//===-- EmulateInstructionARM.cpp -------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "EmulateInstructionARM.h" #include "ARMUtils.h" using namespace lldb; using namespace lldb_private; // ARM constants used during decoding #define REG_RD 0 #define LDM_REGLIST 1 #define PC_REG 15 #define PC_REGLIST_BIT 0x8000 #define ARMv4 (1u << 0) #define ARMv4T (1u << 1) #define ARMv5T (1u << 2) #define ARMv5TE (1u << 3) #define ARMv5TEJ (1u << 4) #define ARMv6 (1u << 5) #define ARMv6K (1u << 6) #define ARMv6T2 (1u << 7) #define ARMv7 (1u << 8) #define ARMv8 (1u << 8) #define ARMvAll (0xffffffffu) typedef enum { eEncodingA1, eEncodingA2, eEncodingA3, eEncodingA4, eEncodingA5, eEncodingT1, eEncodingT2, eEncodingT3, eEncodingT4, eEncodingT5, } ARMEncoding; typedef enum { eSize16, eSize32 } ARMInstrSize; // Typedef for the callback function used during the emulation. // Pass along (ARMEncoding)encoding as the callback data. typedef bool (*EmulateCallback) (EmulateInstructionARM *emulator, ARMEncoding encoding); typedef struct { uint32_t mask; uint32_t value; uint32_t variants; ARMEncoding encoding; ARMInstrSize size; EmulateCallback callback; const char *name; } ARMOpcode; static bool EmulateARMPushEncoding (EmulateInstructionARM *emulator, ARMEncoding encoding) { #if 0 // ARM pseudo code... if (ConditionPassed()) { EncodingSpecificOperations(); NullCheckIfThumbEE(13); address = SP - 4*BitCount(registers); for (i = 0 to 14) { if (registers == ’1’) { if i == 13 && i != LowestSetBit(registers) // Only possible for encoding A1 MemA[address,4] = bits(32) UNKNOWN; else MemA[address,4] = R[i]; address = address + 4; } } if (registers<15> == ’1’) // Only possible for encoding A1 or A2 MemA[address,4] = PCStoreValue(); SP = SP - 4*BitCount(registers); } #endif bool success = false; const uint32_t opcode = emulator->OpcodeAsUnsigned (&success); if (!success) return false; if (emulator->ConditionPassed()) { const uint32_t addr_byte_size = emulator->GetAddressByteSize(); const addr_t sp = emulator->ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, 0, &success); if (!success) return false; uint32_t registers = 0; uint32_t t; // UInt(Rt) switch (encoding) { case eEncodingT2: // Ignore bits 15 & 13. registers = EmulateInstruction::UnsignedBits (opcode, 15, 0) & ~0xa000; // if BitCount(registers) < 2 then UNPREDICTABLE; if (BitCount(registers) < 2) return false; break; case eEncodingT3: t = EmulateInstruction::UnsignedBits (opcode, 15, 12); // if BadReg(t) then UNPREDICTABLE; if (BadReg(t)) return false; registers = (1u << t); break; case eEncodingA1: registers = EmulateInstruction::UnsignedBits (opcode, 15, 0); break; case eEncodingA2: t = EmulateInstruction::UnsignedBits (opcode, 15, 12); // if t == 13 then UNPREDICTABLE; if (t == dwarf_sp) return false; registers = (1u << t); break; } addr_t sp_offset = addr_byte_size * EmulateInstruction::BitCount (registers); addr_t addr = sp - sp_offset; uint32_t i; EmulateInstruction::Context context = { EmulateInstruction::eContextPushRegisterOnStack, eRegisterKindDWARF, 0, 0 }; for (i=0; i<15; ++i) { if (EmulateInstruction::BitIsSet (registers, 1u << i)) { context.arg1 = dwarf_r0 + i; // arg1 in the context is the DWARF register number context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset uint32_t reg_value = emulator->ReadRegisterUnsigned(eRegisterKindDWARF, context.arg1, 0, &success); if (!success) return false; if (!emulator->WriteMemoryUnsigned (context, addr, reg_value, addr_byte_size)) return false; addr += addr_byte_size; } } if (EmulateInstruction::BitIsSet (registers, 1u << 