//===-- PythonDataObjects.cpp -----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifdef LLDB_DISABLE_PYTHON // Python is disabled in this build #else #include "PythonDataObjects.h" #include "ScriptInterpreterPython.h" #include "lldb/Host/File.h" #include "lldb/Host/FileSystem.h" #include "lldb/Interpreter/ScriptInterpreter.h" #include "lldb/Utility/Stream.h" #include "llvm/Support/ConvertUTF.h" #include #include "llvm/ADT/StringSwitch.h" using namespace lldb_private; using namespace lldb; void StructuredPythonObject::Dump(Stream &s, bool pretty_print) const { s << "Python Obj: 0x" << GetValue(); } //---------------------------------------------------------------------- // PythonObject //---------------------------------------------------------------------- void PythonObject::Dump(Stream &strm) const { if (m_py_obj) { FILE *file = ::tmpfile(); if (file) { ::PyObject_Print(m_py_obj, file, 0); const long length = ftell(file); if (length) { ::rewind(file); std::vector file_contents(length, '\0'); const size_t length_read = ::fread(file_contents.data(), 1, file_contents.size(), file); if (length_read > 0) strm.Write(file_contents.data(), length_read); } ::fclose(file); } } else strm.PutCString("NULL"); } PyObjectType PythonObject::GetObjectType() const { if (!IsAllocated()) return PyObjectType::None; if (PythonModule::Check(m_py_obj)) return PyObjectType::Module; if (PythonList::Check(m_py_obj)) return PyObjectType::List; if (PythonTuple::Check(m_py_obj)) return PyObjectType::Tuple; if (PythonDictionary::Check(m_py_obj)) return PyObjectType::Dictionary; if (PythonString::Check(m_py_obj)) return PyObjectType::String; #if PY_MAJOR_VERSION >= 3 if (PythonBytes::Check(m_py_obj)) return PyObjectType::Bytes; #endif if (PythonByteArray::Check(m_py_obj)) return PyObjectType::ByteArray; if (PythonInteger::Check(m_py_obj)) return PyObjectType::Integer; if (PythonFile::Check(m_py_obj)) return PyObjectType::File; if (PythonCallable::Check(m_py_obj)) return PyObjectType::Callable; return PyObjectType::Unknown; } PythonString PythonObject::Repr() const { if (!m_py_obj) return PythonString(); PyObject *repr = PyObject_Repr(m_py_obj); if (!repr) return PythonString(); return PythonString(PyRefType::Owned, repr); } PythonString PythonObject::Str() const { if (!m_py_obj) return PythonString(); PyObject *str = PyObject_Str(m_py_obj); if (!str) return PythonString(); return PythonString(PyRefType::Owned, str); } PythonObject PythonObject::ResolveNameWithDictionary(llvm::StringRef name, const PythonDictionary &dict) { size_t dot_pos = name.find_first_of('.'); llvm::StringRef piece = name.substr(0, dot_pos); PythonObject result = dict.GetItemForKey(PythonString(piece)); if (dot_pos == llvm::StringRef::npos) { // There was no dot, we're done. return result; } // There was a dot. The remaining portion of the name should be looked up in // the context of the object that was found in the dictionary. return result.ResolveName(name.substr(dot_pos + 1)); } PythonObject PythonObject::ResolveName(llvm::StringRef name) const { // Resolve the name in the context of the specified object. If, for example, // `this` refers to a PyModule, then this will look for `name` in this // module. If `this` refers to a PyType, then it will resolve `name` as an // attribute of that type. If `this` refers to an instance of an object, // then it will resolve `name` as the value of the specified field. // // This function handles dotted names so that, for example, if `m_py_obj` // refers to the `sys` module, and `name` == "path.append", then it will find // the function `sys.path.append`. size_t dot_pos = name.find_first_of('.'); if (dot_pos == llvm::StringRef::npos) { // No dots in the name, we should be able to find the value immediately as // an attribute of `m_py_obj`. return GetAttributeValue(name); } // Look