//===-- SymbolFileDWARFDebugMap.cpp ----------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "SymbolFileDWARFDebugMap.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleList.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RegularExpression.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/Timer.h" #include "lldb/Symbol/ClangExternalASTSourceCallbacks.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/SymbolVendor.h" #include "lldb/Symbol/VariableList.h" #include "SymbolFileDWARF.h" using namespace lldb; using namespace lldb_private; void SymbolFileDWARFDebugMap::Initialize() { PluginManager::RegisterPlugin (GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance); } void SymbolFileDWARFDebugMap::Terminate() { PluginManager::UnregisterPlugin (CreateInstance); } const char * SymbolFileDWARFDebugMap::GetPluginNameStatic() { return "symbol-file.dwarf2-debugmap"; } const char * SymbolFileDWARFDebugMap::GetPluginDescriptionStatic() { return "DWARF and DWARF3 debug symbol file reader (debug map)."; } SymbolFile* SymbolFileDWARFDebugMap::CreateInstance (ObjectFile* obj_file) { return new SymbolFileDWARFDebugMap (obj_file); } SymbolFileDWARFDebugMap::SymbolFileDWARFDebugMap (ObjectFile* ofile) : SymbolFile(ofile), m_flags(), m_compile_unit_infos(), m_func_indexes(), m_glob_indexes() { } SymbolFileDWARFDebugMap::~SymbolFileDWARFDebugMap() { } void SymbolFileDWARFDebugMap::InitializeObject() { // Install our external AST source callbacks so we can complete Clang types. llvm::OwningPtr ast_source_ap ( new ClangExternalASTSourceCallbacks (SymbolFileDWARFDebugMap::CompleteTagDecl, SymbolFileDWARFDebugMap::CompleteObjCInterfaceDecl, this)); GetClangASTContext().SetExternalSource (ast_source_ap); } void SymbolFileDWARFDebugMap::InitOSO () { if (m_flags.test(kHaveInitializedOSOs)) return; m_flags.set(kHaveInitializedOSOs); // In order to get the abilities of this plug-in, we look at the list of // N_OSO entries (object files) from the symbol table and make sure that // these files exist and also contain valid DWARF. If we get any of that // then we return the abilities of the first N_OSO's DWARF. Symtab* symtab = m_obj_file->GetSymtab(); if (symtab) { std::vector oso_indexes; // StreamFile s(stdout); // symtab->Dump(&s, NULL, eSortOrderNone); // When a mach-o symbol is encoded, the n_type field is encoded in bits // 23:16, and the n_desc field is encoded in bits 15:0. // // To find all N_OSO entries that are part of the DWARF + debug map // we find only object file symbols with the flags value as follows: // bits 23:16 == 0x66 (N_OSO) // bits 15: 0 == 0x0001 (specifies this is a debug map object file) const uint32_t k_oso_symbol_flags_value = 0x660001u; const uint32_t oso_index_count = symtab->AppendSymbolIndexesWithTypeAndFlagsValue(eSymbolTypeObjectFile, k_oso_symbol_flags_value, oso_indexes); if (oso_index_count > 0) { symtab->AppendSymbolIndexesWithType (eSymbolTypeCode, Symtab::eDebugYes, Symtab::eVisibilityAny, m_func_indexes); symtab->AppendSymbolIndexesWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, m_glob_indexes); symtab->SortSymbolIndexesByValue(m_func_indexes, true); symtab->SortSymbolIndexesByValue(m_glob_indexes, true); m_compile_unit_infos.resize(oso_index_count); // s.Printf("%s N_OSO symbols:\n", __PRETTY_FUNCTION__); // symtab->Dump(&s, oso_indexes); for (uint32_t i=0; iSymbolAtIndex(oso_indexes[i] - 1); if (m_compile_unit_infos[i].so_symbol->GetSiblingIndex() == 0) m_compile_unit_infos[i].so_symbol = symtab->SymbolAtIndex(oso_indexes[i] - 2); m_compile_unit_infos[i].oso_symbol = symtab->SymbolAtIndex(oso_indexes[i]); uint32_t sibling_idx = m_compile_unit_infos[i].so_symbol->GetSiblingIndex(); assert (sibling_idx != 0); assert (sibling_idx > i + 1); m_compile_unit_infos[i].last_symbol = symtab->SymbolAtIndex (sibling_idx - 1); m_compile_unit_infos[i].first_symbol_index = symtab->GetIndexForSymbol(m_compile_unit_infos[i].so_symbol); m_compile_unit_infos[i].last_symbol_index = symtab->GetIndexForSymbol(m_compile_unit_infos[i].last_symbol); } } } } Module * SymbolFileDWARFDebugMap::GetModuleByOSOIndex (uint32_t oso_idx) { const uint32_t cu_count = GetNumCompileUnits(); if (oso_idx < cu_count) return GetModuleByCompUnitInfo (&m_compile_unit_infos[oso_idx]); return