//===-- ProcessMonitor.cpp ------------------------------------ -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes #include #include #include #include #include #include // C++ Includes // Other libraries and framework includes #include "lldb/Core/Debugger.h" #include "lldb/Core/Error.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Scalar.h" #include "lldb/Host/Host.h" #include "lldb/Host/HostNativeThread.h" #include "lldb/Host/HostThread.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Target/Thread.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/UnixSignals.h" #include "lldb/Utility/PseudoTerminal.h" #include "Plugins/Process/POSIX/CrashReason.h" #include "Plugins/Process/POSIX/POSIXThread.h" #include "ProcessLinux.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "ProcessMonitor.h" #include "Procfs.h" // System includes - They have to be included after framework includes because they define some // macros which collide with variable names in other modules #include "lldb/Host/linux/Personality.h" #include "lldb/Host/linux/Ptrace.h" #include "lldb/Host/linux/Signalfd.h" #include "lldb/Host/android/Android.h" #include #include #include #include #include #include #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff // Support hardware breakpoints in case it has not been defined #ifndef TRAP_HWBKPT #define TRAP_HWBKPT 4 #endif // Try to define a macro to encapsulate the tgkill syscall // fall back on kill() if tgkill isn't available #define tgkill(pid, tid, sig) \ syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) using namespace lldb_private; using namespace lldb_private::process_linux; static Operation* EXIT_OPERATION = nullptr; // FIXME: this code is host-dependent with respect to types and // endianness and needs to be fixed. For example, lldb::addr_t is // hard-coded to uint64_t, but on a 32-bit Linux host, ptrace requires // 32-bit pointer arguments. This code uses casts to work around the // problem. // We disable the tracing of ptrace calls for integration builds to // avoid the additional indirection and checks. #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION static void DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) { uint8_t *ptr = (uint8_t *)bytes; const uint32_t loop_count = std::min(DEBUG_PTRACE_MAXBYTES, count); for(uint32_t i=0; iPrintf("PTRACE_POKETEXT %s", buf.GetData()); break; } case PTRACE_POKEDATA: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); break; } case PTRACE_POKEUSER: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); break; } #if !defined (__arm64__) && !defined (__aarch64__) case PTRACE_SETREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); break; } case PTRACE_SETFPREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); break; } #endif case PTRACE_SETSIGINFO: { DisplayBytes(buf, data, sizeof(siginfo_t)); verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); break; } case PTRACE_SETREGSET: { // Extract iov_base from data, which is a pointer to the struct IOVEC DisplayBytes(buf, *(void **)data, data_size); verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); break; } default: { } } } } // Wrapper for ptrace to catch errors and log calls. // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) extern long PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, const char* reqName, const char* file, int line) { long int result; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); PtraceDisplayBytes(req, data, data_size); errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) result = ptrace(static_cast<__ptrace_request>(req), static_cast(pid), *(unsigned int *)addr, data); else result = ptrace(static_cast<__ptrace_request>(req), static_cast(pid), addr, data); if (log) log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", reqName, pid, addr, data, data_size, result, file, line); PtraceDisplayBytes(req, data, data_size); if (log && errno != 0) { const char* str; switch (errno) { case ESRCH: str = "ESRCH"; break; case EINVAL: str = "EINVAL"; break; case EBUSY: str = "EBUSY"; break; case EPERM: str = "EPERM"; break; default: str = ""; } log->Printf("ptrace() failed; errno=%d (%s)", errno, str); } return result; } // Wrapper for ptrace when logging is not required. // Sets errno to 0 prior to calling ptrace. extern long PtraceWrapper(int req, pid_t pid, void *addr, void *data, size_t data_size) { long result = 0; errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) result = ptrace(static_cast<__ptrace_request>(req), pid, *(unsigned int *)addr, data); else result = ptrace(static_cast<__ptrace_request>(req), pid, addr, data); return result; } #define PTRACE(req, pid, addr, data, data_size) \ PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__) #else PtraceWrapper((req), (pid), (addr), (data), (data_size)) #endif //------------------------------------------------------------------------------ // Static implementations of ProcessMonitor::ReadMemory and // ProcessMonitor::WriteMemory. This enables mutual recursion between these // functions without needed to go thru the thread funnel. static size_t DoReadMemory(lldb::pid_t pid, lldb::addr_t vm_addr, void *buf, size_t size, Error &error) { // ptrace word size is determined by the host, not the child static const unsigned word_size = sizeof(void*); unsigned char *dst = static_cast(buf); size_t bytes_read; size_t remainder; long data; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("ProcessMonitor::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, pid, word_size, (void*)vm_addr, buf, size); assert(sizeof(data) >= word_size); for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { errno = 0; data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0); if (errno) { error.SetErrorToErrno(); if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_read; } remainder = size - bytes_read; remainder = remainder > word_size ? word_size : remainder; // Copy the data into our buffer for (unsigned i = 0; i < remainder; ++i) dst[i] = ((data >> i*8) & 0xFF); if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) { uintptr_t print_dst = 0; // Format bytes from data by moving into print_dst for log output for (unsigned i = 0; i < remainder; ++i) print_dst |= (((data >> i*8) & 0xFF) << i*8); log->Printf ("ProcessMonitor::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, print_dst, (unsigned long)data); } vm_addr += word_size; dst += word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_read; } static size_t DoWriteMemory(lldb::pid_t pid, lldb::addr_t vm_addr, const void *buf, size_t size, Error &error) { // ptrace word size is determined by the host, not the child static const unsigned word_size = sizeof(void*); const unsigned char *src = static_cast(buf); size_t bytes_written = 0; size_t