up the first piece of the name, and resolve the rest as a child of // that. PythonObject parent = ResolveName(name.substr(0, dot_pos)); if (!parent.IsAllocated()) return PythonObject(); // Tail recursion.. should be optimized by the compiler return parent.ResolveName(name.substr(dot_pos + 1)); } bool PythonObject::HasAttribute(llvm::StringRef attr) const { if (!IsValid()) return false; PythonString py_attr(attr); return !!PyObject_HasAttr(m_py_obj, py_attr.get()); } PythonObject PythonObject::GetAttributeValue(llvm::StringRef attr) const { if (!IsValid()) return PythonObject(); PythonString py_attr(attr); if (!PyObject_HasAttr(m_py_obj, py_attr.get())) return PythonObject(); return PythonObject(PyRefType::Owned, PyObject_GetAttr(m_py_obj, py_attr.get())); } bool PythonObject::IsNone() const { return m_py_obj == Py_None; } bool PythonObject::IsValid() const { return m_py_obj != nullptr; } bool PythonObject::IsAllocated() const { return IsValid() && !IsNone(); } StructuredData::ObjectSP PythonObject::CreateStructuredObject() const { switch (GetObjectType()) { case PyObjectType::Dictionary: return PythonDictionary(PyRefType::Borrowed, m_py_obj) .CreateStructuredDictionary(); case PyObjectType::Integer: return PythonInteger(PyRefType::Borrowed, m_py_obj) .CreateStructuredInteger(); case PyObjectType::List: return PythonList(PyRefType::Borrowed, m_py_obj).CreateStructuredArray(); case PyObjectType::String: return PythonString(PyRefType::Borrowed, m_py_obj).CreateStructuredString(); case PyObjectType::Bytes: return PythonBytes(PyRefType::Borrowed, m_py_obj).CreateStructuredString(); case PyObjectType::ByteArray: return PythonByteArray(PyRefType::Borrowed, m_py_obj) .CreateStructuredString(); case PyObjectType::None: return StructuredData::ObjectSP(); default: return StructuredData::ObjectSP(new StructuredPythonObject(m_py_obj)); } } //---------------------------------------------------------------------- // PythonString //---------------------------------------------------------------------- PythonBytes::PythonBytes() : PythonObject() {} PythonBytes::PythonBytes(llvm::ArrayRef bytes) : PythonObject() { SetBytes(bytes); } PythonBytes::PythonBytes(const uint8_t *bytes, size_t length) : PythonObject() { SetBytes(llvm::ArrayRef(bytes, length)); } PythonBytes::PythonBytes(PyRefType type, PyObject *py_obj) : PythonObject() { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a string } PythonBytes::PythonBytes(const PythonBytes &object) : PythonObject(object) {} PythonBytes::~PythonBytes() {} bool PythonBytes::Check(PyObject *py_obj) { if (!py_obj) return false; if (PyBytes_Check(py_obj)) return true; return false; } void PythonBytes::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonBytes::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } llvm::ArrayRef PythonBytes::GetBytes() const { if (!IsValid()) return llvm::ArrayRef(); Py_ssize_t size; char *c; PyBytes_AsStringAndSize(m_py_obj, &c, &size); return llvm::ArrayRef(reinterpret_cast(c), size); } size_t PythonBytes::GetSize() const { if (!IsValid()) return 0; return PyBytes_Size(m_py_obj); } void PythonBytes::SetBytes(llvm::ArrayRef bytes) { const char *data = reinterpret_cast(bytes.data()); PyObject *py_bytes = PyBytes_FromStringAndSize(data, bytes.size()); PythonObject::Reset(PyRefType::Owned, py_bytes); } StructuredData::StringSP PythonBytes::CreateStructuredString() const { StructuredData::StringSP result(new StructuredData::String); Py_ssize_t size; char *c; PyBytes_AsStringAndSize(m_py_obj, &c, &size); result->SetValue(std::string(c, size)); return result; } PythonByteArray::PythonByteArray(llvm::ArrayRef bytes) : PythonByteArray(bytes.data(), bytes.size()) {} PythonByteArray::PythonByteArray(const uint8_t *bytes, size_t length) { const char *str = reinterpret_cast(bytes); Reset(PyRefType::Owned, PyByteArray_FromStringAndSize(str, length)); } PythonByteArray::PythonByteArray(PyRefType type, PyObject *o) { Reset(type, o); } PythonByteArray::PythonByteArray(const PythonBytes &object) : PythonObject(object) {} PythonByteArray::~PythonByteArray() {} bool PythonByteArray::Check(PyObject *py_obj) { if (!py_obj) return false; if (PyByteArray_Check(py_obj)) return true; return false; } void PythonByteArray::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonByteArray::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } llvm::ArrayRef PythonByteArray::GetBytes() const { if (!IsValid()) return llvm::ArrayRef(); char *c = PyByteArray_AsString(m_py_obj); size_t size = GetSize(); return llvm::ArrayRef(reinterpret_cast(c), size); } size_t PythonByteArray::GetSize() const { if (!IsValid()) return 0; return PyByteArray_Size(m_py_obj); } StructuredData::StringSP PythonByteArray::CreateStructuredString() const { StructuredData::StringSP result(new StructuredData::String); llvm::ArrayRef bytes = GetBytes(); const char *str = reinterpret_cast(bytes.data()); result->SetValue(std::string(str, bytes.size())); return result; } //---------------------------------------------------------------------- // PythonString //---------------------------------------------------------------------- PythonString::PythonString(PyRefType type, PyObject *py_obj) : PythonObject() { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a string } PythonString::PythonString(const PythonString &object) : PythonObject(object) {} PythonString::PythonString(llvm::StringRef string) : PythonObject() { SetString(string); } PythonString::PythonString(const char *string) : PythonObject() { SetString(llvm::StringRef(string)); } PythonString::PythonString() : PythonObject() {} PythonString::~PythonString() {} bool PythonString::Check(PyObject *py_obj) { if (!py_obj) return false; if (PyUnicode_Check(py_obj)) return true; #if PY_MAJOR_VERSION < 3 if (PyString_Check(py_obj)) return true; #endif return false; } void PythonString::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonString::Check(py_obj)) { PythonObject::Reset(); return; } #if PY_MAJOR_VERSION < 3 // In Python 2, Don't store PyUnicode objects directly, because we need // access to their underlying character buffers which Python 2 doesn't // provide. if (PyUnicode_Check(py_obj)) result.Reset(PyRefType::Owned, PyUnicode_AsUTF8String(result.get())); #endif // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } llvm::StringRef PythonString::GetString() const { if (!IsValid()) return llvm::StringRef(); Py_ssize_t size; const char *data; #if PY_MAJOR_VERSION >= 3 data = PyUnicode_AsUTF8AndSize(m_py_obj, &size); #else char *c; PyString_AsStringAndSize(m_py_obj, &c, &size); data = c; #endif return llvm::StringRef(data, size); } size_t PythonString::GetSize() const { if (IsValid()) { #if PY_MAJOR_VERSION >= 3 return PyUnicode_GetSize(m_py_obj); #else return PyString_Size(m_py_obj); #endif } return 0; } void PythonString::SetString(llvm::StringRef string) { #if PY_MAJOR_VERSION >= 3 PyObject *unicode = PyUnicode_FromStringAndSize(string.data(), string.size()); PythonObject::Reset(PyRefType::Owned, unicode); #else PyObject *str = PyString_FromStringAndSize(string.data(), string.size()); PythonObject::Reset(PyRefType::Owned, str); #endif } StructuredData::StringSP PythonString::CreateStructuredString() const { StructuredData::StringSP result(new StructuredData::String); result->SetValue(GetString()); return result; } //---------------------------------------------------------------------- // PythonInteger //---------------------------------------------------------------------- PythonInteger::PythonInteger() : PythonObject() {} PythonInteger::PythonInteger(PyRefType type, PyObject *py_obj) : PythonObject() { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a