//===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes // Other libraries and framework includes // Project includes #include "RenderScriptRuntime.h" #include "lldb/Breakpoint/StoppointCallbackContext.h" #include "lldb/Core/ConstString.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Error.h" #include "lldb/Core/Log.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RegularExpression.h" #include "lldb/Core/ValueObjectVariable.h" #include "lldb/DataFormatters/DumpValueObjectOptions.h" #include "lldb/Expression/UserExpression.h" #include "lldb/Host/StringConvert.h" #include "lldb/Interpreter/Args.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Interpreter/CommandObjectMultiword.h" #include "lldb/Interpreter/CommandReturnObject.h" #include "lldb/Interpreter/Options.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Symbol/Type.h" #include "lldb/Symbol/VariableList.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" using namespace lldb; using namespace lldb_private; using namespace lldb_renderscript; namespace { // The empirical_type adds a basic level of validation to arbitrary data // allowing us to track if data has been discovered and stored or not. // An empirical_type will be marked as valid only if it has been explicitly // assigned to. template class empirical_type { public: // Ctor. Contents is invalid when constructed. empirical_type() : valid(false) {} // Return true and copy contents to out if valid, else return false. bool get(type_t &out) const { if (valid) out = data; return valid; } // Return a pointer to the contents or nullptr if it was not valid. const type_t *get() const { return valid ? &data : nullptr; } // Assign data explicitly. void set(const type_t in) { data = in; valid = true; } // Mark contents as invalid. void invalidate() { valid = false; } // Returns true if this type contains valid data. bool isValid() const { return valid; } // Assignment operator. empirical_type &operator=(const type_t in) { set(in); return *this; } // Dereference operator returns contents. // Warning: Will assert if not valid so use only when you know data is valid. const type_t &operator*() const { assert(valid); return data; } protected: bool valid; type_t data; }; // ArgItem is used by the GetArgs() function when reading function arguments // from the target. struct ArgItem { enum { ePointer, eInt32, eInt64, eLong, eBool } type; uint64_t value; explicit operator uint64_t() const { return value; } }; // Context structure to be passed into GetArgsXXX(), argument reading functions // below. struct GetArgsCtx { RegisterContext *reg_ctx; Process *process; }; bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); Error error; // get the current stack pointer uint64_t sp = ctx.reg_ctx->GetSP(); for (size_t i = 0; i < num_args; ++i) { ArgItem &arg = arg_list[i]; // advance up the stack by one argument sp += sizeof(uint32_t); // get the argument type size size_t arg_size = sizeof(uint32_t); // read the argument from memory arg.value = 0; Error error; size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error); if (read != arg_size || !error.Success()) { if (log) log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i), error.AsCString()); return false; } } return true; } bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); // number of arguments passed in registers static const uint32_t c_args_in_reg = 6; // register passing order static const std::array c_reg_names{ {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; // argument type to size mapping static const std::array arg_size{{ 8, // ePointer, 4, // eInt32, 8, // eInt64, 8, // eLong, 4, // eBool, }}; Error error; // get the current stack pointer uint64_t sp = ctx.reg_ctx->GetSP(); // step over the return address sp += sizeof(uint64_t); // check the stack alignment was correct (16 byte aligned) if ((sp & 0xf) != 0x0) { if (log) log->Printf("%s - stack misaligned", __FUNCTION__); return false; } // find the start of arguments on the stack uint64_t sp_offset = 0; for (uint32_t i = c_args_in_reg; i < num_args; ++i) { sp_offset += arg_size[arg_list[i].type]; } // round up to multiple of 16 sp_offset = (sp_offset + 0xf) & 0xf; sp += sp_offset; for (size_t i = 0; i < num_args; ++i) { bool success = false; ArgItem &arg = arg_list[i]; // arguments passed in registers if (i < c_args_in_reg) { const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]); RegisterValue rVal; if (ctx.reg_ctx->ReadRegister(rArg, rVal)) arg.value = rVal.GetAsUInt64(0, &success); } // arguments passed on the stack else { // get the argument type size const size_t size = arg_size[arg_list[i].type]; // read the argument from memory arg.value = 0; // note: due to little endian layout reading 4 or 8 bytes will give the // correct value. size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error); success = (error.Success() && read == size); // advance past this argument sp -= size; } // fail if we couldn't read this argument if (!success) { if (log) log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", __FUNCTION__, uint64_t(i), error.AsCString("n/a")); return false; } } return true; } bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { // number of arguments passed in registers static const uint32_t c_args_in_reg = 4; Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); Error error; // get the current stack pointer uint64_t sp = ctx.reg_ctx->GetSP(); for (size_t i = 0; i < num_args; ++i) { bool success = false; ArgItem &arg = arg_list[i]; // arguments passed in registers if (i < c_args_in_reg) { const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); RegisterValue rVal; if (ctx.reg_ctx->ReadRegister(rArg, rVal)) arg.value = rVal.GetAsUInt32(0, &success); } // arguments passed on the stack else { // get the argument type size const size_t arg_size = sizeof(uint32_t); // clear all 64bits arg.value = 0; // read this argument from memory size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); success = (error.Success() && bytes_read == arg_size); // advance the stack pointer sp += sizeof(uint32_t); } // fail if we couldn't read this argument if (!success) { if (log) log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", __FUNCTION__, uint64_t(i), error.AsCString("n/a")); return false; } } return true; } bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { // number of arguments passed in registers static const uint32_t c_args_in_reg = 8; Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); for (size_t i = 0; i < num_args; ++i) { bool success = false; ArgItem &arg = arg_list[i]; // arguments passed in registers if (i < c_args_in_reg) { const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); RegisterValue rVal; if (ctx.reg_ctx->ReadRegister(rArg, rVal)) arg.value = rVal.GetAsUInt64(0, &success); } // arguments passed on the stack else { if (log) log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__); } // fail if we couldn't read this