunctionBlocks(const SymbolContext &sc) { lldbassert(sc.comp_unit && sc.function); return 0; } void SymbolFileNativePDB::DumpClangAST(Stream &s) { if (!m_clang) return; m_clang->Dump(s); } uint32_t SymbolFileNativePDB::FindGlobalVariables( const ConstString &name, const CompilerDeclContext *parent_decl_ctx, uint32_t max_matches, VariableList &variables) { using SymbolAndOffset = std::pair; std::vector results = m_index->globals().findRecordsByName( name.GetStringRef(), m_index->symrecords()); for (const SymbolAndOffset &result : results) { VariableSP var; switch (result.second.kind()) { case SymbolKind::S_GDATA32: case SymbolKind::S_LDATA32: case SymbolKind::S_GTHREAD32: case SymbolKind::S_LTHREAD32: case SymbolKind::S_CONSTANT: { PdbGlobalSymId global(result.first, false); var = GetOrCreateGlobalVariable(global); variables.AddVariable(var); break; } default: continue; } } return variables.GetSize(); } uint32_t SymbolFileNativePDB::FindFunctions( const ConstString &name, const CompilerDeclContext *parent_decl_ctx, FunctionNameType name_type_mask, bool include_inlines, bool append, SymbolContextList &sc_list) { // For now we only support lookup by method name. if (!(name_type_mask & eFunctionNameTypeMethod)) return 0; using SymbolAndOffset = std::pair; std::vector matches = m_index->globals().findRecordsByName( name.GetStringRef(), m_index->symrecords()); for (const SymbolAndOffset &match : matches) { if (match.second.kind() != S_PROCREF && match.second.kind() != S_LPROCREF) continue; ProcRefSym proc(match.second.kind()); cantFail(SymbolDeserializer::deserializeAs(match.second, proc)); if (!IsValidRecord(proc)) continue; CompilandIndexItem &cci = m_index->compilands().GetOrCreateCompiland(proc.modi()); SymbolContext sc; sc.comp_unit = GetOrCreateCompileUnit(cci).get(); sc.module_sp = sc.comp_unit->GetModule(); PdbCompilandSymId func_id(proc.modi(), proc.SymOffset); sc.function = GetOrCreateFunction(func_id, sc).get(); sc_list.Append(sc); } return sc_list.GetSize(); } uint32_t SymbolFileNativePDB::FindFunctions(const RegularExpression ®ex, bool include_inlines, bool append, SymbolContextList &sc_list) { return 0; } uint32_t SymbolFileNativePDB::FindTypes( const SymbolContext &sc, const ConstString &name, const CompilerDeclContext *parent_decl_ctx, bool append, uint32_t max_matches, llvm::DenseSet &searched_symbol_files, TypeMap &types) { if (!append) types.Clear(); if (!name) return 0; searched_symbol_files.clear(); searched_symbol_files.insert(this); // There is an assumption 'name' is not a regex size_t match_count = FindTypesByName(name.GetStringRef(), max_matches, types); return match_count; } size_t SymbolFileNativePDB::FindTypes(const std::vector &context, bool append, TypeMap &types) { return 0; } size_t SymbolFileNativePDB::FindTypesByName(llvm::StringRef name, uint32_t max_matches, TypeMap &types) { size_t match_count = 0; std::vector matches = m_index->tpi().findRecordsByName(name); if (max_matches > 0 && max_matches < matches.size()) matches.resize(max_matches); for (TypeIndex ti : matches) { TypeSP type = GetOrCreateType(ti); if (!type) continue; types.Insert(type); ++match_count; } return match_count; } size_t SymbolFileNativePDB::ParseTypes(const SymbolContext &sc) { return 0; } CompilerDeclContext SymbolFileNativePDB::GetDeclContextContainingUID(lldb::user_id_t uid) { // FIXME: This should look up the uid, decide if it's a symbol or a type, and // depending which it is, find the appropriate DeclContext. Possibilities: // For classes and typedefs: // * Function // * Namespace // * Global // * Block // * Class // For field list members: // * Class // For variables: // * Function // * Namespace // * Global // * Block // For functions: // * Namespace // * Global // * Class // // It is an error to call this function with a uid for any other symbol type. return {m_clang, m_clang->GetTranslationUnitDecl()}; } Type *SymbolFileNativePDB::ResolveTypeUID(lldb::user_id_t type_uid) { auto