NULL; } Module * SymbolFileDWARFDebugMap::GetModuleByCompUnitInfo (CompileUnitInfo *comp_unit_info) { if (comp_unit_info->oso_module_sp.get() == NULL) { Symbol *oso_symbol = comp_unit_info->oso_symbol; if (oso_symbol) { FileSpec oso_file_spec(oso_symbol->GetMangled().GetName().AsCString(), true); #define SYMBOL_FILE_DWARF_DEBUG_MODULES 1 #if defined (SYMBOL_FILE_DWARF_DEBUG_MODULES) // Normally we don't want the .o files we open added to the shared // module list. This is because we will add our own section // remappning to each .o file, and if the executable changes, yet // the .o file does not change, we can't have the old remapped // sections in the .o file since they can be out of date. But when // debugging issues in the debug map + DWARF in .o files, it is nice // to be able to use the "image XXX" commands to look at the symbol // tables and sections in the .o files, so the SYMBOL_FILE_DWARF_DEBUG_MODULES // can be used when debugging issues, but it shouldn't be left in // for normal debugging. ModuleList::GetSharedModule (oso_file_spec, m_obj_file->GetModule()->GetArchitecture(), NULL, // lldb_private::UUID pointer NULL, // object name 0, // object offset comp_unit_info->oso_module_sp, NULL, NULL); #else comp_unit_info->oso_module_sp.reset(new Module (oso_file_spec, m_obj_file->GetModule()->GetArchitecture())); #endif } } return comp_unit_info->oso_module_sp.get(); } bool SymbolFileDWARFDebugMap::GetFileSpecForSO (uint32_t oso_idx, FileSpec &file_spec) { if (oso_idx < m_compile_unit_infos.size()) { if (!m_compile_unit_infos[oso_idx].so_file) { if (m_compile_unit_infos[oso_idx].so_symbol == NULL) return false; std::string so_path (m_compile_unit_infos[oso_idx].so_symbol->GetMangled().GetName().AsCString()); if (m_compile_unit_infos[oso_idx].so_symbol[1].GetType() == eSymbolTypeSourceFile) so_path += m_compile_unit_infos[oso_idx].so_symbol[1].GetMangled().GetName().AsCString(); m_compile_unit_infos[oso_idx].so_file.SetFile(so_path.c_str(), true); } file_spec = m_compile_unit_infos[oso_idx].so_file; return true; } return false; } ObjectFile * SymbolFileDWARFDebugMap::GetObjectFileByOSOIndex (uint32_t oso_idx) { Module *oso_module = GetModuleByOSOIndex (oso_idx); if (oso_module) return oso_module->GetObjectFile(); return NULL; } SymbolFileDWARF * SymbolFileDWARFDebugMap::GetSymbolFile (const SymbolContext& sc) { CompileUnitInfo *comp_unit_info = GetCompUnitInfo (sc); if (comp_unit_info) return GetSymbolFileByCompUnitInfo (comp_unit_info); return NULL; } ObjectFile * SymbolFileDWARFDebugMap::GetObjectFileByCompUnitInfo (CompileUnitInfo *comp_unit_info) { Module *oso_module = GetModuleByCompUnitInfo (comp_unit_info); if (oso_module) return oso_module->GetObjectFile(); return NULL; } SymbolFileDWARF * SymbolFileDWARFDebugMap::GetSymbolFileByOSOIndex (uint32_t oso_idx) { if (oso_idx < m_compile_unit_infos.size()) return GetSymbolFileByCompUnitInfo (&m_compile_unit_infos[oso_idx]); return NULL; } SymbolFileDWARF * SymbolFileDWARFDebugMap::GetSymbolFileByCompUnitInfo (CompileUnitInfo *comp_unit_info) { if (comp_unit_info->oso_symbol_vendor == NULL) { ObjectFile *oso_objfile = GetObjectFileByCompUnitInfo (comp_unit_info); if (oso_objfile) { comp_unit_info->oso_symbol_vendor = oso_objfile->GetModule()->GetSymbolVendor(); // SymbolFileDWARF *oso_dwarf = new SymbolFileDWARF(oso_objfile); // comp_unit_info->oso_dwarf_sp.reset (oso_dwarf); if (comp_unit_info->oso_symbol_vendor) { // Set a a pointer to this class to set our OSO DWARF file know // that the DWARF is being used along with a debug map and that // it will have the remapped sections that we do below. ((SymbolFileDWARF *)comp_unit_info->oso_symbol_vendor->GetSymbolFile())->SetDebugMapSymfile(this); comp_unit_info->debug_map_sections_sp.reset(new SectionList); Symtab *exe_symtab = m_obj_file->GetSymtab(); Module *oso_module = oso_objfile->GetModule(); Symtab *oso_symtab = oso_objfile->GetSymtab(); //#define DEBUG_OSO_DMAP // Do not check in with this defined... #if defined(DEBUG_OSO_DMAP) StreamFile s(stdout); s << "OSO symtab:\n"; oso_symtab->Dump(&s, NULL); s << "OSO sections before:\n"; oso_objfile->GetSectionList()->Dump(&s, NULL, true); #endif ///const uint32_t fun_resolve_flags = SymbolContext::Module | eSymbolContextCompUnit | eSymbolContextFunction; //SectionList *oso_sections = oso_objfile->Sections(); // Now we need to make sections that map from zero based object // file addresses to where things eneded up in the main executable. uint32_t oso_start_idx = exe_symtab->GetIndexForSymbol (comp_unit_info->oso_symbol); assert (oso_start_idx != UINT32_MAX); oso_start_idx += 1; const uint32_t oso_end_idx = comp_unit_info->so_symbol->GetSiblingIndex(); uint32_t sect_id = 0x10000; for (uint32_t idx = oso_start_idx; idx < oso_end_idx; ++idx) { Symbol *exe_symbol = exe_symtab->SymbolAtIndex(idx); if (exe_symbol) { if (exe_symbol->IsDebug() == false) continue; switch (exe_symbol->GetType()) { case eSymbolTypeCode: { // For each N_FUN, or function that we run into in the debug map // we make a new section that we add to the sections found in the // .o file. This new section has the file address set to what the // addresses are in the .o file, and the load address is adjusted // to match where it ended up in the final executable! We do this // before we parse any dwarf info so that when it goes get parsed // all section/offset addresses that get registered will resolve // correctly to the new addresses in the main executable. // First we find the original symbol in the .o file's symbol table Symbol *oso_fun_symbol = oso_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), eSymbolTypeCode, Symtab::eDebugNo, Symtab::eVisibilityAny); if (oso_fun_symbol) { // If we found the symbol, then we Section* exe_fun_section = const_cast
(exe_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()); Section* oso_fun_section = const_cast
(oso_fun_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()); if (oso_fun_section) { // Now we create a section that we will add as a child of the // section in which the .o symbol (the N_FUN) exists. // We use the exe_symbol size because the one in the .o file // will just be a symbol with no size, and the exe_symbol // size will reflect any size changes (ppc has been known to // shrink function sizes when it gets rid of jump islands that // aren't needed anymore). SectionSP oso_fun_section_sp (new Section (const_cast
(oso_fun_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()), oso_module, // Module (the .o file) sect_id++, // Section ID starts at 0x10000 and increments so the section IDs don't overlap with the standard mach IDs exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), // Name the section the same as the symbol for which is was generated! eSectionTypeDebug, oso_fun_symbol->GetAddressRangePtr()->GetBaseAddress().GetOffset(), // File VM address offset in the current section exe_symbol->GetByteSize(), // File size (we need the size from the executable) 0, 0, 0)); oso_fun_section_sp->SetLinkedLocation (exe_fun_section, exe_symbol->GetValue().GetFileAddress() - exe_fun_section->GetFileAddress()); oso_fun_section->GetChildren().AddSection(oso_fun_section_sp); comp_unit_info->debug_map_sections_sp->AddSection(oso_fun_section_sp); } } } break; case eSymbolTypeData: { // For each N_GSYM we remap the address for the global by making // a new section that we add to the sections found in the .o file. // This new section has the file address set to what the // addresses are in the .o file, and the load address is adjusted // to match where it ended up in the final executable! We do this // before we parse any dwarf info so that when it goes get parsed // all section/offset addresses that get registered will resolve // correctly to the new addresses in the main executable. We // initially set the section size to be 1 byte, but will need to // fix up these addresses further after all globals have been // parsed to span the gaps, or we can find the global variable // sizes from the DWARF info as we are parsing. #if 0 // First we find the non-stab entry that corresponds to the N_GSYM in the executable Symbol *exe_gsym_symbol = exe_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), eSymbolTypeData, Symtab::eDebugNo, Symtab::eVisibilityAny); #else // The mach-o object file parser already matches up the N_GSYM with with the non-stab // entry, so we shouldn't have to do that. If this ever changes, enable the code above // in the "#if 0" block. STSYM's always match the symbol as found below. Symbol *exe_gsym_symbol = exe_symbol; #endif // Next we find the non-stab entry that corresponds to the N_GSYM in the .o file Symbol *oso_gsym_symbol = oso_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(), eSymbolTypeData, Symtab::eDebugNo, Symtab::eVisibilityAny); if (exe_gsym_symbol && oso_gsym_symbol && exe_gsym_symbol->GetAddressRangePtr() && oso_gsym_symbol->GetAddressRangePtr()) { // If we found the symbol, then we Section* exe_gsym_section = const_cast