argument if (!success) { if (log) log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); return false; } } return true; } bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { // number of arguments passed in registers static const uint32_t c_args_in_reg = 4; // register file offset to first argument static const uint32_t c_reg_offset = 4; Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); Error error; // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) uint64_t sp = ctx.reg_ctx->GetSP() + 16; for (size_t i = 0; i < num_args; ++i) { bool success = false; ArgItem &arg = arg_list[i]; // arguments passed in registers if (i < c_args_in_reg) { const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); RegisterValue rVal; if (ctx.reg_ctx->ReadRegister(rArg, rVal)) arg.value = rVal.GetAsUInt64(0, &success); } // arguments passed on the stack else { const size_t arg_size = sizeof(uint32_t); arg.value = 0; size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); success = (error.Success() && bytes_read == arg_size); // advance the stack pointer sp += arg_size; } // fail if we couldn't read this argument if (!success) { if (log) log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", __FUNCTION__, uint64_t(i), error.AsCString("n/a")); return false; } } return true; } bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { // number of arguments passed in registers static const uint32_t c_args_in_reg = 8; // register file offset to first argument static const uint32_t c_reg_offset = 4; Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); Error error; // get the current stack pointer uint64_t sp = ctx.reg_ctx->GetSP(); for (size_t i = 0; i < num_args; ++i) { bool success = false; ArgItem &arg = arg_list[i]; // arguments passed in registers if (i < c_args_in_reg) { const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); RegisterValue rVal; if (ctx.reg_ctx->ReadRegister(rArg, rVal)) arg.value = rVal.GetAsUInt64(0, &success); } // arguments passed on the stack else { // get the argument type size const size_t arg_size = sizeof(uint64_t); // clear all 64bits arg.value = 0; // read this argument from memory size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); success = (error.Success() && bytes_read == arg_size); // advance the stack pointer sp += arg_size; } // fail if we couldn't read this argument if (!success) { if (log) log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", __FUNCTION__, uint64_t(i), error.AsCString("n/a")); return false; } } return true; } bool GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) { Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); // verify that we have a target if (!context.GetTargetPtr()) { if (log) log->Printf("%s - invalid target", __FUNCTION__); return false; } GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()}; assert(ctx.reg_ctx && ctx.process); // dispatch based on architecture switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) { case llvm::Triple::ArchType::x86: return GetArgsX86(ctx, arg_list, num_args); case llvm::Triple::ArchType::x86_64: return GetArgsX86_64(ctx, arg_list, num_args); case llvm::Triple::ArchType::arm: return GetArgsArm(ctx, arg_list, num_args); case llvm::Triple::ArchType::aarch64: return GetArgsAarch64(ctx, arg_list, num_args); case llvm::Triple::ArchType::mipsel: return GetArgsMipsel(ctx, arg_list, num_args); case llvm::Triple::ArchType::mips64el: return GetArgsMips64el(ctx, arg_list, num_args); default: // unsupported architecture if (log) { log->Printf( "%s - architecture not supported: '%s'", __FUNCTION__, context.GetTargetRef().GetArchitecture().GetArchitectureName()); } return false; } } } // anonymous namespace // The ScriptDetails class collects data associated with a single script // instance. struct RenderScriptRuntime::ScriptDetails { ~ScriptDetails() = default; enum ScriptType { eScript, eScriptC }; // The derived type of the script. empirical_type type; // The name of the original source file. empirical_type resName; // Path to script .so file on the device. empirical_type scriptDyLib; // Directory where kernel objects are cached on device. empirical_type cacheDir; // Pointer to the context which owns this script. empirical_type context; // Pointer to the script object itself. empirical_type script; }; // This Element class represents the Element object in RS, // defining the type associated with an Allocation. struct RenderScriptRuntime::Element { // Taken from rsDefines.h enum DataKind { RS_KIND_USER, RS_KIND_PIXEL_L = 7, RS_KIND_PIXEL_A, RS_KIND_PIXEL_LA, RS_KIND_PIXEL_RGB, RS_KIND_PIXEL_RGBA, RS_KIND_PIXEL_DEPTH, RS_KIND_PIXEL_YUV, RS_KIND_INVALID = 100 }; // Taken from rsDefines.h enum DataType { RS_TYPE_NONE = 0, RS_TYPE_FLOAT_16, RS_TYPE_FLOAT_32, RS_TYPE_FLOAT_64, RS_TYPE_SIGNED_8, RS_TYPE_SIGNED_16, RS_TYPE_SIGNED_32, RS_TYPE_SIGNED_64, RS_TYPE_UNSIGNED_8, RS_TYPE_UNSIGNED_16, RS_TYPE_UNSIGNED_32, RS_TYPE_UNSIGNED_64, RS_TYPE_BOOLEAN, RS_TYPE_UNSIGNED_5_6_5, RS_TYPE_UNSIGNED_5_5_5_1, RS_TYPE_UNSIGNED_4_4_4_4, RS_TYPE_MATRIX_4X4, RS_TYPE_MATRIX_3X3, RS_TYPE_MATRIX_2X2, RS_TYPE_ELEMENT = 1000, RS_TYPE_TYPE, RS_TYPE_ALLOCATION, RS_TYPE_SAMPLER, RS_TYPE_SCRIPT, RS_TYPE_MESH, RS_TYPE_PROGRAM_FRAGMENT, RS_TYPE_PROGRAM_VERTEX, RS_TYPE_PROGRAM_RASTER, RS_TYPE_PROGRAM_STORE, RS_TYPE_FONT, RS_TYPE_INVALID = 10000 }; std::vector children; // Child Element fields for structs empirical_type element_ptr; // Pointer to the RS Element of the Type empirical_type type; // Type of each data pointer stored by the allocation empirical_type type_kind; // Defines pixel type if Allocation is created from an image empirical_type type_vec_size; // Vector size of each data point, e.g '4' for uchar4 empirical_type field_count; // Number of Subelements empirical_type datum_size; // Size of a single Element with padding empirical_type padding; // Number of padding bytes empirical_type array_size; // Number of items in array, only needed for strucrs ConstString type_name; // Name of type, only needed for structs static const ConstString & GetFallbackStructName(); // Print this as the type name of a struct Element // If we can't resolve the actual struct name bool shouldRefresh() const { const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); return !valid_ptr || !valid_type || !datum_size.isValid(); } }; // This AllocationDetails class collects data associated with a single // allocation instance. struct RenderScriptRuntime::AllocationDetails { struct Dimension { uint32_t dim_1; uint32_t dim_2; uint32_t dim_3; uint32_t cubeMap; Dimension() { dim_1 = 0; dim_2 = 0; dim_3 = 0; cubeMap = 0; } }; // The FileHeader struct specifies the header we use for writing allocations // to a binary file. // Our format begins with the ASCII characters "RSAD", identifying the file as // an allocation dump. // Member variables dims and hdr_size are then written consecutively, // immediately followed by an instance of // the