integer type } PythonInteger::PythonInteger(const PythonInteger &object) : PythonObject(object) {} PythonInteger::PythonInteger(int64_t value) : PythonObject() { SetInteger(value); } PythonInteger::~PythonInteger() {} bool PythonInteger::Check(PyObject *py_obj) { if (!py_obj) return false; #if PY_MAJOR_VERSION >= 3 // Python 3 does not have PyInt_Check. There is only one type of integral // value, long. return PyLong_Check(py_obj); #else return PyLong_Check(py_obj) || PyInt_Check(py_obj); #endif } void PythonInteger::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonInteger::Check(py_obj)) { PythonObject::Reset(); return; } #if PY_MAJOR_VERSION < 3 // Always store this as a PyLong, which makes interoperability between Python // 2.x and Python 3.x easier. This is only necessary in 2.x, since 3.x // doesn't even have a PyInt. if (PyInt_Check(py_obj)) { // Since we converted the original object to a different type, the new // object is an owned object regardless of the ownership semantics // requested by the user. result.Reset(PyRefType::Owned, PyLong_FromLongLong(PyInt_AsLong(py_obj))); } #endif assert(PyLong_Check(result.get()) && "Couldn't get a PyLong from this PyObject"); // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } int64_t PythonInteger::GetInteger() const { if (m_py_obj) { assert(PyLong_Check(m_py_obj) && "PythonInteger::GetInteger has a PyObject that isn't a PyLong"); int overflow = 0; int64_t result = PyLong_AsLongLongAndOverflow(m_py_obj, &overflow); if (overflow != 0) { // We got an integer that overflows, like 18446744072853913392L we can't // use PyLong_AsLongLong() as it will return 0xffffffffffffffff. If we // use the unsigned long long it will work as expected. const uint64_t uval = PyLong_AsUnsignedLongLong(m_py_obj); result = static_cast(uval); } return result; } return UINT64_MAX; } void PythonInteger::SetInteger(int64_t value) { PythonObject::Reset(PyRefType::Owned, PyLong_FromLongLong(value)); } StructuredData::IntegerSP PythonInteger::CreateStructuredInteger() const { StructuredData::IntegerSP result(new StructuredData::Integer); result->SetValue(GetInteger()); return result; } //---------------------------------------------------------------------- // PythonList //---------------------------------------------------------------------- PythonList::PythonList(PyInitialValue value) : PythonObject() { if (value == PyInitialValue::Empty) Reset(PyRefType::Owned, PyList_New(0)); } PythonList::PythonList(int list_size) : PythonObject() { Reset(PyRefType::Owned, PyList_New(list_size)); } PythonList::PythonList(PyRefType type, PyObject *py_obj) : PythonObject() { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a list } PythonList::PythonList(const PythonList &list) : PythonObject(list) {} PythonList::~PythonList() {} bool PythonList::Check(PyObject *py_obj) { if (!py_obj) return false; return PyList_Check(py_obj); } void PythonList::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonList::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } uint32_t PythonList::GetSize() const { if (IsValid()) return PyList_GET_SIZE(m_py_obj); return 0; } PythonObject PythonList::GetItemAtIndex(uint32_t index) const { if (IsValid()) return PythonObject(PyRefType::Borrowed, PyList_GetItem(m_py_obj, index)); return PythonObject(); } void PythonList::SetItemAtIndex(uint32_t index, const PythonObject &object) { if (IsAllocated() && object.IsValid()) { // PyList_SetItem is documented to "steal" a reference, so we need to // convert it to an owned reference by incrementing it. Py_INCREF(object.get()); PyList_SetItem(m_py_obj, index, object.get()); } } void PythonList::AppendItem(const PythonObject &object) { if (IsAllocated() && object.IsValid()) { // `PyList_Append` does *not* steal a reference, so do not call `Py_INCREF` // here like we