remainder; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("ProcessMonitor::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, pid, word_size, (void*)vm_addr, buf, size); for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { remainder = size - bytes_written; remainder = remainder > word_size ? word_size : remainder; if (remainder == word_size) { unsigned long data = 0; assert(sizeof(data) >= word_size); for (unsigned i = 0; i < word_size; ++i) data |= (unsigned long)src[i] << i*8; if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("ProcessMonitor::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, *(unsigned long*)src, data); if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0)) { error.SetErrorToErrno(); if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } } else { unsigned char buff[8]; if (DoReadMemory(pid, vm_addr, buff, word_size, error) != word_size) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } memcpy(buff, src, remainder); if (DoWriteMemory(pid, vm_addr, buff, word_size, error) != word_size) { if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("ProcessMonitor::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)vm_addr, *(const unsigned long*)src, *(const unsigned long*)buff); } vm_addr += word_size; src += word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return bytes_written; } // Simple helper function to ensure flags are enabled on the given file // descriptor. static bool EnsureFDFlags(int fd, int flags, Error &error) { int status; if ((status = fcntl(fd, F_GETFL)) == -1) { error.SetErrorToErrno(); return false; } if (fcntl(fd, F_SETFL, status | flags) == -1) { error.SetErrorToErrno(); return false; } return true; } //------------------------------------------------------------------------------ /// @class Operation /// @brief Represents a ProcessMonitor operation. /// /// Under Linux, it is not possible to ptrace() from any other thread but the /// one that spawned or attached to the process from the start. Therefore, when /// a ProcessMonitor is asked to deliver or change the state of an inferior /// process the operation must be "funneled" to a specific thread to perform the /// task. The Operation class provides an abstract base for all services the /// ProcessMonitor must perform via the single virtual function Execute, thus /// encapsulating the code that needs to run in the privileged context. class Operation { public: virtual ~Operation() {} virtual void Execute(ProcessMonitor *monitor) = 0; }; //------------------------------------------------------------------------------ /// @class ReadOperation /// @brief Implements ProcessMonitor::ReadMemory. class ReadOperation : public Operation { public: ReadOperation(lldb::addr_t addr, void *buff, size_t size, Error &error, size_t &result) : m_addr(addr), m_buff(buff), m_size(size), m_error(error), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::addr_t m_addr; void *m_buff; size_t m_size; Error &m_error; size_t &m_result; }; void ReadOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); m_result = DoReadMemory(pid, m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class WriteOperation /// @brief Implements ProcessMonitor::WriteMemory. class WriteOperation : public Operation { public: WriteOperation(lldb::addr_t addr, const void *buff, size_t size, Error &error, size_t &result) : m_addr(addr), m_buff(buff), m_size(size), m_error(error), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::addr_t m_addr; const void *m_buff; size_t m_size; Error &m_error; size_t &m_result; }; void WriteOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); m_result = DoWriteMemory(pid, m_addr, m_buff, m_size, m_error); } //------------------------------------------------------------------------------ /// @class ReadRegOperation /// @brief Implements ProcessMonitor::ReadRegisterValue. class ReadRegOperation : public Operation { public: ReadRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, RegisterValue &value, bool &result) : m_tid(tid), m_offset(offset), m_reg_name(reg_name), m_value(value), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; uintptr_t m_offset; const char *m_reg_name; RegisterValue &m_value; bool &m_result; }; void ReadRegOperation::Execute(ProcessMonitor *monitor) { #if defined (__arm64__) || defined (__aarch64__) if (m_offset > sizeof(struct user_pt_regs)) { uintptr_t offset = m_offset - sizeof(struct user_pt_regs); if (offset > sizeof(struct user_fpsimd_state)) { m_result = false; } else { elf_fpregset_t regs; int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { m_result = true; m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, monitor->GetProcess().GetByteOrder()); } } } else { elf_gregset_t regs; int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { m_result = true; m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, monitor->GetProcess().GetByteOrder()); } } #else Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); // Set errno to zero so that we can detect a failed peek. errno = 0; lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0); if (errno) m_result = false; else { m_value = data; m_result = true; } if (log) log->Printf ("ProcessMonitor::%s() reg %s: 0x%" PRIx64, __FUNCTION__, m_reg_name, data); #endif } #if defined (__arm64__) || defined (__aarch64__) //------------------------------------------------------------------------------ /// @class ReadDBGROperation /// @brief Implements NativeProcessLinux::ReadDBGR. class ReadDBGROperation : public Operation { public: ReadDBGROperation(lldb::tid_t tid, unsigned int &count_wp, unsigned int &count_bp) : m_tid(tid), m_count_wp(count_wp), m_count_bp(count_bp) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; unsigned int &m_count_wp; unsigned int &m_count_bp; }; void ReadDBGROperation::Execute(ProcessMonitor *monitor) { int regset = NT_ARM_HW_WATCH; struct iovec ioVec; struct user_hwdebug_state dreg_state; ioVec.iov_base = &dreg_state; ioVec.iov_len = sizeof (dreg_state); PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, ioVec.iov_len); m_count_wp = dreg_state.dbg_info & 0xff; regset = NT_ARM_HW_BREAK; PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, ioVec.iov_len); m_count_bp = dreg_state.dbg_info & 0xff; } #endif #if defined (__arm64__) || defined (__aarch64__) //------------------------------------------------------------------------------ /// @class WriteDBGROperation /// @brief Implements NativeProcessLinux::WriteFPR. class WriteDBGROperation : public Operation { public: WriteDBGROperation(lldb::tid_t tid, lldb::addr_t *addr_buf, uint32_t *cntrl_buf, int type, int count) : m_tid(tid), m_addr_buf(addr_buf), m_cntrl_buf(cntrl_buf), m_type(type), m_count(count) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; lldb::addr_t *m_addr_buf; uint32_t *m_cntrl_buf; int m_type; int m_count; }; void WriteDBGROperation::Execute(ProcessMonitor *monitor) { struct iovec ioVec; struct user_hwdebug_state dreg_state; memset (&dreg_state, 0, sizeof (dreg_state)); ioVec.iov_base = &dreg_state; ioVec.iov_len = sizeof(dreg_state); if (m_type == 0) m_type = NT_ARM_HW_WATCH; else m_type = NT_ARM_HW_BREAK; for (int i = 0; i < m_count; i++) { dreg_state.dbg_regs[i].addr = m_addr_buf[i]; dreg_state.dbg_regs[i].ctrl = m_cntrl_buf[i]; } PTRACE(PTRACE_SETREGSET, m_tid, &m_type, &ioVec, ioVec.iov_len); } #endif//------------------------------------------------------------------------------ /// @class WriteRegOperation /// @brief Implements ProcessMonitor::WriteRegisterValue. class WriteRegOperation : public Operation { public: WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, const RegisterValue &value, bool &result) : m_tid(tid), m_offset(offset), m_reg_name(reg_name), m_value(value), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; uintptr_t m_offset; const char *m_reg_name; const RegisterValue &m_value; bool &m_result; }; void WriteRegOperation::Execute(ProcessMonitor *monitor) { #if defined (__arm64__) || defined (__aarch64__) if (m_offset > sizeof(struct user_pt_regs)) { uintptr_t offset = m_offset - sizeof(struct user_pt_regs); if (offset > sizeof(struct user_fpsimd_state)) { m_result = false; } else { elf_fpregset_t regs; int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else m_result = true; } } } else { elf_gregset_t regs; int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = ®s; ioVec.iov_len = sizeof regs; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else { ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs) < 0) m_result = false; else m_result = true; } } #else void* buf; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); buf = (void*) m_value.GetAsUInt64(); if (log) log->Printf ("ProcessMonitor::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0)) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class ReadGPROperation /// @brief Implements ProcessMonitor::ReadGPR. class ReadGPROperation : public Operation { public: ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void ReadGPROperation::Execute(ProcessMonitor *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class ReadFPROperation /// @brief Implements ProcessMonitor::ReadFPR. class ReadFPROperation : public Operation { public: ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void ReadFPROperation::Execute(ProcessMonitor *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class ReadRegisterSetOperation /// @brief Implements ProcessMonitor::ReadRegisterSet. class ReadRegisterSetOperation : public Operation { public: ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; const unsigned int m_regset; bool &m_result; }; void ReadRegisterSetOperation::Execute(ProcessMonitor *monitor) { if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class WriteGPROperation /// @brief Implements ProcessMonitor::WriteGPR. class WriteGPROperation : public Operation { public: WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void WriteGPROperation::Execute(ProcessMonitor *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_PRSTATUS; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class WriteFPROperation /// @brief Implements ProcessMonitor::WriteFPR. class WriteFPROperation : public Operation { public: WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; bool &m_result; }; void WriteFPROperation::Execute(ProcessMonitor *monitor) { #if defined (__arm64__) || defined (__aarch64__) int regset = NT_FPREGSET; struct iovec ioVec; ioVec.iov_base = m_buf; ioVec.iov_len = m_buf_size; if (PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) m_result = false; else m_result = true; #else if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; #endif } //------------------------------------------------------------------------------ /// @class WriteRegisterSetOperation /// @brief Implements ProcessMonitor::WriteRegisterSet. class WriteRegisterSetOperation : public Operation { public: WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; void *m_buf; size_t m_buf_size; const unsigned int m_regset; bool &m_result; }; void WriteRegisterSetOperation::Execute(ProcessMonitor *monitor) { if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class ReadThreadPointerOperation /// @brief Implements ProcessMonitor::ReadThreadPointer. class ReadThreadPointerOperation : public Operation { public: ReadThreadPointerOperation(lldb::tid_t tid, lldb::addr_t *addr, bool &result) : m_tid(tid), m_addr(addr), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; lldb::addr_t *m_addr; bool &m_result; }; void ReadThreadPointerOperation::Execute(ProcessMonitor *monitor) { Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); if (log) log->Printf ("ProcessMonitor::%s()", __FUNCTION__); // The process for getting the thread area on Linux is // somewhat... obscure. There's several different ways depending on // what arch you're on, and what kernel version you have. const ArchSpec& arch = monitor->GetProcess().GetTarget().GetArchitecture(); switch(arch.GetMachine()) { case llvm::Triple::aarch64: { int regset = LLDB_PTRACE_NT_ARM_TLS; struct iovec ioVec; ioVec.iov_base = m_addr; ioVec.iov_len = sizeof(lldb::addr_t); if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, ioVec.iov_len) < 0) m_result = false; else m_result = true; break; } #if defined(__i386__) || defined(__x86_64__) // Note that struct user below has a field named i387 which is x86-specific. // Therefore, this case should be compiled only for x86-based systems. case llvm::Triple::x86: { // Find the GS register location for our host architecture. size_t gs_user_offset = offsetof(struct user, regs); #ifdef __x86_64__ gs_user_offset += offsetof(struct user_regs_struct, gs); #endif #ifdef __i386__ gs_user_offset += offsetof(struct user_regs_struct, xgs); #endif // Read the GS register value to get the selector. errno = 0; long gs = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)gs_user_offset, NULL, 0); if (errno) { m_result = false; break; } // Read the LDT base for that selector. uint32_t tmp[4]; m_result = (PTRACE(PTRACE_GET_THREAD_AREA, m_tid, (void *)(gs >> 3), &tmp, 0) == 0); *m_addr = tmp[1]; break; } #endif case llvm::Triple::x86_64: // Read the FS register base. m_result = (PTRACE(PTRACE_ARCH_PRCTL, m_tid, m_addr, (void *)ARCH_GET_FS, 0) == 0); break; default: m_result = false; break; } } //------------------------------------------------------------------------------ /// @class ResumeOperation /// @brief Implements ProcessMonitor::Resume. class ResumeOperation : public Operation { public: ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) : m_tid(tid), m_signo(signo), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; uint32_t