ElementHeader struct. Because Elements can contain subelements, there // may be more than one instance // of the ElementHeader struct. With this first instance being the root // element, and the other instances being // the root's descendants. To identify which instances are an ElementHeader's // children, each struct // is immediately followed by a sequence of consecutive offsets to the start // of its child structs. // These offsets are 4 bytes in size, and the 0 offset signifies no more // children. struct FileHeader { uint8_t ident[4]; // ASCII 'RSAD' identifying the file uint32_t dims[3]; // Dimensions uint16_t hdr_size; // Header size in bytes, including all element headers }; struct ElementHeader { uint16_t type; // DataType enum uint32_t kind; // DataKind enum uint32_t element_size; // Size of a single element, including padding uint16_t vector_size; // Vector width uint32_t array_size; // Number of elements in array }; // Monotonically increasing from 1 static uint32_t ID; // Maps Allocation DataType enum and vector size to printable strings // using mapping from RenderScript numerical types summary documentation static const char *RsDataTypeToString[][4]; // Maps Allocation DataKind enum to printable strings static const char *RsDataKindToString[]; // Maps allocation types to format sizes for printing. static const uint32_t RSTypeToFormat[][3]; // Give each allocation an ID as a way // for commands to reference it. const uint32_t id; RenderScriptRuntime::Element element; // Allocation Element type empirical_type dimension; // Dimensions of the Allocation empirical_type address; // Pointer to address of the RS Allocation empirical_type data_ptr; // Pointer to the data held by the Allocation empirical_type type_ptr; // Pointer to the RS Type of the Allocation empirical_type context; // Pointer to the RS Context of the Allocation empirical_type size; // Size of the allocation empirical_type stride; // Stride between rows of the allocation // Give each allocation an id, so we can reference it in user commands. AllocationDetails() : id(ID++) {} bool shouldRefresh() const { bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); } }; const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { static const ConstString FallbackStructName("struct"); return FallbackStructName; } uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { "User", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { {"None", "None", "None", "None"}, {"half", "half2", "half3", "half4"}, {"float", "float2", "float3", "float4"}, {"double", "double2", "double3", "double4"}, {"char", "char2", "char3", "char4"}, {"short", "short2", "short3", "short4"}, {"int", "int2", "int3", "int4"}, {"long", "long2", "long3", "long4"}, {"uchar", "uchar2", "uchar3", "uchar4"}, {"ushort", "ushort2", "ushort3", "ushort4"}, {"uint", "uint2", "uint3", "uint4"}, {"ulong", "ulong2", "ulong3", "ulong4"}, {"bool", "bool2", "bool3", "bool4"}, {"packed_565", "packed_565", "packed_565", "packed_565"}, {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, // Handlers {"RS Element", "RS Element", "RS Element", "RS Element"}, {"RS Type", "RS Type", "RS Type", "RS Type"}, {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, {"RS Script", "RS Script", "RS Script", "RS Script"}, // Deprecated {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, {"RS Font", "RS Font", "RS Font", "RS Font"}}; // Used as an index into the RSTypeToFormat array elements enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; // { format enum of single element, format enum of element vector, size of // element} const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 }; //------------------------------------------------------------------ // Static Functions //------------------------------------------------------------------ LanguageRuntime * RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) { if (language == eLanguageTypeExtRenderScript) return new RenderScriptRuntime(process); else return nullptr; } // Callback with a module to search for matching symbols. // We first check that the module contains RS kernels. // Then look for a symbol which matches our kernel name. // The breakpoint address is finally set using the address of this symbol. Searcher::CallbackReturn RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool) { ModuleSP module = context.module_sp; if (!module) return Searcher::eCallbackReturnContinue; // Is this a module containing renderscript kernels? if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) return Searcher::eCallbackReturnContinue; // Attempt to set a breakpoint on the kernel name symbol within the module // library. // If it's not found, it's likely debug info is unavailable - try to set a // breakpoint on .expand. const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); if (!kernel_sym) { std::string kernel_name_expanded(m_kernel_name.AsCString()); kernel_name_expanded.append(".expand"); kernel_sym = module->FindFirstSymbolWithNameAndType( ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); } if (kernel_sym) { Address bp_addr = kernel_sym->GetAddress(); if (filter.AddressPasses(bp_addr)) m_breakpoint->AddLocation(bp_addr); } return Searcher::eCallbackReturnContinue; } void RenderScriptRuntime::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, GetCommandObject); } void RenderScriptRuntime::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { static ConstString g_name("renderscript"); return g_name; } RenderScriptRuntime::ModuleKind RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { if (module_sp) { // Is this a module containing renderscript kernels? const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType( ConstString(".rs.info"), eSymbolTypeData); if (info_sym) { return eModuleKindKernelObj; } // Is this the main RS runtime library const ConstString rs_lib("libRS.so"); if (module_sp->GetFileSpec().GetFilename() == rs_lib) { return eModuleKindLibRS; } const ConstString rs_driverlib("libRSDriver.so"); if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { return eModuleKindDriver; } const ConstString rs_cpureflib("libRSCpuRef.so"); if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { return eModuleKindImpl; } } return eModuleKindIgnored; } bool RenderScriptRuntime::IsRenderScriptModule( const lldb::ModuleSP &module_sp) { return GetModuleKind(module_sp) != eModuleKindIgnored; } void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { std::lock_guard guard(module_list.GetMutex()); size_t num_modules = module_list.GetSize(); for (size_t i = 0; i < num_modules; i++) { auto mod = module_list.GetModuleAtIndex(i); if (IsRenderScriptModule(mod)) { LoadModule(mod); } } } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ lldb_private::ConstString RenderScriptRuntime::GetPluginName() { return GetPluginNameStatic(); } uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } bool RenderScriptRuntime::GetDynamicTypeAndAddress( ValueObject &in_value, lldb::DynamicValueType use_dynamic, TypeAndOrName &class_type_or_name, Address &address, Value::ValueType &value_type) { return false; } TypeAndOrName RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value) { return type_and_or_name; } bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { return false; } lldb::BreakpointResolverSP RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) { BreakpointResolverSP resolver_sp; return resolver_sp; } const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { // rsdScript {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" "NS0_7ScriptCEPKcS7_PKhjj", "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" "7ScriptCEPKcS7_PKhmj", 0, RenderScriptRuntime::eModuleKindDriver, &lldb_private::RenderScriptRuntime::CaptureScriptInit}, {"rsdScriptInvokeForEachMulti", "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 0, RenderScriptRuntime::eModuleKindDriver, &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" "script7ContextEPKNS0_6ScriptEjPvj", "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" "6ScriptEjPvm", 0, RenderScriptRuntime::eModuleKindDriver, &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, // rsdAllocation {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" "ontextEPNS0_10AllocationEb", "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" "10AllocationEb", 0, RenderScriptRuntime::eModuleKindDriver, &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, {"rsdAllocationRead2D", "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" "ript7ContextEPNS0_10AllocationE", "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" "10AllocationE", 0, RenderScriptRuntime::eModuleKindDriver, &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, }; const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); bool RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, lldb::user_id_t break_loc_id) { RuntimeHook *hook_info = (RuntimeHook *)baton; ExecutionContext context(ctx->exe_ctx_ref); RenderScriptRuntime *lang_rt = (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript); lang_rt->HookCallback(hook_info, context); return false; } void RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (log) log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name); if (hook_info->defn->grabber) { (this->*(hook_info->defn->grabber))(hook_info, context); } } void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( RuntimeHook *hook_info, ExecutionContext &context) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); enum { eRsContext = 0, eRsScript, eRsSlot, eRsAIns, eRsInLen, eRsAOut, eRsUsr, eRsUsrLen, eRsSc, }; std::array args{{ ArgItem{ArgItem::ePointer, 0}, // const Context *rsc ArgItem{ArgItem::ePointer, 0}, // Script *s ArgItem{ArgItem::eInt32, 0}, // uint32_t slot ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns ArgItem{ArgItem::eInt32, 0}, // size_t inLen ArgItem{ArgItem::ePointer, 0}, // Allocation *aout ArgItem{ArgItem::ePointer, 0}, // const void *usr ArgItem{ArgItem::eInt32, 0}, // size_t usrLen ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc }}; bool success = GetArgs(context, &args[0], args.size()); if (!success) { if (log) log->Printf("%s - Error while reading the function parameters", __FUNCTION__); return; } const uint32_t target_ptr_size = m_process->GetAddressByteSize(); Error error; std::vector allocs; // traverse allocation list for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { // calculate offest to allocation pointer const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; // Note: due to little endian layout, reading 32bits or 64bits into res64 // will // give the correct results. uint64_t res64 = 0; size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error); if (read != target_ptr_size || !error.Success()) { if (log) log->Printf( "%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i); } else { allocs.push_back(res64); } } // if there is an output allocation track it if (uint64_t aOut = uint64_t(args[eRsAOut])) { allocs.push_back(aOut); } // for all allocations we have found for (const uint64_t alloc_addr : allocs) { AllocationDetails *alloc = LookUpAllocation(alloc_addr); if (!alloc) alloc = CreateAllocation(alloc_addr); if (alloc) { // save the allocation address if (alloc->address.isValid()) { // check the allocation address we already have matches assert(*alloc->address.get() == alloc_addr); } else { alloc->address = alloc_addr; } // save the context if (log) { if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext])) log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__); } alloc->context = addr_t(args[eRsContext]); } } // make sure we track this script object if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true)) { if (log) { if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext])) log->Printf("%s - Script used by multiple contexts", __FUNCTION__); } script->context = addr_t(args[eRsContext]); } } void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); enum { eRsContext, eRsScript, eRsId, eRsData, eRsLength, }; std::array args{{ ArgItem{ArgItem::ePointer, 0}, // eRsContext ArgItem{ArgItem::ePointer, 0}, // eRsScript ArgItem{ArgItem::eInt32, 0}, // eRsId ArgItem{ArgItem::ePointer, 0}, // eRsData ArgItem{ArgItem::eInt32, 0}, // eRsLength }}; bool success = GetArgs(context, &args[0], args.size()); if (!success) { if (log) log->Printf("%s - error reading the function parameters.", __FUNCTION__); return; } if (log) { log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]), uint64_t(args[eRsData]), uint64_t(args[eRsLength])); addr_t script_addr = addr_t(args[eRsScript]); if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { auto rsm = m_scriptMappings[script_addr]; if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(), rsm->m_module->GetFileSpec().GetFilename().AsCString()); } } } } void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); enum { eRsContext, eRsAlloc, eRsForceZero }; std::array args{{ ArgItem{ArgItem::ePointer, 0}, // eRsContext ArgItem{ArgItem::ePointer, 0}, // eRsAlloc ArgItem{ArgItem::eBool, 0}, // eRsForceZero }}; bool success = GetArgs(context, &args[0], args.size()); if (!success) // error case { if (log) log->Printf("%s - error while reading the function parameters", __FUNCTION__); return; // abort } if (log) log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); if (alloc) alloc->context = uint64_t(args[eRsContext]); } void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); enum { eRsContext, eRsAlloc, }; std::array args{{ ArgItem{ArgItem::ePointer, 0}, // eRsContext ArgItem{ArgItem::ePointer, 0}, // eRsAlloc }}; bool success = GetArgs(context, &args[0], args.size()); if (!success) { if (log) log->Printf("%s - error while reading the function parameters.", __FUNCTION__); return; } if (log) log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { auto &allocation_ap = *iter; // get the unique pointer