do with `PyList_SetItem`. PyList_Append(m_py_obj, object.get()); } } StructuredData::ArraySP PythonList::CreateStructuredArray() const { StructuredData::ArraySP result(new StructuredData::Array); uint32_t count = GetSize(); for (uint32_t i = 0; i < count; ++i) { PythonObject obj = GetItemAtIndex(i); result->AddItem(obj.CreateStructuredObject()); } return result; } //---------------------------------------------------------------------- // PythonTuple //---------------------------------------------------------------------- PythonTuple::PythonTuple(PyInitialValue value) : PythonObject() { if (value == PyInitialValue::Empty) Reset(PyRefType::Owned, PyTuple_New(0)); } PythonTuple::PythonTuple(int tuple_size) : PythonObject() { Reset(PyRefType::Owned, PyTuple_New(tuple_size)); } PythonTuple::PythonTuple(PyRefType type, PyObject *py_obj) : PythonObject() { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a tuple } PythonTuple::PythonTuple(const PythonTuple &tuple) : PythonObject(tuple) {} PythonTuple::PythonTuple(std::initializer_list objects) { m_py_obj = PyTuple_New(objects.size()); uint32_t idx = 0; for (auto object : objects) { if (object.IsValid()) SetItemAtIndex(idx, object); idx++; } } PythonTuple::PythonTuple(std::initializer_list objects) { m_py_obj = PyTuple_New(objects.size()); uint32_t idx = 0; for (auto py_object : objects) { PythonObject object(PyRefType::Borrowed, py_object); if (object.IsValid()) SetItemAtIndex(idx, object); idx++; } } PythonTuple::~PythonTuple() {} bool PythonTuple::Check(PyObject *py_obj) { if (!py_obj) return false; return PyTuple_Check(py_obj); } void PythonTuple::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonTuple::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } uint32_t PythonTuple::GetSize() const { if (IsValid()) return PyTuple_GET_SIZE(m_py_obj); return 0; } PythonObject PythonTuple::GetItemAtIndex(uint32_t index) const { if (IsValid()) return PythonObject(PyRefType::Borrowed, PyTuple_GetItem(m_py_obj, index)); return PythonObject(); } void PythonTuple::SetItemAtIndex(uint32_t index, const PythonObject &object) { if (IsAllocated() && object.IsValid()) { // PyTuple_SetItem is documented to "steal" a reference, so we need to // convert it to an owned reference by incrementing it. Py_INCREF(object.get()); PyTuple_SetItem(m_py_obj, index, object.get()); } } StructuredData::ArraySP PythonTuple::CreateStructuredArray() const { StructuredData::ArraySP result(new StructuredData::Array); uint32_t count = GetSize(); for (uint32_t i = 0; i < count; ++i) { PythonObject obj = GetItemAtIndex(i); result->AddItem(obj.CreateStructuredObject()); } return result; } //---------------------------------------------------------------------- // PythonDictionary //---------------------------------------------------------------------- PythonDictionary::PythonDictionary(PyInitialValue value) : PythonObject() { if (value == PyInitialValue::Empty) Reset(PyRefType::Owned, PyDict_New()); } PythonDictionary::PythonDictionary(PyRefType type, PyObject *py_obj) : PythonObject() { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a dictionary } PythonDictionary::PythonDictionary(const PythonDictionary &object) : PythonObject(object) {} PythonDictionary::~PythonDictionary() {} bool PythonDictionary::Check(PyObject *py_obj) { if (!py_obj) return false; return PyDict_Check(py_obj); } void PythonDictionary::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonDictionary::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } uint32_t PythonDictionary::GetSize() const { if (IsValid()) return PyDict_Size(m_py_obj); return 0; } PythonList PythonDictionary::GetKeys() const { if (IsValid()) return PythonList(PyRefType::Owned, PyDict_Keys(m_py_obj)); return PythonList(PyInitialValue::Invalid); } PythonObject PythonDictionary::GetItemForKey(const