15)) { context.arg1 = dwarf_pc; // arg1 in the context is the DWARF register number context.arg2 = addr - sp; // arg2 in the context is the stack pointer offset const uint32_t pc = emulator->ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, 0, &success); if (!success) return false; if (!emulator->WriteMemoryUnsigned (context, addr, pc + 8, addr_byte_size)) return false; } context.type = EmulateInstruction::eContextAdjustStackPointer; context.arg0 = eRegisterKindGeneric; context.arg1 = LLDB_REGNUM_GENERIC_SP; context.arg2 = sp_offset; if (!emulator->WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset)) return false; } return true; } static ARMOpcode g_arm_opcodes[] = { { 0xffff0000, 0xe8ad0000, ARMv6T2|ARMv7, eEncodingT2, eSize32, EmulateARMPushEncoding, "PUSH ; contains more than one register" }, { 0xffff0fff, 0xf84d0d04, ARMv6T2|ARMv7, eEncodingT3, eSize32, EmulateARMPushEncoding, "PUSH ; contains one register, " }, { 0x0fff0000, 0x092d0000, ARMvAll, eEncodingA1, eSize32, EmulateARMPushEncoding, "PUSH ; contains more than one register" }, { 0x0fff0fff, 0x052d0004, ARMvAll, eEncodingA2, eSize32, EmulateARMPushEncoding, "PUSH ; contains one register, " } }; static const size_t k_num_arm_opcodes = sizeof(g_arm_opcodes)/sizeof(ARMOpcode); bool EmulateInstructionARM::ReadInstruction () { bool success = false; m_inst_cpsr = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, 0, &success); if (success) { addr_t pc = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_ADDRESS, &success); if (success) { Context read_inst_context = {eContextReadOpcode, 0, 0}; if (m_inst_cpsr & MASK_CPSR_T) { m_inst_mode = eModeThumb; uint32_t thumb_opcode = ReadMemoryUnsigned(read_inst_context, pc, 2, 0, &success); if (success) { if ((m_inst.opcode.inst16 & 0xe000) != 0xe000 || ((m_inst.opcode.inst16 & 0x1800u) == 0)) { m_inst.opcode_type = eOpcode16; m_inst.opcode.inst16 = thumb_opcode; } else { m_inst.opcode_type = eOpcode32; m_inst.opcode.inst32 = (thumb_opcode << 16) | ReadMemoryUnsigned(read_inst_context, pc + 2, 2, 0, &success); } } } else { m_inst_mode = eModeARM; m_inst.opcode_type = eOpcode32; m_inst.opcode.inst32 = ReadMemoryUnsigned(read_inst_context, pc, 4, 0, &success); } } } if (!success) { m_inst_mode = eModeInvalid; m_inst_pc = LLDB_INVALID_ADDRESS; } return success; } uint32_t EmulateInstructionARM::CurrentCond () { switch (m_inst_mode) { default: case eModeInvalid: break; case eModeARM: return UnsignedBits(m_inst.opcode.inst32, 31, 28); case eModeThumb: return 0x0000000Eu; // Return always for now, we need to handl IT instructions later } return UINT32_MAX; // Return invalid value } bool EmulateInstructionARM::ConditionPassed () { if (m_inst_cpsr == 0) return false; const uint32_t cond = CurrentCond (); if (cond == UINT32_MAX) return false; bool result = false; switch (UnsignedBits(cond, 3, 1)) { case 0: result = (m_inst_cpsr & MASK_CPSR_Z) != 0; break; case 1: result = (m_inst_cpsr & MASK_CPSR_C) != 0; break; case 2: result = (m_inst_cpsr & MASK_CPSR_N) != 0; break; case 3: result = (m_inst_cpsr & MASK_CPSR_V) != 0; break; case 4: result = ((m_inst_cpsr & MASK_CPSR_C) != 0) && ((m_inst_cpsr & MASK_CPSR_Z) == 0); break; case 5: { bool n = (m_inst_cpsr & MASK_CPSR_N); bool v = (m_inst_cpsr & MASK_CPSR_V); result = n == v; } break; case 6: { bool n = (m_inst_cpsr & MASK_CPSR_N); bool v = (m_inst_cpsr & MASK_CPSR_V); result = n == v && ((m_inst_cpsr & MASK_CPSR_Z) == 0); } break; case 7: result = true; break; } if (cond & 1) result = !result; return result; } bool EmulateInstructionARM::EvaluateInstruction () { return false; }