(exe_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()); Section* oso_gsym_section = const_cast
(oso_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()); if (oso_gsym_section) { SectionSP oso_gsym_section_sp (new Section (const_cast
(oso_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()), oso_module, // Module (the .o file) sect_id++, // Section ID starts at 0x10000 and increments so the section IDs don't overlap with the standard mach IDs exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), // Name the section the same as the symbol for which is was generated! eSectionTypeDebug, oso_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetOffset(), // File VM address offset in the current section 1, // We don't know the size of the global, just do the main address for now. 0, 0, 0)); oso_gsym_section_sp->SetLinkedLocation (exe_gsym_section, exe_gsym_symbol->GetValue().GetFileAddress() - exe_gsym_section->GetFileAddress()); oso_gsym_section->GetChildren().AddSection(oso_gsym_section_sp); comp_unit_info->debug_map_sections_sp->AddSection(oso_gsym_section_sp); } } } break; // case eSymbolTypeStatic: // { // // For each N_STSYM we remap the address for the global by making // // a new section that we add to the sections found in the .o file. // // This new section has the file address set to what the // // addresses are in the .o file, and the load address is adjusted // // to match where it ended up in the final executable! We do this // // before we parse any dwarf info so that when it goes get parsed // // all section/offset addresses that get registered will resolve // // correctly to the new addresses in the main executable. We // // initially set the section size to be 1 byte, but will need to // // fix up these addresses further after all globals have been // // parsed to span the gaps, or we can find the global variable // // sizes from the DWARF info as we are parsing. // // // Symbol *exe_stsym_symbol = exe_symbol; // // First we find the non-stab entry that corresponds to the N_STSYM in the .o file // Symbol *oso_stsym_symbol = oso_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(), eSymbolTypeData); // if (exe_stsym_symbol && oso_stsym_symbol) // { // // If we found the symbol, then we // Section* exe_stsym_section = const_cast
(exe_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()); // Section* oso_stsym_section = const_cast
(oso_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()); // if (oso_stsym_section) // { // // The load address of the symbol will use the section in the // // executable that contains the debug map that corresponds to // // the N_FUN symbol. We set the offset to reflect the offset // // into that section since we are creating a new section. // AddressRange stsym_load_range(exe_stsym_section, exe_stsym_symbol->GetValue().GetFileAddress() - exe_stsym_section->GetFileAddress(), 1); // // We need the symbol's section offset address from the .o file, but // // we need a non-zero size. // AddressRange stsym_file_range(exe_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection(), exe_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetOffset(), 1); // // // Now we create a section that we will add as a child of the // // section in which the .o symbol (the N_FUN) exists. // //// TODO: mimic what I did for N_FUN if that works... //// // We use the 1 byte for the size because we don't know the //// // size of the global symbol without seeing the DWARF. //// SectionSP oso_fun_section_sp (new Section ( NULL, oso_module, // Module (the .o file) //// sect_id++, // Section ID starts at 0x10000 and increments so the section IDs don't overlap with the standard mach IDs //// exe_symbol->GetMangled().GetName(),// Name the section the same as the symbol for which is was generated! //// // &stsym_load_range, // Load