PythonObject &key) const { if (IsAllocated() && key.IsValid()) return PythonObject(PyRefType::Borrowed, PyDict_GetItem(m_py_obj, key.get())); return PythonObject(); } void PythonDictionary::SetItemForKey(const PythonObject &key, const PythonObject &value) { if (IsAllocated() && key.IsValid() && value.IsValid()) PyDict_SetItem(m_py_obj, key.get(), value.get()); } StructuredData::DictionarySP PythonDictionary::CreateStructuredDictionary() const { StructuredData::DictionarySP result(new StructuredData::Dictionary); PythonList keys(GetKeys()); uint32_t num_keys = keys.GetSize(); for (uint32_t i = 0; i < num_keys; ++i) { PythonObject key = keys.GetItemAtIndex(i); PythonObject value = GetItemForKey(key); StructuredData::ObjectSP structured_value = value.CreateStructuredObject(); result->AddItem(key.Str().GetString(), structured_value); } return result; } PythonModule::PythonModule() : PythonObject() {} PythonModule::PythonModule(PyRefType type, PyObject *py_obj) { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a module } PythonModule::PythonModule(const PythonModule &dict) : PythonObject(dict) {} PythonModule::~PythonModule() {} PythonModule PythonModule::BuiltinsModule() { #if PY_MAJOR_VERSION >= 3 return AddModule("builtins"); #else return AddModule("__builtin__"); #endif } PythonModule PythonModule::MainModule() { return AddModule("__main__"); } PythonModule PythonModule::AddModule(llvm::StringRef module) { std::string str = module.str(); return PythonModule(PyRefType::Borrowed, PyImport_AddModule(str.c_str())); } PythonModule PythonModule::ImportModule(llvm::StringRef module) { std::string str = module.str(); return PythonModule(PyRefType::Owned, PyImport_ImportModule(str.c_str())); } bool PythonModule::Check(PyObject *py_obj) { if (!py_obj) return false; return PyModule_Check(py_obj); } void PythonModule::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonModule::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } PythonDictionary PythonModule::GetDictionary() const { return PythonDictionary(PyRefType::Borrowed, PyModule_GetDict(m_py_obj)); } PythonCallable::PythonCallable() : PythonObject() {} PythonCallable::PythonCallable(PyRefType type, PyObject *py_obj) { Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a callable } PythonCallable::PythonCallable(const PythonCallable &callable) : PythonObject(callable) {} PythonCallable::~PythonCallable() {} bool PythonCallable::Check(PyObject *py_obj) { if (!py_obj) return false; return PyCallable_Check(py_obj); } void PythonCallable::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonCallable::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } PythonCallable::ArgInfo PythonCallable::GetNumArguments() const { ArgInfo result = {0, false, false, false}; if (!IsValid()) return result; PyObject *py_func_obj = m_py_obj; if (PyMethod_Check(py_func_obj)) { py_func_obj = PyMethod_GET_FUNCTION(py_func_obj); PythonObject im_self = GetAttributeValue("im_self"); if (im_self.IsValid() && !im_self.IsNone()) result.is_bound_method = true; } else { // see if this is a callable object with an __call__ method if (!PyFunction_Check(py_func_obj)) { PythonObject __call__ = GetAttributeValue("__call__"); if (__call__.IsValid()) { auto __callable__ = __call__.AsType(); if (__callable__.IsValid()) { py_func_obj = PyMethod_GET_FUNCTION(__callable__.get()); PythonObject im_self = GetAttributeValue("im_self"); if (im_self.IsValid() && !im_self.IsNone()) result.is_bound_method = true; } } } } if (!py_func_obj) return result; PyCodeObject *code = (PyCodeObject *)PyFunction_GET_CODE(py_func_obj); if (!code) return result; result.count = code->co_argcount; result.has_varargs = !!(code->co_flags & CO_VARARGS); result.has_kwargs = !!