m_signo; bool &m_result; }; void ResumeOperation::Execute(ProcessMonitor *monitor) { intptr_t data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0)) { Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); if (log) log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, strerror(errno)); m_result = false; } else m_result = true; } //------------------------------------------------------------------------------ /// @class SingleStepOperation /// @brief Implements ProcessMonitor::SingleStep. class SingleStepOperation : public Operation { public: SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result) : m_tid(tid), m_signo(signo), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; uint32_t m_signo; bool &m_result; }; void SingleStepOperation::Execute(ProcessMonitor *monitor) { intptr_t data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0)) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class SiginfoOperation /// @brief Implements ProcessMonitor::GetSignalInfo. class SiginfoOperation : public Operation { public: SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err) : m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; void *m_info; bool &m_result; int &m_err; }; void SiginfoOperation::Execute(ProcessMonitor *monitor) { if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) { m_result = false; m_err = errno; } else m_result = true; } //------------------------------------------------------------------------------ /// @class EventMessageOperation /// @brief Implements ProcessMonitor::GetEventMessage. class EventMessageOperation : public Operation { public: EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result) : m_tid(tid), m_message(message), m_result(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; unsigned long *m_message; bool &m_result; }; void EventMessageOperation::Execute(ProcessMonitor *monitor) { if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0)) m_result = false; else m_result = true; } //------------------------------------------------------------------------------ /// @class DetachOperation /// @brief Implements ProcessMonitor::Detach. class DetachOperation : public Operation { public: DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { } void Execute(ProcessMonitor *monitor) override; private: lldb::tid_t m_tid; Error &m_error; }; void DetachOperation::Execute(ProcessMonitor *monitor) { if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0) m_error.SetErrorToErrno(); } ProcessMonitor::OperationArgs::OperationArgs(ProcessMonitor *monitor) : m_monitor(monitor) { sem_init(&m_semaphore, 0, 0); } ProcessMonitor::OperationArgs::~OperationArgs() { sem_destroy(&m_semaphore); } ProcessMonitor::LaunchArgs::LaunchArgs(ProcessMonitor *monitor, lldb_private::Module *module, char const **argv, char const **envp, const char *stdin_path, const char *stdout_path, const char *stderr_path, const char *working_dir, const lldb_private::ProcessLaunchInfo &launch_info) : OperationArgs(monitor), m_module(module), m_argv(argv), m_envp(envp), m_stdin_path(stdin_path), m_stdout_path(stdout_path), m_stderr_path(stderr_path), m_working_dir(working_dir), m_launch_info(launch_info) { } ProcessMonitor::LaunchArgs::~LaunchArgs() { } ProcessMonitor::AttachArgs::AttachArgs(ProcessMonitor *monitor, lldb::pid_t pid) : OperationArgs(monitor), m_pid(pid) { } ProcessMonitor::AttachArgs::~AttachArgs() { } //------------------------------------------------------------------------------ /// The basic design of the ProcessMonitor is built around two threads. /// /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking /// for changes in the debugee state. When a change is detected a /// ProcessMessage is sent to the associated ProcessLinux instance. This thread /// "drives" state changes in the debugger. /// /// The second thread (@see OperationThread) is responsible for two things 1) /// launching or attaching to the inferior process, and then 2) servicing /// operations such as register reads/writes, stepping, etc. See the comments /// on the Operation class for more info as to why this is needed. ProcessMonitor::ProcessMonitor(ProcessPOSIX *process, Module *module, const char *argv[], const char *envp[], const char *stdin_path, const char *stdout_path, const char *stderr_path, const char *working_dir, const lldb_private::ProcessLaunchInfo &launch_info, lldb_private::Error &error) : m_process(static_cast(process)), m_operation_thread(LLDB_INVALID_HOST_THREAD), m_monitor_thread(LLDB_INVALID_HOST_THREAD), m_pid(LLDB_INVALID_PROCESS_ID), m_terminal_fd(-1), m_operation(0) { std::unique_ptr args(new LaunchArgs(this, module, argv, envp, stdin_path, stdout_path, stderr_path, working_dir, launch_info)); sem_init(&m_operation_pending, 0, 0); sem_init(&m_operation_done, 0, 0); StartLaunchOpThread(args.get(), error); if (!error.Success()) return; WAIT_AGAIN: // Wait for the operation thread to initialize. if (sem_wait(&args->m_semaphore)) { if (errno == EINTR) goto WAIT_AGAIN; else { error.SetErrorToErrno(); return; } } // Check that the launch was a success. if (!args->m_error.Success()) { StopOpThread(); error = args->m_error; return; } // Finally, start monitoring the child process for change in state. m_monitor_thread = Host::StartMonitoringChildProcess( ProcessMonitor::MonitorCallback, this, GetPID(), true); if (!m_monitor_thread.IsJoinable()) { error.SetErrorToGenericError(); error.SetErrorString("Process launch failed."); return; } } ProcessMonitor::ProcessMonitor(ProcessPOSIX *process, lldb::pid_t pid, lldb_private::Error &error) : m_process(static_cast(process)), m_operation_thread(LLDB_INVALID_HOST_THREAD), m_monitor_thread(LLDB_INVALID_HOST_THREAD), m_pid(LLDB_INVALID_PROCESS_ID), m_terminal_fd(-1), m_operation(0) { sem_init(&m_operation_pending, 0, 0); sem_init(&m_operation_done, 0, 0); std::unique_ptr args(new AttachArgs(this, pid)); StartAttachOpThread(args.get(), error); if (!error.Success()) return; WAIT_AGAIN: // Wait for the operation thread to initialize. if (sem_wait(&args->m_semaphore)) { if (errno == EINTR) goto WAIT_AGAIN; else { error.SetErrorToErrno(); return; } } // Check that the attach was a success. if (!args->m_error.Success()) { StopOpThread(); error = args->m_error; return; } // Finally, start monitoring the child process for change in state. m_monitor_thread = Host::StartMonitoringChildProcess( ProcessMonitor::MonitorCallback, this, GetPID(), true); if (!m_monitor_thread.IsJoinable()) { error.SetErrorToGenericError(); error.SetErrorString("Process attach failed."); return; } } ProcessMonitor::~ProcessMonitor() { StopMonitor(); } //------------------------------------------------------------------------------ // Thread setup and tear down. void