//===-- ProcessMonitor.cpp ------------------------------------ -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes #include #include #include #include #include #include #include #include // C++ Includes // Other libraries and framework includes #include "lldb/Core/Error.h" #include "lldb/Core/Scalar.h" #include "lldb/Host/Host.h" #include "lldb/Target/Thread.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Utility/PseudoTerminal.h" #include "LinuxThread.h" #include "ProcessLinux.h" #include "ProcessMonitor.h" using namespace lldb_private; //------------------------------------------------------------------------------ // Static implementations of ProcessMonitor::ReadMemory and // ProcessMonitor::WriteMemory. This enables mutual recursion between these // functions without needed to go thru the thread funnel. static size_t DoReadMemory(lldb::pid_t pid, unsigned word_size, lldb::addr_t vm_addr, void *buf, size_t size, Error &error) { unsigned char *dst = static_cast(buf); size_t bytes_read; size_t remainder; long data; for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { errno = 0; data = ptrace(PTRACE_PEEKDATA, pid, vm_addr, NULL); if (data == -1L && errno) { error.SetErrorToErrno(); return bytes_read; } remainder = size - bytes_read; remainder = remainder > word_size ? word_size : remainder; for (unsigned i = 0; i < remainder; ++i) dst[i] = ((data >> i*8) & 0xFF); vm_addr += word_size; dst += word_size; } return bytes_read; } static size_t DoWriteMemory(lldb::pid_t pid, unsigned word_size, lldb::addr_t vm_addr, const void *buf, size_t size, Error &error) { const unsigned char *src = static_cast(buf); size_t bytes_written = 0; size_t remainder; for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { remainder = size - bytes_written; remainder = remainder > word_size ? word_size : remainder; if (remainder == word_size) { unsigned long data = 0; for (unsigned i = 0; i < word_size; ++i) data |= (unsigned long)src[i] << i*8; if (ptrace(PTRACE_POKEDATA, pid, vm_addr, data)) { error.SetErrorToErrno(); return bytes_written; } } else { unsigned char buff[8]; if (DoReadMemory(pid, word_size, vm_addr, buff, word_size, error) != word_size) return bytes_written; memcpy(buff, src, remainder); if (DoWriteMemory(pid, word_size, vm_addr, buff, word_size, error) != word_size) return bytes_written; } vm_addr += word_size; src += word_size; } return bytes_written; } //------------------------------------------------------------------------------ /// @class Operation /// @brief Represents a ProcessMonitor operation. /// /// Under Linux, it is not possible to ptrace() from any other thread but the /// one that spawned or attached to the process from the start. Therefore, when /// a ProcessMonitor is asked to deliver or change the state of an inferior /// process the operation must be "funneled" to a specific thread to perform the /// task. The Operation class provides an abstract base for all services the /// ProcessMonitor must perform via the single virtual function Execute, thus /// encapsulating the code that needs to run in the privileged context. class Operation { public: virtual void Execute(ProcessMonitor *monitor) = 0; }; //------------------------------------------------------------------------------ /// @class ReadOperation /// @brief Implements ProcessMonitor::ReadMemory. class ReadOperation : public Operation { public: ReadOperation(lldb::addr_t addr, void *buff, size_t size, Error &error, size_t &result) : m_addr(addr), m_buff(buff), m_size(size), m_error(error), m_result(result) { } void Execute(ProcessMonitor *monitor); private: lldb::addr_t m_addr; void *m_buff; size_t m_size; Error &m_error; size_t &m_result; }; void ReadOperation::Execute(ProcessMonitor *monitor) { const unsigned word_size = monitor->GetProcess().GetAddressByteSize(); lldb::pid_t pid = monitor->GetPID(); m_result = DoReadMemory(pid, word_size, m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class ReadOperation /// @brief Implements ProcessMonitor::WriteMemory. class WriteOperation : public Operation { public: WriteOperation(lldb::addr_t addr, const void *buff, size_t size, Error &error, size_t &result) : m_addr(addr), m_buff(buff), m_size(size), m_error(error), m_result(result) { } void Execute(ProcessMonitor *monitor); private: lldb::addr_t m_addr; const void *m_buff; size_t m_size; Error &m_error; size_t &m_result; }; void WriteOperation::Execute(ProcessMonitor *monitor) { const unsigned word_size = monitor->GetProcess().GetAddressByteSize(); lldb::pid_t pid = monitor->GetPID(); m_result = DoWriteMemory(pid, word_size, m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class ReadRegOperation /// @brief Implements ProcessMonitor::ReadRegisterValue. class ReadRegOperation : public Operation { public: ReadRegOperation(unsigned offset, Scalar &value, bool &result) : m_offset(offset), m_value(value), m_result(result) { } void Execute(ProcessMonitor *monitor); private: unsigned m_offset; Scalar &m_value; bool &m_result; }; void ReadRegOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); // Set errno to zero so that we can detect a failed peek. errno = 0; unsigned long data = ptrace(PTRACE_PEEKUSER, pid, m_offset, NULL); if (data == -1UL && errno) m_result = false; else { m_value = data; m_result = true; } } //------------------------------------------------------------------------------ /// @class WriteRegOperation /// @brief Implements ProcessMonitor::WriteRegisterValue. class WriteRegOperation : public Operation { public: WriteRegOperation(unsigned offset, const Scalar &value, bool &result) : m_offset(offset), m_value(value), m_result(result) { } void Execute(ProcessMonitor *monitor); private: unsigned m_offset; const Scalar &m_value; bool &m_result; }; void WriteRegOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); if (ptrace(PTRACE_POKEUSER, pid, m_offset, m_value.ULong())) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class ResumeOperation /// @brief Implements ProcessMonitor::Resume. class ResumeOperation : public Operation { public: ResumeOperation(lldb::tid_t tid, bool &result) : m_tid(tid), m_result(result) { } void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; bool &m_result; }; void ResumeOperation::Execute(ProcessMonitor *monitor) { if (ptrace(PTRACE_CONT, m_tid, NULL, NULL)) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class ResumeOperation /// @brief Implements ProcessMonitor::SingleStep. class SingleStepOperation : public Operation { public: SingleStepOperation(lldb::tid_t tid, bool &result) : m_tid(tid), m_result(result) { } void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; bool &m_result; }; void SingleStepOperation::Execute(ProcessMonitor *monitor) { if (ptrace(PTRACE_SINGLESTEP, m_tid, NULL, NULL)) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class SiginfoOperation /// @brief Implements ProcessMonitor::GetSignalInfo. class SiginfoOperation : public Operation { public: SiginfoOperation(lldb::tid_t tid, void *info, bool &result) : m_tid(tid), m_info(info), m_result(result) { } void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; void *m_info; bool &m_result; }; void SiginfoOperation::Execute(ProcessMonitor *monitor) { if (ptrace(PTRACE_GETSIGINFO, m_tid, NULL, m_info)) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class EventMessageOperation /// @brief Implements ProcessMonitor::GetEventMessage. class EventMessageOperation : public Operation { public: EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result) : m_tid(tid), m_message(message), m_result(result) { } void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; unsigned long *m_message; bool &m_result; }; void EventMessageOperation::Execute(ProcessMonitor *monitor) { if (ptrace(PTRACE_GETEVENTMSG, m_tid, NULL, m_message)) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class KillOperation /// @brief Implements ProcessMonitor::BringProcessIntoLimbo. class KillOperation : public Operation { public: KillOperation(bool &result) : m_result(result) { } void Execute(ProcessMonitor *monitor); private: bool &m_result; }; void KillOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); if (ptrace(PTRACE_KILL, pid, NULL, NULL)) m_result = false; else m_result = true; #if 0 // First, stop the inferior process. if (kill(pid, SIGSTOP)) { m_result = false; return; } // Clear any ptrace options. When PTRACE_O_TRACEEXIT is set, a plain // PTRACE_KILL (or any termination signal) will not truely terminate the // inferior process. Instead, the process is left in a state of "limbo" // allowing us to interrogate its state. However in this case we really do // want the process gone. if (ptrace(PTRACE_SETOPTIONS, pid, NULL, 0UL)) { m_result = false; return; } // Kill it. if (ptrace(PTRACE_KILL, pid, NULL, NULL)) m_result = false; else m_result = true; #endif } ProcessMonitor::LaunchArgs::LaunchArgs(ProcessMonitor *monitor, lldb_private::Module *module, char const **argv, char const **envp, const char *stdin_path, const char *stdout_path, const char *stderr_path) : m_monitor(monitor), m_module(module), m_argv(argv), m_envp(envp), m_stdin_path(stdin_path), m_stdout_path(stdout_path), m_stderr_path(stderr_path) { sem_init(&m_semaphore, 0, 0); } ProcessMonitor::LaunchArgs::~LaunchArgs() { sem_destroy(&m_semaphore); } //------------------------------------------------------------------------------ /// The basic design of the ProcessMonitor is built around two threads. /// /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking /// for changes in the debugee state. When a change is detected a /// ProcessMessage is sent to the associated ProcessLinux instance. This thread /// "drives" state changes in the debugger. /// /// The second thread (@see OperationThread) is responsible for two things 1) /// lauching or attaching to the inferior process, and then 2) servicing /// operations such as register reads/writes, stepping, etc. See the comments /// on the Operation class for more info as to why this is needed. ProcessMonitor::ProcessMonitor(ProcessLinux *process, Module *module, const char *argv[], const char *envp[], const char *stdin_path, const char *stdout_path, const char *stderr_path, lldb_private::Error &error) : m_process(process), m_operation_thread(LLDB_INVALID_HOST_THREAD), m_pid(LLDB_INVALID_PROCESS_ID), m_terminal_fd(-1), m_monitor_thread(LLDB_INVALID_HOST_THREAD), m_client_fd(-1), m_server_fd(-1) { LaunchArgs args(this, module, argv, envp, stdin_path, stdout_path, stderr_path); // Server/client descriptors. if (!EnableIPC()) { error.SetErrorToGenericError(); error.SetErrorString("Monitor failed to initialize."); } StartOperationThread(&args, error); if (!error.Success()) return; WAIT_AGAIN: // Wait for the operation thread to initialize. if (sem_wait(&args.m_semaphore)) { if (errno == EINTR) goto WAIT_AGAIN; else { error.SetErrorToErrno(); return; } } // Check that the launch was a success. if (!args.m_error.Success()) { StopOperationThread(); error = args.m_error; return; } // Finally, start monitoring the child process for change in state. if (!(m_monitor_thread = Host::StartMonitoringChildProcess( ProcessMonitor::MonitorCallback, this, GetPID(), true))) { error.SetErrorToGenericError(); error.SetErrorString("Process launch failed."); return; } } ProcessMonitor::~ProcessMonitor() { StopMonitoringChildProcess(); StopOperationThread(); close(m_terminal_fd); close(m_client_fd); close(m_server_fd); } //------------------------------------------------------------------------------ // Thread setup and tear down. void ProcessMonitor::StartOperationThread(LaunchArgs *args, Error &error) { static const char *g_thread_name = "lldb.process.linux.operation"; if (m_operation_thread != LLDB_INVALID_HOST_THREAD) return; m_operation_thread = Host::ThreadCreate(g_thread_name, OperationThread, args, &error); } void ProcessMonitor::StopOperationThread() { lldb::thread_result_t result; if (m_operation_thread == LLDB_INVALID_HOST_THREAD) return; Host::ThreadCancel(m_operation_thread, NULL); Host::ThreadJoin(m_operation_thread, &result, NULL); } void * ProcessMonitor::OperationThread(void *arg) { LaunchArgs *args = static_cast(arg); if (!Launch(args)) return