offset is the offset into the executable section for the N_FUN from the debug map //// &stsym_file_range, // File section/offset is just the same os the symbol on the .o file //// 0, 0, 0)); //// //// // Now we add the new section to the .o file's sections as a child //// // of the section in which the N_SECT symbol exists. //// oso_stsym_section->GetChildren().AddSection(oso_fun_section_sp); //// comp_unit_info->debug_map_sections_sp->AddSection(oso_fun_section_sp); // } // } // } // break; } } } #if defined(DEBUG_OSO_DMAP) s << "OSO sections after:\n"; oso_objfile->GetSectionList()->Dump(&s, NULL, true); #endif } } } if (comp_unit_info->oso_symbol_vendor) return (SymbolFileDWARF *)comp_unit_info->oso_symbol_vendor->GetSymbolFile(); return NULL; } uint32_t SymbolFileDWARFDebugMap::GetAbilities () { // In order to get the abilities of this plug-in, we look at the list of // N_OSO entries (object files) from the symbol table and make sure that // these files exist and also contain valid DWARF. If we get any of that // then we return the abilities of the first N_OSO's DWARF. const uint32_t oso_index_count = GetNumCompileUnits(); if (oso_index_count > 0) { const uint32_t dwarf_abilities = SymbolFile::CompileUnits | SymbolFile::Functions | SymbolFile::Blocks | SymbolFile::GlobalVariables | SymbolFile::LocalVariables | SymbolFile::VariableTypes | SymbolFile::LineTables; for (uint32_t oso_idx=0; oso_idxGetAbilities(); if ((oso_abilities & dwarf_abilities) == dwarf_abilities) return oso_abilities; } } } return 0; } uint32_t SymbolFileDWARFDebugMap::GetNumCompileUnits() { InitOSO (); return m_compile_unit_infos.size(); } CompUnitSP SymbolFileDWARFDebugMap::ParseCompileUnitAtIndex(uint32_t cu_idx) { CompUnitSP comp_unit_sp; const uint32_t cu_count = GetNumCompileUnits(); if (cu_idx < cu_count) { if (m_compile_unit_infos[cu_idx].oso_compile_unit_sp.get() == NULL) { SymbolFileDWARF *oso_dwarf = GetSymbolFileByOSOIndex (cu_idx); if (oso_dwarf) { // There is only one compile unit for N_OSO entry right now, so // it will always exist at index zero. m_compile_unit_infos[cu_idx].oso_compile_unit_sp = m_compile_unit_infos[cu_idx].oso_symbol_vendor->GetCompileUnitAtIndex (0); } if (m_compile_unit_infos[cu_idx].oso_compile_unit_sp.get() == NULL) { // We weren't able to get the DWARF for this N_OSO entry (the // .o file may be missing or not at the specified path), make // one up as best we can from the debug map. We set the uid // of the compile unit to the symbol index with the MSBit set // so that it doesn't collide with any uid values from the DWARF Symbol *so_symbol = m_compile_unit_infos[cu_idx].so_symbol; if (so_symbol) { m_compile_unit_infos[cu_idx].oso_compile_unit_sp.reset(new CompileUnit (m_obj_file->GetModule(), NULL, so_symbol->GetMangled().GetName().AsCString(), cu_idx, eLanguageTypeUnknown)); // Let our symbol vendor know about this compile unit m_obj_file->GetModule()->GetSymbolVendor()->SetCompileUnitAtIndex (m_compile_unit_infos[cu_idx].oso_compile_unit_sp, cu_idx); } } } comp_unit_sp = m_compile_unit_infos[cu_idx].oso_compile_unit_sp; } return comp_unit_sp; } SymbolFileDWARFDebugMap::CompileUnitInfo * SymbolFileDWARFDebugMap::GetCompUnitInfo (const SymbolContext& sc) { const uint32_t cu_count = GetNumCompileUnits(); for (uint32_t i=0; iParseCompileUnitFunctions (sc); return 0; } bool SymbolFileDWARFDebugMap::ParseCompileUnitLineTable (const SymbolContext& sc) { SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc); if (oso_dwarf) return oso_dwarf->ParseCompileUnitLineTable (sc); return false; } bool SymbolFileDWARFDebugMap::ParseCompileUnitSupportFiles (const SymbolContext& sc, FileSpecList &support_files) { SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc); if (oso_dwarf) return oso_dwarf->ParseCompileUnitSupportFiles (sc, support_files); return false; } size_t SymbolFileDWARFDebugMap::ParseFunctionBlocks (const SymbolContext& sc) { SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc); if (oso_dwarf) return oso_dwarf->ParseFunctionBlocks (sc); return 0; } size_t SymbolFileDWARFDebugMap::ParseTypes (const SymbolContext& sc) { SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc); if (oso_dwarf) return oso_dwarf->ParseTypes (sc); return 0; } size_t