if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { m_allocations.erase(iter); if (log) log->Printf("%s - deleted allocation entry.", __FUNCTION__); return; } } if (log) log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); } void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); Error error; Process *process = context.GetProcessPtr(); enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; std::array args{ {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; bool success = GetArgs(context, &args[0], args.size()); if (!success) { if (log) log->Printf("%s - error while reading the function parameters.", __FUNCTION__); return; } std::string resname; process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error); if (error.Fail()) { if (log) log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString()); } std::string cachedir; process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error); if (error.Fail()) { if (log) log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString()); } if (log) log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str()); if (resname.size() > 0) { StreamString strm; strm.Printf("librs.%s.so", resname.c_str()); ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); if (script) { script->type = ScriptDetails::eScriptC; script->cacheDir = cachedir; script->resName = resname; script->scriptDyLib = strm.GetData(); script->context = addr_t(args[eRsContext]); } if (log) log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript])); } else if (log) { log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); } } void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!module) { return; } Target &target = GetProcess()->GetTarget(); llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); if (targetArchType != llvm::Triple::ArchType::x86 && targetArchType != llvm::Triple::ArchType::arm && targetArchType != llvm::Triple::ArchType::aarch64 && targetArchType != llvm::Triple::ArchType::mipsel && targetArchType != llvm::Triple::ArchType::mips64el && targetArchType != llvm::Triple::ArchType::x86_64) { if (log) log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); return; } uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; if (hook_defn->kind != kind) { continue; } const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; const Symbol *sym = module->FindFirstSymbolWithNameAndType( ConstString(symbol_name), eSymbolTypeCode); if (!sym) { if (log) { log->Printf("%s - symbol '%s' related to the function %s not found", __FUNCTION__, symbol_name, hook_defn->name); } continue; } addr_t addr = sym->GetLoadAddress(&target); if (addr == LLDB_INVALID_ADDRESS) { if (log) log->Printf("%s - unable to resolve the address of hook function '%s' " "with symbol '%s'.", __FUNCTION__, hook_defn->name, symbol_name); continue; } else { if (log) log->Printf("%s - function %s, address resolved at 0x%" PRIx64, __FUNCTION__, hook_defn->name, addr); } RuntimeHookSP hook(new RuntimeHook()); hook->address = addr; hook->defn = hook_defn; hook->bp_sp = target.CreateBreakpoint(addr, true, false); hook->bp_sp->SetCallback(HookCallback, hook.get(), true); m_runtimeHooks[addr] = hook; if (log) { log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), (uint64_t)hook_defn->version, (uint64_t)addr); } } } void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { if (!rsmodule_sp) return; Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); const ModuleSP module = rsmodule_sp->m_module; const FileSpec &file = module->GetPlatformFileSpec(); // Iterate over all of the scripts that we currently know of. // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. for (const auto &rs_script : m_scripts) { // Extract the expected .so file path for this script. std::string dylib; if (!rs_script->scriptDyLib.get(dylib)) continue; // Only proceed if the module that has loaded corresponds to this script. if (file.GetFilename() != ConstString(dylib.c_str())) continue; // Obtain the script address which we use as a key. lldb::addr_t script; if (!rs_script->script.get(script)) continue; // If we have a script mapping for the current script. if (m_scriptMappings.find(script) != m_scriptMappings.end()) { // if the module we have stored is different to the one we just received. if (m_scriptMappings[script] != rsmodule_sp) { if (log) log->Printf( "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__, (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); } } // We don't have a script mapping for the current script. else { // Obtain the script resource name. std::string resName; if (rs_script->resName.get(resName)) // Set the modules resource name. rsmodule_sp->m_resname = resName; // Add Script/Module pair to map. m_scriptMappings[script] = rsmodule_sp; if (log) log->Printf( "%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__, (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); } } } // Uses the Target API to evaluate the expression passed as a parameter to the // function // The result of that expression is returned an unsigned 64 bit int, via the // result* parameter. // Function returns true on success, and false on failure bool RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (log) log->Printf("%s(%s)", __FUNCTION__, expression); ValueObjectSP expr_result; EvaluateExpressionOptions options; options.SetLanguage(lldb::eLanguageTypeC_plus_plus); // Perform the actual expression evaluation GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options); if (!expr_result) { if (log) log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); return false; } // The result of the expression is invalid if (!expr_result->GetError().Success()) { Error err = expr_result->GetError(); if (err.GetError() == UserExpression::kNoResult) // Expression returned // void, so this is // actually a success { if (log) log->Printf("%s - expression returned void.", __FUNCTION__); result = nullptr; return true; } if (log) log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, err.AsCString()); return false; } bool success = false; *result = expr_result->GetValueAsUnsigned( 0, &success); // We only read the result as an uint32_t. if (!success) { if (log) log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__); return false; } return true; } namespace { // Used to index expression format strings enum ExpressionStrings { eExprGetOffsetPtr = 0, eExprAllocGetType, eExprTypeDimX, eExprTypeDimY, eExprTypeDimZ, eExprTypeElemPtr, eExprElementType, eExprElementKind, eExprElementVec, eExprElementFieldCount, eExprSubelementsId, eExprSubelementsName, eExprSubelementsArrSize, _eExprLast // keep at the end, implicit size of the array runtimeExpressions }; // max length of an expanded expression const int jit_max_expr_size = 512; // Retrieve the string to JIT for the given expression const char *JITTemplate(ExpressionStrings e) { // Format strings containing the expressions we may need to evaluate. static std::array runtimeExpressions = { {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) "(int*)_" "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" "CubemapFace" "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // Type* rsaAllocationGetType(Context*, Allocation*) "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; // mHal.state.dimZ; // mHal.state.lodCount; mHal.state.faces; mElement; into typeData // Need to specify 32 or 64 bit for uint_t since this differs between // devices "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into // elemData "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t // *ids, const char **names, // size_t *arraySizes, uint32_t dataSize) // Needed for Allocations of structs to gather details about // fields/Subelements // Element* of field "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // Name of field "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // Array size of field "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; return runtimeExpressions[e]; } } // end of the anonymous namespace // JITs the RS runtime for the internal data pointer of an allocation. // Is passed x,y,z coordinates for the pointer to a specific element. // Then sets the data_ptr member in Allocation with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x, uint32_t y, uint32_t z) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid()) { if (log) log->Printf("%s - failed to find allocation details.", __FUNCTION__); return false; } const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); char buffer[jit_max_expr_size]; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); if (chars_written < 0) { if (log) log->Printf("%s - encoding error in snprintf().", __FUNCTION__); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - expression too long.", __FUNCTION__); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t mem_ptr = static_cast(result); allocation->data_ptr = mem_ptr; return true; } // JITs the RS runtime for the internal pointer to the RS Type of an allocation // Then sets the type_ptr member in Allocation with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid() || !allocation->context.isValid()) { if (log) log->Printf("%s - failed to find allocation details.", __FUNCTION__); return false; } const char *expr_cstr = JITTemplate(eExprAllocGetType); char buffer[jit_max_expr_size]; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); if (chars_written < 0) { if (log) log->Printf("%s - encoding error in snprintf().", __FUNCTION__); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - expression too long.", __FUNCTION__); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t type_ptr = static_cast(result); allocation->type_ptr = type_ptr; return true; } // JITs the RS runtime for information about the dimensions and type of an // allocation // Then sets dimension and element_ptr members in Allocation with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) { if (log) log->Printf("%s - Failed to find allocation details.", __FUNCTION__); return false; } // Expression is different depending on if device is 32 or 64 bit uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); const uint32_t bits = archByteSize == 4 ? 32 : 64; // We want 4 elements from packed data const uint32_t num_exprs = 4; assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); char buffer[num_exprs][jit_max_expr_size]; uint64_t results[num_exprs]; for (uint32_t i = 0; i < num_exprs; ++i) { const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), *allocation->type_ptr.get()); if (chars_written < 0) { if (log) log->Printf("%s - encoding error in snprintf().", __FUNCTION__); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - expression too long.", __FUNCTION__); return false; } // Perform expression evaluation if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) return false; } // Assign results to allocation members AllocationDetails::Dimension dims; dims.dim_1 = static_cast(results[0]); dims.dim_2 = static_cast(results[1]); dims.dim_3 = static_cast(results[2]); allocation->dimension = dims; addr_t elem_ptr = static_cast(results[3]); allocation->element.element_ptr = elem_ptr; if (log) log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); return true; } // JITs the RS runtime for information about the Element of an allocation // Then sets type, type_vec_size, field_count and type_kind members in Element // with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!elem.element_ptr.isValid()) { if (log) log->Printf("%s - failed to find allocation details.", __FUNCTION__); return false; } // We want 4 elements from packed data const uint32_t num_exprs = 4; assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); char buffer[num_exprs][jit_max_expr_size]; uint64_t results[num_exprs]; for (uint32_t i = 0; i < num_exprs; i++) { const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i)); int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); if (chars_written < 0) { if (log) log->Printf("%s - encoding error in snprintf().", __FUNCTION__); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - expression too long.", __FUNCTION__); return false; } // Perform expression evaluation if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) return false; } // Assign results to allocation members elem.type = static_cast(results[0]); elem.type_kind = static_cast(results[1]); elem.type_vec_size = static_cast(results[2]); elem.field_count = static_cast(results[3]); if (log) log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32, __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); // If this Element has subelements then JIT rsaElementGetSubElements() for // details about its fields if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) return false; return true; } // JITs the RS runtime for information about the subelements/fields of a struct // allocation // This is necessary for infering the struct type so we can pretty print the // allocation's contents. // Returns true on success, false otherwise bool RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { if (log) log->Printf("%s - failed to find allocation details.", __FUNCTION__); return false; } const short num_exprs = 3; assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); char expr_buffer[jit_max_expr_size]; uint64_t results; // Iterate over struct fields. const uint32_t field_count = *elem.field_count.get(); for (uint32_t field_index = 0; field_index < field_count; ++field_index) { Element child; for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, field_count, field_count, field_count, context, *elem.element_ptr.get(), field_count, field_index); if (chars_written < 0) { if (log) log->Printf("%s - encoding error in snprintf().", __FUNCTION__); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - expression too long.", __FUNCTION__); return false; } // Perform expression evaluation if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) return