iter = m_types.find(type_uid); // lldb should not be passing us non-sensical type uids. the only way it // could have a type uid in the first place is if we handed it out, in which // case we should know about the type. However, that doesn't mean we've // instantiated it yet. We can vend out a UID for a future type. So if the // type doesn't exist, let's instantiate it now. if (iter != m_types.end()) return &*iter->second; PdbSymUid uid(type_uid); lldbassert(uid.kind() == PdbSymUidKind::Type); PdbTypeSymId type_id = uid.asTypeSym(); if (type_id.index.isNoneType()) return nullptr; TypeSP type_sp = CreateAndCacheType(type_id); return &*type_sp; } llvm::Optional SymbolFileNativePDB::GetDynamicArrayInfoForUID( lldb::user_id_t type_uid, const lldb_private::ExecutionContext *exe_ctx) { return llvm::None; } bool SymbolFileNativePDB::CompleteType(CompilerType &compiler_type) { // If this is not in our map, it's an error. clang::TagDecl *tag_decl = m_clang->GetAsTagDecl(compiler_type); lldbassert(tag_decl); auto status_iter = m_decl_to_status.find(tag_decl); lldbassert(status_iter != m_decl_to_status.end()); // If it's already complete, just return. DeclStatus &status = status_iter->second; if (status.status == Type::eResolveStateFull) return true; PdbTypeSymId type_id = PdbSymUid(status.uid).asTypeSym(); lldbassert(IsTagRecord(type_id, m_index->tpi())); ClangASTContext::SetHasExternalStorage(compiler_type.GetOpaqueQualType(), false); // In CreateAndCacheType, we already go out of our way to resolve forward // ref UDTs to full decls, and the uids we vend out always refer to full // decls if a full decl exists in the debug info. So if we don't have a full // decl here, it means one doesn't exist in the debug info, and we can't // complete the type. CVType cvt = m_index->tpi().getType(TypeIndex(type_id.index)); if (IsForwardRefUdt(cvt)) return false; auto types_iter = m_types.find(status.uid); lldbassert(types_iter != m_types.end()); if (cvt.kind() == LF_MODIFIER) { TypeIndex unmodified_type = LookThroughModifierRecord(cvt); cvt = m_index->tpi().getType(unmodified_type); // LF_MODIFIERS usually point to forward decls, so this is the one case // where we won't have been able to resolve a forward decl to a full decl // earlier on. So we need to do that now. if (IsForwardRefUdt(cvt)) { llvm::Expected expected_full_ti = m_index->tpi().findFullDeclForForwardRef(unmodified_type); if (!expected_full_ti) { llvm::consumeError(expected_full_ti.takeError()); return false; } cvt = m_index->tpi().getType(*expected_full_ti); lldbassert(!IsForwardRefUdt(cvt)); unmodified_type = *expected_full_ti; } type_id = PdbTypeSymId(unmodified_type, false); } TypeIndex field_list_ti = GetFieldListIndex(cvt); CVType field_list_cvt = m_index->tpi().getType(field_list_ti); if (field_list_cvt.kind() != LF_FIELDLIST) return false; // Visit all members of this class, then perform any finalization necessary // to complete the class. UdtRecordCompleter completer(type_id, compiler_type, *tag_decl, *this); auto error = llvm::codeview::visitMemberRecordStream(field_list_cvt.data(), completer); completer.complete(); status.status = Type::eResolveStateFull; if (!error) return true; llvm::consumeError(std::move(error)); return false; } size_t SymbolFileNativePDB::GetTypes(lldb_private::SymbolContextScope *sc_scope, TypeClass type_mask, lldb_private::TypeList &type_list) { return 0; } CompilerDeclContext SymbolFileNativePDB::FindNamespace(const SymbolContext &sc, const ConstString &name, const CompilerDeclContext *parent_decl_ctx) { return {}; } TypeSystem * SymbolFileNativePDB::GetTypeSystemForLanguage(lldb::LanguageType language) { auto type_system = m_obj_file->GetModule()->GetTypeSystemForLanguage(language); if (type_system) type_system->SetSymbolFile(this); return type_system; } ConstString SymbolFileNativePDB::GetPluginName() { static ConstString g_name("pdb"); return g_name; } uint32_t SymbolFileNativePDB::GetPluginVersion() { return 1; }