(code->co_flags & CO_VARKEYWORDS); return result; } PythonObject PythonCallable::operator()() { return PythonObject(PyRefType::Owned, PyObject_CallObject(m_py_obj, nullptr)); } PythonObject PythonCallable:: operator()(std::initializer_list args) { PythonTuple arg_tuple(args); return PythonObject(PyRefType::Owned, PyObject_CallObject(m_py_obj, arg_tuple.get())); } PythonObject PythonCallable:: operator()(std::initializer_list args) { PythonTuple arg_tuple(args); return PythonObject(PyRefType::Owned, PyObject_CallObject(m_py_obj, arg_tuple.get())); } PythonFile::PythonFile() : PythonObject() {} PythonFile::PythonFile(File &file, const char *mode) { Reset(file, mode); } PythonFile::PythonFile(const char *path, const char *mode) { lldb_private::File file(path, GetOptionsFromMode(mode)); Reset(file, mode); } PythonFile::PythonFile(PyRefType type, PyObject *o) { Reset(type, o); } PythonFile::~PythonFile() {} bool PythonFile::Check(PyObject *py_obj) { #if PY_MAJOR_VERSION < 3 return PyFile_Check(py_obj); #else // In Python 3, there is no `PyFile_Check`, and in fact PyFile is not even a // first-class object type anymore. `PyFile_FromFd` is just a thin wrapper // over `io.open()`, which returns some object derived from `io.IOBase`. As a // result, the only way to detect a file in Python 3 is to check whether it // inherits from `io.IOBase`. Since it is possible for non-files to also // inherit from `io.IOBase`, we additionally verify that it has the `fileno` // attribute, which should guarantee that it is backed by the file system. PythonObject io_module(PyRefType::Owned, PyImport_ImportModule("io")); PythonDictionary io_dict(PyRefType::Borrowed, PyModule_GetDict(io_module.get())); PythonObject io_base_class = io_dict.GetItemForKey(PythonString("IOBase")); PythonObject object_type(PyRefType::Owned, PyObject_Type(py_obj)); if (1 != PyObject_IsSubclass(object_type.get(), io_base_class.get())) return false; if (!object_type.HasAttribute("fileno")) return false; return true; #endif } void PythonFile::Reset(PyRefType type, PyObject *py_obj) { // Grab the desired reference type so that if we end up rejecting `py_obj` it // still gets decremented if necessary. PythonObject result(type, py_obj); if (!PythonFile::Check(py_obj)) { PythonObject::Reset(); return; } // Calling PythonObject::Reset(const PythonObject&) will lead to stack // overflow since it calls back into the virtual implementation. PythonObject::Reset(PyRefType::Borrowed, result.get()); } void PythonFile::Reset(File &file, const char *mode) { if (!file.IsValid()) { Reset(); return; } char *cmode = const_cast(mode); #if PY_MAJOR_VERSION >= 3 Reset(PyRefType::Owned, PyFile_FromFd(file.GetDescriptor(), nullptr, cmode, -1, nullptr, "ignore", nullptr, 0)); #else // Read through the Python source, doesn't seem to modify these strings Reset(PyRefType::Owned, PyFile_FromFile(file.GetStream(), const_cast(""), cmode, nullptr)); #endif } uint32_t PythonFile::GetOptionsFromMode(llvm::StringRef mode) { if (mode.empty()) return 0; return llvm::StringSwitch(mode.str()) .Case("r", File::eOpenOptionRead) .Case("w", File::eOpenOptionWrite) .Case("a", File::eOpenOptionWrite | File::eOpenOptionAppend | File::eOpenOptionCanCreate) .Case("r+", File::eOpenOptionRead | File::eOpenOptionWrite) .Case("w+", File::eOpenOptionRead | File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate) .Case("a+", File::eOpenOptionRead | File::eOpenOptionWrite | File::eOpenOptionAppend | File::eOpenOptionCanCreate) .Default(0); } bool PythonFile::GetUnderlyingFile(File &file) const { if (!IsValid()) return false; file.Close(); // We don't own the file descriptor returned by this function, make sure the // File object knows about that. file.SetDescriptor(PyObject_AsFileDescriptor(m_py_obj), false); PythonString py_mode = GetAttributeValue("mode").AsType(); file.SetOptions(PythonFile::GetOptionsFromMode(py_mode.GetString())); return file.IsValid(); } #endif