NULL; ServeOperation(args->m_monitor); return NULL; } bool ProcessMonitor::Launch(LaunchArgs *args) { ProcessMonitor *monitor = args->m_monitor; ProcessLinux &process = monitor->GetProcess(); const char **argv = args->m_argv; const char **envp = args->m_envp; const char *stdin_path = args->m_stdin_path; const char *stdout_path = args->m_stdout_path; const char *stderr_path = args->m_stderr_path; lldb_utility::PseudoTerminal terminal; const size_t err_len = 1024; char err_str[err_len]; lldb::pid_t pid; lldb::ThreadSP inferior; // Pseudo terminal setup. if (!terminal.OpenFirstAvailableMaster(O_RDWR | O_NOCTTY, err_str, err_len)) { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("Could not open controlling TTY."); goto FINISH; } if ((pid = terminal.Fork(err_str, err_len)) < 0) { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("Process fork failed."); goto FINISH; } // Child process. if (pid == 0) { // Trace this process. ptrace(PTRACE_TRACEME, 0, NULL, NULL); // Do not inherit setgid powers. setgid(getgid()); // Let us have our own process group. setpgid(0, 0); // Dup file discriptors if needed. // // FIXME: If two or more of the paths are the same we needlessly open // the same file multiple times. if (stdin_path != NULL && stdin_path[0]) if (!DupDescriptor(stdin_path, STDIN_FILENO, O_RDONLY | O_CREAT)) exit(1); if (stdout_path != NULL && stdout_path[0]) if (!DupDescriptor(stdout_path, STDOUT_FILENO, O_WRONLY | O_CREAT)) exit(1); if (stderr_path != NULL && stderr_path[0]) if (!DupDescriptor(stderr_path, STDOUT_FILENO, O_WRONLY | O_CREAT)) exit(1); // Execute. We should never return. execve(argv[0], const_cast(argv), const_cast(envp)); exit(-1); } // Wait for the child process to to trap on its call to execve. int status; if ((status = waitpid(pid, NULL, 0)) < 0) { // execve likely failed for some reason. args->m_error.SetErrorToErrno(); goto FINISH; } assert(status == pid && "Could not sync with inferior process."); // Have the child raise an event on exit. This is used to keep the child in // limbo until it is destroyed. if (ptrace(PTRACE_SETOPTIONS, pid, NULL, PTRACE_O_TRACEEXIT) < 0) { args->m_error.SetErrorToErrno(); goto FINISH; } // Release the master terminal descriptor and pass it off to the // ProcessMonitor instance. Similarly stash the inferior pid. monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); monitor->m_pid = pid; // Update the process thread list with this new thread and mark it as // current. inferior.reset(new LinuxThread(process, pid)); process.GetThreadList().AddThread(inferior); process.GetThreadList().SetSelectedThreadByID(pid); // Let our process instance know the thread has stopped. process.SendMessage(ProcessMessage::Trace(pid)); FINISH: // Sync with our parent thread now that the launch operation is complete. sem_post(&args->m_semaphore); return args->m_error.Success(); } bool ProcessMonitor::EnableIPC() { int fd[2]; if (socketpair(AF_UNIX, SOCK_STREAM, 0, fd)) return false; m_client_fd = fd[0]; m_server_fd = fd[1]; return true; } bool ProcessMonitor::MonitorCallback(void *callback_baton, lldb::pid_t pid, int signal, int status) { ProcessMessage message; ProcessMonitor *monitor = static_cast(callback_baton); ProcessLinux *process = monitor->m_process; switch (signal) { case 0: // No signal. The child has exited normally. message = ProcessMessage::Exit(pid, status); break; case SIGTRAP: // Specially handle SIGTRAP and form the appropriate message. message = MonitorSIGTRAP(monitor, pid); break; default: // For all other signals simply notify the process instance. Note that // the process exit status is set when the signal resulted in // termination. // // FIXME: We need a specialized message to inform the process instance // about "crashes". if (status) message = ProcessMessage::Exit(pid, status); else message = ProcessMessage::Signal(pid, signal); } process->SendMessage(message); bool stop_monitoring = message.GetKind() == ProcessMessage::eExitMessage; return stop_monitoring; } ProcessMessage ProcessMonitor::MonitorSIGTRAP(ProcessMonitor *monitor, lldb::pid_t