ProcessMonitor::StartLaunchOpThread(LaunchArgs *args, Error &error) { static const char *g_thread_name = "lldb.process.linux.operation"; if (m_operation_thread.IsJoinable()) return; m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); } void * ProcessMonitor::LaunchOpThread(void *arg) { LaunchArgs *args = static_cast(arg); if (!Launch(args)) { sem_post(&args->m_semaphore); return NULL; } ServeOperation(args); return NULL; } bool ProcessMonitor::Launch(LaunchArgs *args) { assert (args && "null args"); if (!args) return false; ProcessMonitor *monitor = args->m_monitor; ProcessLinux &process = monitor->GetProcess(); const char **argv = args->m_argv; const char **envp = args->m_envp; const char *stdin_path = args->m_stdin_path; const char *stdout_path = args->m_stdout_path; const char *stderr_path = args->m_stderr_path; const char *working_dir = args->m_working_dir; lldb_utility::PseudoTerminal terminal; const size_t err_len = 1024; char err_str[err_len]; lldb::pid_t pid; lldb::ThreadSP inferior; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); // Propagate the environment if one is not supplied. if (envp == NULL || envp[0] == NULL) envp = const_cast(environ); if ((pid = terminal.Fork(err_str, err_len)) == static_cast(-1)) { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("Process fork failed."); goto FINISH; } // Recognized child exit status codes. enum { ePtraceFailed = 1, eDupStdinFailed, eDupStdoutFailed, eDupStderrFailed, eChdirFailed, eExecFailed, eSetGidFailed }; // Child process. if (pid == 0) { // Trace this process. if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0) exit(ePtraceFailed); // terminal has already dupped the tty descriptors to stdin/out/err. // This closes original fd from which they were copied (and avoids // leaking descriptors to the debugged process. terminal.CloseSlaveFileDescriptor(); // Do not inherit setgid powers. if (setgid(getgid()) != 0) exit(eSetGidFailed); // Let us have our own process group. setpgid(0, 0); // Dup file descriptors if needed. // // FIXME: If two or more of the paths are the same we needlessly open // the same file multiple times. if (stdin_path != NULL && stdin_path[0]) if (!DupDescriptor(stdin_path, STDIN_FILENO, O_RDONLY)) exit(eDupStdinFailed); if (stdout_path != NULL && stdout_path[0]) if (!DupDescriptor(stdout_path, STDOUT_FILENO, O_WRONLY | O_CREAT)) exit(eDupStdoutFailed); if (stderr_path != NULL && stderr_path[0]) if (!DupDescriptor(stderr_path, STDERR_FILENO, O_WRONLY | O_CREAT)) exit(eDupStderrFailed); // Change working directory if (working_dir != NULL && working_dir[0]) if (0 != ::chdir(working_dir)) exit(eChdirFailed); // Disable ASLR if requested. if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) { const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); if (old_personality == -1) { if (log) log->Printf ("ProcessMonitor::%s retrieval of Linux personality () failed: %s. Cannot disable ASLR.", __FUNCTION__, strerror (errno)); } else { const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); if (new_personality == -1) { if (log) log->Printf ("ProcessMonitor::%s setting of Linux personality () to disable ASLR failed, ignoring: %s", __FUNCTION__, strerror (errno)); } else { if (log) log->Printf ("ProcessMonitor::%s disabling ASLR: SUCCESS", __FUNCTION__); } } } // Execute. We should never return. execve(argv[0], const_cast(argv), const_cast(envp)); exit(eExecFailed); } // Wait for the child process to to trap on its call to execve. lldb::pid_t wpid; ::pid_t raw_pid; int status; raw_pid = waitpid(pid, &status, 0); wpid = static_cast (raw_pid); if (raw_pid < 0) { args->m_error.SetErrorToErrno(); goto FINISH; } else if (WIFEXITED(status)) { // open, dup or execve likely failed for some reason. args->m_error.SetErrorToGenericError(); switch (WEXITSTATUS(status)) { case ePtraceFailed: args->m_error.SetErrorString("Child ptrace failed."); break; case eDupStdinFailed: args->m_error.SetErrorString("Child open stdin failed."); break; case eDupStdoutFailed: args->m_error.SetErrorString("Child open stdout failed."); break; case eDupStderrFailed: args->m_error.SetErrorString("Child open stderr failed."); break; case eChdirFailed: args->m_error.SetErrorString("Child failed to set working directory."); break; case eExecFailed: args->m_error.SetErrorString("Child exec failed."); break; case eSetGidFailed: args->m_error.SetErrorString("Child setgid failed."); break; default: args->m_error.SetErrorString("Child returned unknown exit status."); break; } goto FINISH; } assert(WIFSTOPPED(status) && wpid == pid && "Could not sync with inferior process."); if (!SetDefaultPtraceOpts(pid)) { args->m_error.SetErrorToErrno(); goto FINISH; } // Release the master terminal descriptor and pass it off to the // ProcessMonitor instance. Similarly stash the inferior pid. monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); monitor->m_pid = pid; // Set the terminal fd to be in non blocking mode (it simplifies the // implementation of ProcessLinux::GetSTDOUT to have a non-blocking // descriptor to read from). if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) goto FINISH; // Update the process thread list with this new thread. // FIXME: should we be letting UpdateThreadList handle this? // FIXME: by using pids instead of tids, we can only support one thread. inferior.reset(process.CreateNewPOSIXThread(process, pid)); if (log) log->Printf ("ProcessMonitor::%s() adding pid = %" PRIu64, __FUNCTION__, pid); process.GetThreadList().AddThread(inferior); process.AddThreadForInitialStopIfNeeded(pid); // Let our process instance know the thread has stopped. process.SendMessage(ProcessMessage::Trace(pid)); FINISH: return args->m_error.Success(); } void ProcessMonitor::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) { static const char *g_thread_name = "lldb.process.linux.operation"; if (m_operation_thread.IsJoinable()) return; m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); } void * ProcessMonitor::AttachOpThread(void *arg) { AttachArgs *args = static_cast(arg); if (!Attach(args)) { sem_post(&args->m_semaphore); return NULL; } ServeOperation(args); return NULL; } bool ProcessMonitor::Attach(AttachArgs *args) { lldb::pid_t pid = args->m_pid; ProcessMonitor *monitor = args->m_monitor; ProcessLinux &process = monitor->GetProcess(); lldb::ThreadSP inferior; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); // Use a map to keep track of the threads which we have attached/need to attach. Host::TidMap tids_to_attach; if (pid <= 1) { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("Attaching to process 1 is not allowed."); goto FINISH; } while (Host::FindProcessThreads(pid, tids_to_attach)) { for (Host::TidMap::iterator it = tids_to_attach.begin(); it != tids_to_attach.end(); ++it) { if (it->second == false) { lldb::tid_t tid = it->first; // Attach to the requested process. // An attach will cause the thread to stop with a SIGSTOP. if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0) { // No such thread. The thread may have exited. // More error handling may be needed. if (errno == ESRCH) { tids_to_attach.erase(it); continue; } else { args->m_error.SetErrorToErrno(); goto FINISH; } } ::pid_t wpid; // Need to use __WALL otherwise we receive an error with errno=ECHLD // At this point we should have a thread stopped if waitpid succeeds. if ((wpid = waitpid(tid, NULL, __WALL)) < 0) { // No such thread. The thread may have exited. // More error handling may be needed. if (errno == ESRCH) { tids_to_attach.erase(it); continue; } else { args->m_error.SetErrorToErrno(); goto FINISH; } } if (!SetDefaultPtraceOpts(tid)) { args->m_error.SetErrorToErrno(); goto FINISH; } // Update the process thread list with the attached thread. inferior.reset(process.CreateNewPOSIXThread(process, tid)); if (log) log->Printf ("ProcessMonitor::%s() adding tid = %" PRIu64, __FUNCTION__, tid); process.GetThreadList().AddThread(inferior); it->second = true; process.AddThreadForInitialStopIfNeeded(tid); } } } if (tids_to_attach.size() > 0) { monitor->m_pid = pid; // Let our process instance know the thread has stopped. process.SendMessage(ProcessMessage::Trace(pid)); } else { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("No such process."); } FINISH: return args->m_error.Success(); } bool ProcessMonitor::SetDefaultPtraceOpts(lldb::pid_t pid) { long ptrace_opts = 0; // Have the child raise an event on exit. This is used to keep the child in // limbo until it is destroyed. ptrace_opts |= PTRACE_O_TRACEEXIT; // Have the tracer trace threads which spawn in the inferior process. // TODO: if we want to support tracing the inferiors' child, add the // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) ptrace_opts |= PTRACE_O_TRACECLONE; // Have the tracer notify us before execve returns // (needed to disable legacy SIGTRAP generation) ptrace_opts |= PTRACE_O_TRACEEXEC; return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0; } bool ProcessMonitor::MonitorCallback(void *callback_baton, lldb::pid_t pid, bool exited, int signal, int status) { ProcessMessage message; ProcessMonitor *monitor = static_cast(callback_baton); ProcessLinux *process = monitor->m_process; assert(process); bool stop_monitoring; siginfo_t info; int ptrace_err; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); if (exited) { if (log) log->Printf ("ProcessMonitor::%s() got exit signal, tid = %" PRIu64, __FUNCTION__, pid); message = ProcessMessage::Exit(pid, status); process->SendMessage(message); return pid == process->GetID(); } if (!monitor->GetSignalInfo(pid, &info, ptrace_err)) { if (ptrace_err == EINVAL) { if (log) log->Printf ("ProcessMonitor::%s() resuming from group-stop", __FUNCTION__); // inferior process is in 'group-stop', so deliver SIGSTOP signal if (!monitor->Resume(pid, SIGSTOP)) { assert(0 && "SIGSTOP delivery failed while in 'group-stop' state"); } stop_monitoring = false; } else { // ptrace(GETSIGINFO) failed (but not due to group-stop). Most likely, // this means the child pid is gone (or not being debugged) therefore // stop the monitor thread if this is the main pid. if (log) log->Printf ("ProcessMonitor::%s() GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d", __FUNCTION__, strerror(ptrace_err), pid, signal, status); stop_monitoring = pid == monitor->m_process->GetID(); // If we are going to stop monitoring, we need to notify our process object if (stop_monitoring) { message = ProcessMessage::Exit(pid, status); process->SendMessage(message); } } } else { switch (info.si_signo) { case SIGTRAP: message = MonitorSIGTRAP(monitor, &info, pid); break; default: message = MonitorSignal(monitor, &info, pid); break; } process->SendMessage(message); stop_monitoring = false; } return stop_monitoring; } ProcessMessage ProcessMonitor::MonitorSIGTRAP(ProcessMonitor *monitor, const siginfo_t *info, lldb::pid_t pid) { ProcessMessage message; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); assert(monitor); assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); switch (info->si_code) { default: assert(false && "Unexpected SIGTRAP code!"); break; // TODO: these two cases are required if we want to support tracing // of the inferiors' children // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { if (log) log->Printf ("ProcessMonitor::%s() received thread creation event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); unsigned long tid = 0; if (!monitor->GetEventMessage(pid, &tid)) tid = -1; message = ProcessMessage::NewThread(pid, tid); break; } case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): if (log) log->Printf ("ProcessMonitor::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); message = ProcessMessage::Exec(pid); break; case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { // The inferior process or one of its threads is about to exit. // Maintain the process or thread in a state of "limbo" until we are // explicitly commanded to detach, destroy, resume, etc. unsigned long data = 0; if (!monitor->GetEventMessage(pid, &data)) data = -1; if (log) log->Printf ("ProcessMonitor::%s() received limbo event, data = %lx, pid = %" PRIu64, __FUNCTION__, data, pid); message = ProcessMessage::Limbo(pid, (data >> 8)); break; } case 0: case TRAP_TRACE: if (log) log->Printf ("ProcessMonitor::%s() received trace event, pid = %" PRIu64, __FUNCTION__, pid); message = ProcessMessage::Trace(pid); break; case SI_KERNEL: case TRAP_BRKPT: if (log) log->Printf ("ProcessMonitor::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); message = ProcessMessage::Break(pid); break; case TRAP_HWBKPT: if (log) log->Printf ("ProcessMonitor::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); message = ProcessMessage::Watch(pid, (lldb::addr_t)info->si_addr); break; case SIGTRAP: case (SIGTRAP | 0x80): if (log) log->Printf ("ProcessMonitor::%s() received system call stop event, pid = %" PRIu64, __FUNCTION__, pid); // Ignore these signals until we know more about them monitor->Resume(pid, eResumeSignalNone); } return message; } ProcessMessage ProcessMonitor::MonitorSignal(ProcessMonitor *monitor, const siginfo_t *info, lldb::pid_t pid) { ProcessMessage message; int signo = info->si_signo; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); // POSIX says that process behaviour is undefined after it ignores a SIGFPE, // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a // kill(2) or raise(3). Similarly for tgkill(2) on Linux. // // IOW, user generated signals never generate what we consider to be a // "crash". // // Similarly, ACK signals generated by this monitor. if (info->si_code == SI_TKILL || info->si_code == SI_USER) { if (log) log->Printf ("ProcessMonitor::%s() received signal %s with code %s, pid = %d", __FUNCTION__, monitor->m_process->GetUnixSignals().GetSignalAsCString (signo), (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), info->si_pid); if (info->si_pid == getpid()) return ProcessMessage::SignalDelivered(pid, signo); else return ProcessMessage::Signal(pid, signo); } if (log) log->Printf ("ProcessMonitor::%s() received signal %s", __FUNCTION__, monitor->m_process->GetUnixSignals().GetSignalAsCString (signo)); switch (signo) { case SIGSEGV: case SIGILL: case SIGFPE: case SIGBUS: lldb::addr_t fault_addr = reinterpret_cast(info->si_addr); const auto reason = GetCrashReason(*info); return ProcessMessage::Crash(pid, reason, signo, fault_addr); } // Everything else is "normal" and does not require any special action on // our part. return ProcessMessage::Signal(pid, signo); } // On Linux, when a new thread is created, we receive to notifications, // (1) a SIGTRAP|PTRACE_EVENT_CLONE from the main process thread with the // child thread id as additional information, and (2) a SIGSTOP|SI_USER from // the new child thread indicating that it has is stopped because we attached. // We have no guarantee of the order in which these arrive, but we need both // before we are ready to proceed. We currently keep a list of threads which // have sent the initial SIGSTOP|SI_USER event. Then when we receive the // SIGTRAP|PTRACE_EVENT_CLONE notification, if the initial stop has not occurred // we call ProcessMonitor::WaitForInitialTIDStop() to wait for it. bool ProcessMonitor::WaitForInitialTIDStop(lldb::tid_t tid) { Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); if (log) log->Printf ("ProcessMonitor::%s(%" PRIu64 ") waiting for thread to stop...", __FUNCTION__, tid); // Wait for the thread to stop while (true) { int status = -1; if (log) log->Printf ("ProcessMonitor::%s(%" PRIu64 ") waitpid...", __FUNCTION__, tid); ::pid_t wait_pid = waitpid(tid, &status, __WALL); if (status == -1) { // If we got interrupted by a signal (in our process, not the // inferior) try again. if (errno == EINTR) continue; else { if (log) log->Printf("ProcessMonitor::%s(%" PRIu64 ") waitpid error -- %s", __FUNCTION__, tid, strerror(errno)); return false; // This is bad, but there's nothing we can do. } } if (log) log->Printf ("ProcessMonitor::%s(%" PRIu64 ") waitpid, status = %d", __FUNCTION__, tid, status); assert(static_cast(wait_pid) == tid); siginfo_t info; int ptrace_err; if (!GetSignalInfo(wait_pid, &info, ptrace_err)) { if (log) { log->Printf ("ProcessMonitor::%s() GetSignalInfo failed. errno=%d (%s)", __FUNCTION__, ptrace_err, strerror(ptrace_err)); } return false; } // If this is a thread exit, we won't get any more information. if (WIFEXITED(status)) { m_process->SendMessage(ProcessMessage::Exit(wait_pid, WEXITSTATUS(status))); if (static_cast(wait_pid) == tid) return true; continue; } assert(info.si_code == SI_USER); assert(WSTOPSIG(status) == SIGSTOP); if (log) log->Printf ("ProcessMonitor::%s(bp) received thread stop signal", __FUNCTION__); m_process->AddThreadForInitialStopIfNeeded(wait_pid); return true; } return false; } bool ProcessMonitor::StopThread(lldb::tid_t tid) { Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); // FIXME: Try to use tgkill or tkill int ret = tgkill(m_pid, tid, SIGSTOP); if (log) log->Printf ("ProcessMonitor::%s(bp) stopping thread, tid = %" PRIu64 ", ret = %d", __FUNCTION__, tid, ret); // This can happen if a thread exited while we were trying to stop it. That's OK. // We'll get the signal for that later. if (ret < 0) return false; // Wait for the thread to stop while (true) { int status = -1; if (log) log->Printf ("ProcessMonitor::%s(bp) waitpid...", __FUNCTION__); ::pid_t wait_pid = ::waitpid (-1*getpgid(m_pid), &status, __WALL); if (log) log->Printf ("ProcessMonitor::%s(bp) waitpid, pid = %" PRIu64 ", status = %d", __FUNCTION__, static_cast(wait_pid), status); if (wait_pid == -1) { // If we got interrupted by a signal (in our process, not the // inferior) try again. if (errno == EINTR) continue; else return false; // This is bad, but there's nothing we can do. } // If this is a thread exit, we won't get any more information. if (WIFEXITED(status)) { m_process->SendMessage(ProcessMessage::Exit(wait_pid, WEXITSTATUS(status))); if (static_cast(wait_pid) == tid) return true; continue; } siginfo_t info; int ptrace_err; if (!GetSignalInfo(wait_pid, &info, ptrace_err)) { // another signal causing a StopAllThreads may have been received // before wait_pid's group-stop was processed, handle it now if (ptrace_err == EINVAL) { assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP); if (log) log->Printf ("ProcessMonitor::%s() resuming from group-stop", __FUNCTION__); // inferior process is in 'group-stop', so deliver SIGSTOP signal if (!Resume(wait_pid, SIGSTOP)) { assert(0 && "SIGSTOP delivery failed while in 'group-stop' state"); } continue; } if (log) log->Printf ("ProcessMonitor::%s() GetSignalInfo failed.", __FUNCTION__); return false; } // Handle events from other threads if (log) log->Printf ("ProcessMonitor::%s(bp) handling event, tid == %" PRIu64, __FUNCTION__, static_cast(wait_pid)); ProcessMessage message; if (info.si_signo == SIGTRAP) message = MonitorSIGTRAP(this, &info, wait_pid); else message = MonitorSignal(this, &info, wait_pid); POSIXThread *thread = static_cast(m_process->GetThreadList().FindThreadByID(wait_pid).get()); // When a new thread is created, we may get a SIGSTOP for the new thread // just before we get the SIGTRAP that we use to add the thread to our // process thread list. We don't need to worry about that signal here. assert(thread || message.GetKind() == ProcessMessage::eSignalMessage); if (!thread) { m_process->SendMessage(message); continue; } switch (message.GetKind()) { case ProcessMessage::eExecMessage: llvm_unreachable("unexpected message"); case ProcessMessage::eAttachMessage: case ProcessMessage::eInvalidMessage: break; // These need special handling because we don't want to send a // resume even if we already sent a SIGSTOP to this thread. In // this case the resume will cause the thread to disappear. It is // unlikely that we'll ever get eExitMessage here, but the same // reasoning applies. case ProcessMessage::eLimboMessage: case ProcessMessage::eExitMessage: if (log) log->Printf ("ProcessMonitor::%s(bp) handling message", __FUNCTION__); // SendMessage will set the thread state as needed. m_process->SendMessage(message); // If this is the thread we're waiting for, stop waiting. Even // though this wasn't the signal we expected, it's the last // signal we'll see while this thread is alive. if (static_cast(wait_pid) == tid) return true; break; case ProcessMessage::eSignalMessage: if (log) log->Printf ("ProcessMonitor::%s(bp) handling message", __FUNCTION__); if (WSTOPSIG(status) == SIGSTOP) { m_process->AddThreadForInitialStopIfNeeded(tid); thread->SetState(lldb::eStateStopped); } else { m_process->SendMessage(message); // This isn't the stop we were expecting, but the thread is // stopped. SendMessage will handle processing of this event, // but we need to resume here to get the stop we are waiting // for (otherwise the thread will stop again immediately when // we try to resume). if (static_cast(wait_pid) == tid) Resume(wait_pid, eResumeSignalNone); } break; case ProcessMessage::eSignalDeliveredMessage: // This is the stop we're expecting. if (static_cast(wait_pid) == tid && WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP && info.si_code == SI_TKILL) { if (log) log->Printf ("ProcessMonitor::%s(bp) received signal, done waiting", __FUNCTION__); thread->SetState(lldb::eStateStopped); return true; } // else fall-through case ProcessMessage::eBreakpointMessage: case ProcessMessage::eTraceMessage: case ProcessMessage::eWatchpointMessage: case ProcessMessage::eCrashMessage: case ProcessMessage::eNewThreadMessage: if (log) log->Printf ("ProcessMonitor::%s(bp) handling message", __FUNCTION__); // SendMessage will set the thread state as needed. m_process->SendMessage(message); // This isn't the stop we were expecting, but the thread is // stopped. SendMessage will handle processing of this event, // but we need to resume here to get the stop we are waiting // for (otherwise the thread will stop again immediately when // we try to resume). if (static_cast(wait_pid) == tid) Resume(wait_pid, eResumeSignalNone); break; } } return false; } void ProcessMonitor::ServeOperation(OperationArgs *args) { ProcessMonitor *monitor = args->m_monitor; // We are finised with the arguments and are ready to go. Sync with the // parent thread and start serving operations on the inferior. sem_post(&args->m_semaphore); for(;;) { // wait for next pending operation if (sem_wait(&monitor->m_operation_pending)) { if (errno == EINTR) continue; assert(false && "Unexpected errno from sem_wait"); } monitor->m_operation->Execute(monitor); // notify calling thread that operation is complete sem_post(&monitor->m_operation_done); } } void ProcessMonitor::DoOperation(Operation *op) { Mutex::Locker lock(m_operation_mutex); m_operation = op; // notify operation thread that an operation is ready to be processed sem_post(&m_operation_pending); // wait for operation to complete while (sem_wait(&m_operation_done)) { if (errno == EINTR) continue; assert(false && "Unexpected errno from sem_wait"); } } size_t ProcessMonitor::ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size, Error &error) { size_t result; ReadOperation op(vm_addr, buf, size, error, result); DoOperation(&op); return result; } size_t ProcessMonitor::WriteMemory(lldb::addr_t vm_addr, const void *buf, size_t size, lldb_private::Error &error) { size_t result; WriteOperation op(vm_addr, buf, size, error, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadRegisterValue(lldb::tid_t tid, unsigned offset, const char* reg_name, unsigned size, RegisterValue &value) { bool result; ReadRegOperation op(tid, offset, reg_name, value, result); DoOperation(&op); return result; } #if defined (__arm64__) || defined (__aarch64__) bool ProcessMonitor::ReadHardwareDebugInfo (lldb::tid_t tid, unsigned int &watch_count , unsigned int &break_count) { bool result = true; ReadDBGROperation op(tid, watch_count, break_count); DoOperation(&op); return result; } bool ProcessMonitor::WriteHardwareDebugRegs (lldb::tid_t tid, lldb::addr_t *addr_buf, uint32_t *cntrl_buf, int type, int count) { bool result = true; WriteDBGROperation op(tid, addr_buf, cntrl_buf, type, count); DoOperation(&op); return result; } #endif bool ProcessMonitor::WriteRegisterValue(lldb::tid_t tid, unsigned offset, const char* reg_name, const RegisterValue &value) { bool result; WriteRegOperation op(tid, offset, reg_name, value, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; ReadGPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; ReadFPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { bool result; ReadRegisterSetOperation op(tid, buf, buf_size, regset, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; WriteGPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; WriteFPROperation op(tid, buf, buf_size, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { bool result; WriteRegisterSetOperation op(tid, buf, buf_size, regset, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadThreadPointer(lldb::tid_t tid, lldb::addr_t &value) { bool result; ReadThreadPointerOperation op(tid, &value, result); DoOperation(&op); return result; } bool ProcessMonitor::Resume(lldb::tid_t tid, uint32_t signo) { bool result; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS)); if (log) log->Printf ("ProcessMonitor::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, m_process->GetUnixSignals().GetSignalAsCString (signo)); ResumeOperation op(tid, signo, result); DoOperation(&op); if (log) log->Printf ("ProcessMonitor::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false"); return result; } bool ProcessMonitor::SingleStep(lldb::tid_t tid, uint32_t signo) { bool result; SingleStepOperation op(tid, signo, result); DoOperation(&op); return result; } bool ProcessMonitor::Kill() { return kill(GetPID(), SIGKILL) == 0; } bool ProcessMonitor::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err) { bool result; SiginfoOperation op(tid, siginfo, result, ptrace_err); DoOperation(&op); return result; } bool ProcessMonitor::GetEventMessage(lldb::tid_t tid, unsigned long *message) { bool result; EventMessageOperation op(tid, message, result); DoOperation(&op); return result; } lldb_private::Error ProcessMonitor::Detach(lldb::tid_t tid) { lldb_private::Error error; if (tid != LLDB_INVALID_THREAD_ID) { DetachOperation op(tid, error); DoOperation(&op); } return error; } bool ProcessMonitor::DupDescriptor(const char *path, int fd, int flags) { int target_fd = open(path, flags, 0666); if (target_fd == -1) return false; if (dup2(target_fd, fd) == -1) return false; return (close(target_fd) == -1) ? false : true; } void ProcessMonitor::StopMonitoringChildProcess() { if (m_monitor_thread.IsJoinable()) { ::pthread_kill(m_monitor_thread.GetNativeThread().GetSystemHandle(), SIGUSR1); m_monitor_thread.Join(nullptr); } } void ProcessMonitor::StopMonitor() { StopMonitoringChildProcess(); StopOpThread(); sem_destroy(&m_operation_pending); sem_destroy(&m_operation_done); if (m_terminal_fd >= 0) { close(m_terminal_fd); m_terminal_fd = -1; } } void ProcessMonitor::StopOpThread() { if (!m_operation_thread.IsJoinable()) return; DoOperation(EXIT_OPERATION); m_operation_thread.Join(nullptr); }