SymbolFileDWARFDebugMap::ParseVariablesForContext (const SymbolContext& sc) { SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc); if (oso_dwarf) return oso_dwarf->ParseTypes (sc); return 0; } Type* SymbolFileDWARFDebugMap::ResolveTypeUID(lldb::user_id_t type_uid) { return NULL; } lldb::clang_type_t SymbolFileDWARFDebugMap::ResolveClangOpaqueTypeDefinition (lldb::clang_type_t clang_Type) { // We have a struct/union/class/enum that needs to be fully resolved. return NULL; } uint32_t SymbolFileDWARFDebugMap::ResolveSymbolContext (const Address& exe_so_addr, uint32_t resolve_scope, SymbolContext& sc) { uint32_t resolved_flags = 0; Symtab* symtab = m_obj_file->GetSymtab(); if (symtab) { const addr_t exe_file_addr = exe_so_addr.GetFileAddress(); sc.symbol = symtab->FindSymbolContainingFileAddress (exe_file_addr, &m_func_indexes[0], m_func_indexes.size()); if (sc.symbol != NULL) { resolved_flags |= eSymbolContextSymbol; uint32_t oso_idx = 0; CompileUnitInfo* comp_unit_info = GetCompileUnitInfoForSymbolWithID (sc.symbol->GetID(), &oso_idx); if (comp_unit_info) { SymbolFileDWARF *oso_dwarf = GetSymbolFileByOSOIndex (oso_idx); ObjectFile *oso_objfile = GetObjectFileByOSOIndex (oso_idx); if (oso_dwarf && oso_objfile) { SectionList *oso_section_list = oso_objfile->GetSectionList(); SectionSP oso_symbol_section_sp (oso_section_list->FindSectionContainingLinkedFileAddress (exe_file_addr, UINT32_MAX)); if (oso_symbol_section_sp) { const addr_t linked_file_addr = oso_symbol_section_sp->GetLinkedFileAddress(); Address oso_so_addr (oso_symbol_section_sp.get(), exe_file_addr - linked_file_addr); if (oso_so_addr.IsSectionOffset()) resolved_flags |= oso_dwarf->ResolveSymbolContext (oso_so_addr, resolve_scope, sc); } } } } } return resolved_flags; } uint32_t SymbolFileDWARFDebugMap::ResolveSymbolContext (const FileSpec& file_spec, uint32_t line, bool check_inlines, uint32_t resolve_scope, SymbolContextList& sc_list) { uint32_t initial = sc_list.GetSize(); const uint32_t cu_count = GetNumCompileUnits(); FileSpec so_file_spec; for (uint32_t i=0; iResolveSymbolContext(file_spec, line, check_inlines, resolve_scope, sc_list); } } } return sc_list.GetSize() - initial; } uint32_t SymbolFileDWARFDebugMap::PrivateFindGlobalVariables ( const ConstString &name, const std::vector &indexes, // Indexes into the symbol table that match "name" uint32_t max_matches, VariableList& variables ) { const uint32_t original_size = variables.GetSize(); const size_t match_count = indexes.size(); for (size_t i=0; iFindGlobalVariables(name, true, max_matches, variables)) if (variables.GetSize() > max_matches) break; } } } return variables.GetSize() - original_size; } uint32_t SymbolFileDWARFDebugMap::FindGlobalVariables (const ConstString &name, bool append, uint32_t max_matches, VariableList& variables) { // If we aren't appending the results to this list, then clear the list if (!append) variables.Clear(); // Remember how many variables are in the list before we search in case // we are appending the results to a variable list. const uint32_t original_size = variables.GetSize(); uint32_t total_matches = 0; SymbolFileDWARF *oso_dwarf; for (uint32_t oso_idx = 0; ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx) { const uint32_t oso_matches = oso_dwarf->FindGlobalVariables (name, true, max_matches, variables); if (oso_matches > 0) { total_matches += oso_matches; // Are we getting all matches? if (max_matches == UINT32_MAX) continue; // Yep, continue getting everything // If we have found enough matches, lets get out if (max_matches >= total_matches) break; // Update the max matches for any subsequent calls to find globals // in any other object files with DWARF max_matches -= oso_matches; } } // Return the number of variable that were appended to the list return variables.GetSize() - original_size; } uint32_t SymbolFileDWARFDebugMap::FindGlobalVariables (const RegularExpression& regex, bool append, uint32_t max_matches, VariableList& variables) { // If we aren't appending the results to this list, then clear the list if (!append) variables.Clear(); // Remember how many variables are in the list before we search in case // we are appending the results to a variable list. const uint32_t original_size = variables.GetSize(); uint32_t total_matches = 0; SymbolFileDWARF *oso_dwarf; for (uint32_t oso_idx = 0; ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx) { const uint32_t oso_matches = oso_dwarf->FindGlobalVariables (regex, true, max_matches, variables); if (oso_matches > 0) { total_matches += oso_matches; // Are we getting all matches? if (max_matches == UINT32_MAX) continue; // Yep, continue getting everything // If we have found enough matches, lets get out if (max_matches >= total_matches) break; // Update the max matches for any subsequent calls to find globals // in any other object files with DWARF max_matches -= oso_matches; } } // Return the number of variable that were appended to the list return variables.GetSize() - original_size; } int SymbolFileDWARFDebugMap::SymbolContainsSymbolWithIndex (uint32_t *symbol_idx_ptr, const CompileUnitInfo *comp_unit_info) { const uint32_t symbol_idx = *symbol_idx_ptr; if (symbol_idx < comp_unit_info->first_symbol_index) return -1; if (symbol_idx <= comp_unit_info->last_symbol_index) return 0; return 1; } int SymbolFileDWARFDebugMap::SymbolContainsSymbolWithID (user_id_t *symbol_idx_ptr, const CompileUnitInfo *comp_unit_info) { const user_id_t symbol_id = *symbol_idx_ptr; if (symbol_id < comp_unit_info->so_symbol->GetID()) return -1; if (symbol_id <= comp_unit_info->last_symbol->GetID()) return 0; return 1; } SymbolFileDWARFDebugMap::CompileUnitInfo* SymbolFileDWARFDebugMap::GetCompileUnitInfoForSymbolWithIndex (uint32_t symbol_idx, uint32_t *oso_idx_ptr) { const uint32_t oso_index_count = m_compile_unit_infos.size(); CompileUnitInfo *comp_unit_info = NULL; if (oso_index_count) { comp_unit_info = (CompileUnitInfo*)bsearch(&symbol_idx, &m_compile_unit_infos[0], m_compile_unit_infos.size(), sizeof(CompileUnitInfo), (comparison_function)SymbolContainsSymbolWithIndex); } if (oso_idx_ptr) { if (comp_unit_info != NULL) *oso_idx_ptr = comp_unit_info - &m_compile_unit_infos[0]; else *oso_idx_ptr = UINT32_MAX; } return comp_unit_info; } SymbolFileDWARFDebugMap::CompileUnitInfo* SymbolFileDWARFDebugMap::GetCompileUnitInfoForSymbolWithID (user_id_t symbol_id, uint32_t *oso_idx_ptr) { const uint32_t oso_index_count = m_compile_unit_infos.size(); CompileUnitInfo *comp_unit_info = NULL; if (oso_index_count) { comp_unit_info = (CompileUnitInfo*)bsearch(&symbol_id, &m_compile_unit_infos[0], m_compile_unit_infos.size(), sizeof(CompileUnitInfo), (comparison_function)SymbolContainsSymbolWithID); } if (oso_idx_ptr) { if (comp_unit_info != NULL) *oso_idx_ptr = comp_unit_info - &m_compile_unit_infos[0]; else *oso_idx_ptr = UINT32_MAX; } return comp_unit_info; } static void RemoveFunctionsWithModuleNotEqualTo (Module *module, SymbolContextList &sc_list, uint32_t start_idx) { // We found functions in .o files. Not all functions in the .o files // will have made it into the final output file. The ones that did // make it into the final output file will have a section whose module // matches the module from the ObjectFile for this SymbolFile. When // the modules don't match, then we have something that was in a // .o file, but doesn't map to anything in the final executable. uint32_t i=start_idx; while (i < sc_list.GetSize()) { SymbolContext sc; sc_list.GetContextAtIndex(i, sc); if (sc.function) { const Section *section = sc.function->GetAddressRange().GetBaseAddress().GetSection(); if (section->GetModule() != module) { sc_list.RemoveContextAtIndex(i); continue; } } ++i; } } uint32_t SymbolFileDWARFDebugMap::FindFunctions(const ConstString &name, uint32_t name_type_mask, bool append, SymbolContextList& sc_list) { Timer scoped_timer (__PRETTY_FUNCTION__, "SymbolFileDWARFDebugMap::FindFunctions (name = %s)", name.GetCString()); uint32_t initial_size = 0; if (append) initial_size = sc_list.GetSize(); else sc_list.Clear(); uint32_t oso_idx = 0; SymbolFileDWARF *oso_dwarf; while ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx++)) != NULL) { uint32_t sc_idx = sc_list.GetSize(); if (oso_dwarf->FindFunctions(name, name_type_mask, true, sc_list)) { RemoveFunctionsWithModuleNotEqualTo (m_obj_file->GetModule(), sc_list, sc_idx); } } return sc_list.GetSize() - initial_size; } uint32_t SymbolFileDWARFDebugMap::FindFunctions (const RegularExpression& regex, bool append, SymbolContextList& sc_list) { Timer scoped_timer (__PRETTY_FUNCTION__, "SymbolFileDWARFDebugMap::FindFunctions (regex = '%s')", regex.GetText()); uint32_t initial_size = 0; if (append) initial_size = sc_list.GetSize(); else sc_list.Clear(); uint32_t oso_idx = 0; SymbolFileDWARF *oso_dwarf; while ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx++)) != NULL) { uint32_t sc_idx = sc_list.GetSize(); if (oso_dwarf->FindFunctions(regex, true, sc_list)) { RemoveFunctionsWithModuleNotEqualTo (m_obj_file->GetModule(), sc_list, sc_idx); } } return sc_list.GetSize() - initial_size; } TypeSP SymbolFileDWARFDebugMap::FindDefinitionTypeForDIE ( DWARFCompileUnit* cu, const DWARFDebugInfoEntry *die, const ConstString &type_name ) { TypeSP type_sp; SymbolFileDWARF *oso_dwarf; for (uint32_t oso_idx = 0; ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx) { type_sp = oso_dwarf->FindDefinitionTypeForDIE (cu, die, type_name); if (type_sp) break; } return type_sp; } uint32_t SymbolFileDWARFDebugMap::FindTypes ( const SymbolContext& sc, const ConstString &name, bool append, uint32_t max_matches, TypeList& types ) { if (!append) types.Clear(); const uint32_t initial_types_size = types.GetSize(); SymbolFileDWARF *oso_dwarf; if (sc.comp_unit) { oso_dwarf = GetSymbolFile (sc); if (oso_dwarf) return oso_dwarf->FindTypes (sc, name, append, max_matches, types); } else { uint32_t oso_idx = 0; while ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx++)) != NULL) oso_dwarf->FindTypes (sc, name, append, max_matches, types); } return types.GetSize() - initial_types_size; } // //uint32_t //SymbolFileDWARFDebugMap::FindTypes (const SymbolContext& sc, const RegularExpression& regex, bool append, uint32_t max_matches, Type::Encoding encoding, lldb::user_id_t udt_uid, TypeList& types) //{ // SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc); // if (oso_dwarf) // return oso_dwarf->FindTypes (sc, regex, append, max_matches, encoding, udt_uid, types); // return 0; //} ClangNamespaceDecl SymbolFileDWARFDebugMap::FindNamespace (const lldb_private::SymbolContext& sc, const lldb_private::ConstString &name) { ClangNamespaceDecl matching_namespace; SymbolFileDWARF *oso_dwarf; if (sc.comp_unit) { oso_dwarf = GetSymbolFile (sc); if (oso_dwarf) matching_namespace = oso_dwarf->FindNamespace (sc, name); } else { for (uint32_t oso_idx = 0; ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx) { matching_namespace = oso_dwarf->FindNamespace (sc, name); if (matching_namespace) break; } } return matching_namespace; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ const char * SymbolFileDWARFDebugMap::GetPluginName() { return "SymbolFileDWARFDebugMap"; } const char * SymbolFileDWARFDebugMap::GetShortPluginName() { return GetPluginNameStatic(); } uint32_t SymbolFileDWARFDebugMap::GetPluginVersion() { return 1; } void SymbolFileDWARFDebugMap::SetCompileUnit (SymbolFileDWARF *oso_dwarf, const CompUnitSP &cu_sp) { const uint32_t cu_count = GetNumCompileUnits(); for (uint32_t i=0; iGetSymbolFile() == oso_dwarf) { if (m_compile_unit_infos[i].oso_compile_unit_sp) { assert (m_compile_unit_infos[i].oso_compile_unit_sp.get() == cu_sp.get()); } else { m_compile_unit_infos[i].oso_compile_unit_sp = cu_sp; } } } } void SymbolFileDWARFDebugMap::CompleteTagDecl (void *baton, clang::TagDecl *decl) { SymbolFileDWARFDebugMap *symbol_file_dwarf = (SymbolFileDWARFDebugMap *)baton; clang_type_t clang_type = symbol_file_dwarf->GetClangASTContext().GetTypeForDecl (decl); if (clang_type) { SymbolFileDWARF *oso_dwarf; for (uint32_t oso_idx = 0; ((oso_dwarf = symbol_file_dwarf->GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx) { if (oso_dwarf->HasForwardDeclForClangType (clang_type)) { oso_dwarf->ResolveClangOpaqueTypeDefinition (clang_type); return; } } } } void SymbolFileDWARFDebugMap::CompleteObjCInterfaceDecl (void *baton, clang::ObjCInterfaceDecl *decl) { SymbolFileDWARFDebugMap *symbol_file_dwarf = (SymbolFileDWARFDebugMap *)baton; clang_type_t clang_type = symbol_file_dwarf->GetClangASTContext().GetTypeForDecl (decl); if (clang_type) { SymbolFileDWARF *oso_dwarf; for (uint32_t oso_idx = 0; ((oso_dwarf = symbol_file_dwarf->GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx) { if (oso_dwarf->HasForwardDeclForClangType (clang_type)) { oso_dwarf->ResolveClangOpaqueTypeDefinition (clang_type); return; } } } }