pid) { siginfo_t info; ProcessMessage message; bool status; status = monitor->GetSignalInfo(pid, &info); assert(status && "GetSignalInfo failed!"); assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); switch (info.si_code) { default: assert(false && "Unexpected SIGTRAP code!"); break; case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { // The inferior process is about to exit. Maintain the process in a // state of "limbo" until we are explicitly commanded to detach, // destroy, resume, etc. unsigned long data = 0; if (!monitor->GetEventMessage(pid, &data)) data = -1; message = ProcessMessage::Exit(pid, (data >> 8)); break; } case 0: case TRAP_TRACE: message = ProcessMessage::Trace(pid); break; case SI_KERNEL: case TRAP_BRKPT: message = ProcessMessage::Break(pid); break; } return message; } void ProcessMonitor::ServeOperation(ProcessMonitor *monitor) { int status; pollfd fdset; fdset.fd = monitor->m_server_fd; fdset.events = POLLIN | POLLPRI; fdset.revents = 0; for (;;) { if ((status = poll(&fdset, 1, -1)) < 0) { switch (errno) { default: assert(false && "Unexpected poll() failure!"); continue; case EINTR: continue; // Just poll again. case EBADF: return; // Connection terminated. } } assert(status == 1 && "Too many descriptors!"); if (fdset.revents & POLLIN) { Operation *op = NULL; READ_AGAIN: if ((status = read(fdset.fd, &op, sizeof(op))) < 0) { // There is only one acceptable failure. assert(errno == EINTR); goto READ_AGAIN; } assert(status == sizeof(op)); op->Execute(monitor); write(fdset.fd, &op, sizeof(op)); } } } void ProcessMonitor::DoOperation(Operation *op) { int status; Operation *ack = NULL; Mutex::Locker lock(m_server_mutex); // FIXME: Do proper error checking here. write(m_client_fd, &op, sizeof(op)); READ_AGAIN: if ((status = read(m_client_fd, &ack, sizeof(ack))) < 0) { // If interrupted by a signal handler try again. Otherwise the monitor // thread probably died and we have a stale file descriptor -- abort the // operation. if (errno == EINTR) goto READ_AGAIN; return; } assert(status == sizeof(ack)); assert(ack == op && "Invalid monitor thread response!"); } size_t ProcessMonitor::ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size, Error &error) { size_t result; ReadOperation op(vm_addr, buf, size, error, result); DoOperation(&op); return result; } size_t ProcessMonitor::WriteMemory(lldb::addr_t vm_addr, const void *buf, size_t size, lldb_private::Error &error) { size_t result; WriteOperation op(vm_addr, buf, size, error, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadRegisterValue(unsigned offset, Scalar &value) { bool result; ReadRegOperation op(offset, value, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteRegisterValue(unsigned offset, const Scalar &value) { bool result; WriteRegOperation op(offset, value, result); DoOperation(&op); return result; } bool ProcessMonitor::Resume(lldb::tid_t tid) { bool result; ResumeOperation op(tid, result); DoOperation(&op); return result; } bool ProcessMonitor::SingleStep(lldb::tid_t tid) { bool result; SingleStepOperation op(tid, result); DoOperation(&op); return result; } bool ProcessMonitor::BringProcessIntoLimbo() { bool result; KillOperation op(result); DoOperation(&op); return result; } bool ProcessMonitor::GetSignalInfo(lldb::tid_t tid, void *siginfo) { bool result; SiginfoOperation op(tid, siginfo, result); DoOperation(&op); return result; } bool ProcessMonitor::GetEventMessage(lldb::tid_t tid, unsigned long *message) { bool result; EventMessageOperation op(tid, message, result); DoOperation(&op); return result; } bool ProcessMonitor::DupDescriptor(const char *path, int fd, int flags) { int target_fd = open(path, flags); if (target_fd == -1) return false; return (dup2(fd, target_fd) == -1) ? false : true; } void ProcessMonitor::StopMonitoringChildProcess() { lldb::thread_result_t thread_result; if (m_monitor_thread != LLDB_INVALID_HOST_THREAD) { Host::ThreadCancel(m_monitor_thread, NULL); Host::ThreadJoin(m_monitor_thread, &thread_result, NULL); m_monitor_thread = LLDB_INVALID_HOST_THREAD; } }