false; if (log) log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); switch (expr_index) { case 0: // Element* of child child.element_ptr = static_cast(results); break; case 1: // Name of child { lldb::addr_t address = static_cast(results); Error err; std::string name; GetProcess()->ReadCStringFromMemory(address, name, err); if (!err.Fail()) child.type_name = ConstString(name); else { if (log) log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__); } break; } case 2: // Array size of child child.array_size = static_cast(results); break; } } // We need to recursively JIT each Element field of the struct since // structs can be nested inside structs. if (!JITElementPacked(child, context, frame_ptr)) return false; elem.children.push_back(child); } // Try to infer the name of the struct type so we can pretty print the // allocation contents. FindStructTypeName(elem, frame_ptr); return true; } // JITs the RS runtime for the address of the last element in the allocation. // The `elem_size` parameter represents the size of a single element, including // padding. // Which is needed as an offset from the last element pointer. // Using this offset minus the starting address we can calculate the size of the // allocation. // Returns true on success, false otherwise bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || !allocation->element.datum_size.isValid()) { if (log) log->Printf("%s - failed to find allocation details.", __FUNCTION__); return false; } // Find dimensions uint32_t dim_x = allocation->dimension.get()->dim_1; uint32_t dim_y = allocation->dimension.get()->dim_2; uint32_t dim_z = allocation->dimension.get()->dim_3; // Our plan of jitting the last element address doesn't seem to work for // struct Allocations // Instead try to infer the size ourselves without any inter element padding. if (allocation->element.children.size() > 0) { if (dim_x == 0) dim_x = 1; if (dim_y == 0) dim_y = 1; if (dim_z == 0) dim_z = 1; allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); if (log) log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", __FUNCTION__, *allocation->size.get()); return true; } const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); char buffer[jit_max_expr_size]; // Calculate last element dim_x = dim_x == 0 ? 0 : dim_x - 1; dim_y = dim_y == 0 ? 0 : dim_y - 1; dim_z = dim_z == 0 ? 0 : dim_z - 1; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); if (chars_written < 0) { if (log) log->Printf("%s - encoding error in snprintf().", __FUNCTION__); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - expression too long.", __FUNCTION__); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t mem_ptr = static_cast(result); // Find pointer to last element and add on size of an element allocation->size = static_cast(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); return true; } // JITs the RS runtime for information about the stride between rows in the // allocation. // This is done to detect padding, since allocated memory is 16-byte aligned. // Returns true on success, false otherwise bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) { if (log) log->Printf("%s - failed to find allocation details.", __FUNCTION__); return false; } const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); char buffer[jit_max_expr_size]; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); if (chars_written < 0) { if (log) log->Printf("%s - encoding error in snprintf().", __FUNCTION__); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - expression too long.", __FUNCTION__); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t mem_ptr = static_cast(result); allocation->stride = static_cast(mem_ptr - *allocation->data_ptr.get()); return true; } // JIT all the current runtime info regarding an allocation bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr) { // GetOffsetPointer() if (!JITDataPointer(allocation, frame_ptr)) return false; // rsaAllocationGetType() if (!JITTypePointer(allocation, frame_ptr)) return false; // rsaTypeGetNativeData() if (!JITTypePacked(allocation, frame_ptr)) return false; // rsaElementGetNativeData() if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) return false; // Sets the datum_size member in Element SetElementSize(allocation->element); // Use GetOffsetPointer() to infer size of the allocation if (!JITAllocationSize(allocation, frame_ptr)) return false; return true; } // Function attempts to set the type_name member of the paramaterised Element // object. // This string should be the name of the struct type the Element represents. // We need this string for pretty printing the Element to users. void RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!elem.type_name.IsEmpty()) // Name already set return; else elem.type_name = Element::GetFallbackStructName(); // Default type name if // we don't succeed // Find all the global variables from the script rs modules VariableList variable_list; for (auto module_sp : m_rsmodules) module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); // Iterate over all the global variables looking for one with a matching type // to the Element. // We make the assumption a match exists since there needs to be a global // variable to reflect the // struct type back into java host code. for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) { const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); if (!var_sp) continue; ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); if (!valobj_sp) continue; // Find the number of variable fields. // If it has no fields, or more fields than our Element, then it can't be // the struct we're looking for. // Don't check for equality since RS can add extra struct members for // padding. size_t num_children = valobj_sp->GetNumChildren(); if (num_children > elem.children.size() || num_children == 0) continue; // Iterate over children looking for members with matching field names. // If all the field names match, this is likely the struct we want. // // TODO: This could be made more robust by also checking children data // sizes, or array size bool found = true; for (size_t child_index = 0; child_index < num_children; ++child_index) { ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); if (!child || (child->GetName() != elem.children[child_index].type_name)) { found = false; break; } } // RS can add extra struct members for padding in the format // '#rs_padding_[0-9]+' if (found && num_children < elem.children.size()) { const uint32_t size_diff = elem.children.size() - num_children; if (log) log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff); for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index) { const ConstString &name = elem.children[num_children + padding_index].type_name; if (strcmp(name.AsCString(), "#rs_padding") < 0) found = false; } } // We've found a global var with matching type if (found) { // Dereference since our Element type isn't a pointer. if (valobj_sp->IsPointerType()) { Error err; ValueObjectSP deref_valobj = valobj_sp->Dereference(err); if (!err.Fail()) valobj_sp = deref_valobj; } // Save name of variable in Element. elem.type_name = valobj_sp->GetTypeName(); if (log) log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString()); return; } } } // Function sets the datum_size member of Element. Representing the size of a // single instance including padding. // Assumes the relevant allocation information has already been jitted. void RenderScriptRuntime::SetElementSize(Element &elem) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); const Element::DataType type = *elem.type.get(); assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); const uint32_t vec_size = *elem.type_vec_size.get(); uint32_t data_size = 0; uint32_t padding = 0; // Element is of a struct type, calculate size recursively. if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { for (Element &child : elem.children) { SetElementSize(child); const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1; data_size += *child.datum_size.get() * array_size; } } // These have been packed already else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; } else if (type < Element::RS_TYPE_ELEMENT) { data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; if (vec_size == 3) padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; } else data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); elem.padding = padding; elem.datum_size = data_size + padding; if (log) log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding); } // Given an allocation, this function copies the allocation contents from device // into a buffer on the heap. // Returning a shared pointer to the buffer containing the data. std::shared_ptr RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // JIT all the allocation details if (allocation->shouldRefresh()) { if (log) log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__); if (!RefreshAllocation(allocation, frame_ptr)) { if (log) log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); return nullptr; } } assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && allocation->element.type_vec_size.isValid() && allocation->size.isValid() && "Allocation information not available"); // Allocate a buffer to copy data into const uint32_t size = *allocation->size.get(); std::shared_ptr buffer(new uint8_t[size]); if (!buffer) { if (log) log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size); return nullptr; } // Read the inferior memory Error error; lldb::addr_t data_ptr = *allocation->data_ptr.get(); GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); if (error.Fail()) { if (log) log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64, __FUNCTION__, error.AsCString(), size, data_ptr); return nullptr; } return buffer; } // Function copies data from a binary file into an allocation. // There is a header at the start of the file, FileHeader, before the data // content itself. // Information from this header is used to display warnings to the user about // incompatibilities bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // Find allocation with the given id AllocationDetails *alloc = FindAllocByID(strm, alloc_id); if (!alloc) return false; if (log) log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); // JIT all the allocation details if (alloc->shouldRefresh()) { if (log) log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); if (!RefreshAllocation(alloc, frame_ptr)) { if (log) log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); return false; } } assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); // Check we can read from file FileSpec file(filename, true); if (!file.Exists()) { strm.Printf("Error: File %s does not exist", filename); strm.EOL(); return false; } if (!file.Readable()) { strm.Printf("Error: File %s does not have readable permissions", filename); strm.EOL(); return false; } // Read file into data buffer DataBufferSP data_sp(file.ReadFileContents()); // Cast start of buffer to FileHeader and use pointer to read metadata void *file_buffer = data_sp->GetBytes(); if (file_buffer == nullptr || data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) { strm.Printf("Error: File %s does not contain enough data for header", filename); strm.EOL(); return false; } const AllocationDetails::FileHeader *file_header = static_cast(file_buffer); // Check file starts with ascii characters "RSAD" if (memcmp(file_header->ident, "RSAD", 4)) { strm.Printf("Error: File doesn't contain identifier for an RS allocation " "dump. Are you sure this is the correct file?"); strm.EOL(); return false; } // Look at the type of the root element in the header AllocationDetails::ElementHeader root_element_header; memcpy(&root_element_header, static_cast(file_buffer) + sizeof(AllocationDetails::FileHeader), sizeof(AllocationDetails::ElementHeader)); if (log) log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__, root_element_header.type, root_element_header.element_size); // Check if the target allocation and file both have the same number of bytes // for an Element if (*alloc->element.datum_size.get() != root_element_header.element_size) { strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes", root_element_header.element_size, *alloc->element.datum_size.get()); strm.EOL(); } // Check if the target allocation and file both have the same type const uint32_t alloc_type = static_cast(*alloc->element.type.get()); const uint32_t file_type = root_element_header.type; if (file_type > Element::RS_TYPE_FONT) { strm.Printf("Warning: File has unknown allocation type"); strm.EOL(); } else if (alloc_type != file_type) { // Enum value isn't monotonous, so doesn't always index RsDataTypeToString // array uint32_t printable_target_type_index = alloc_type; uint32_t printable_head_type_index = file_type; if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) printable_target_type_index = static_cast( (alloc_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1); if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) printable_head_type_index = static_cast( (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1); const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; strm.Printf( "Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, target_type_cstr); strm.EOL(); } // Advance buffer past header file_buffer = static_cast(file_buffer) + file_header->hdr_size; // Calculate size of allocation data in file size_t length = data_sp->GetByteSize() - file_header->hdr_size; // Check if the target allocation and file both have the same total data size. const uint32_t alloc_size = *alloc->size.get(); if (alloc_size != length) { strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes", (uint64_t)length, alloc_size); strm.EOL(); length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum } // Copy file data from our buffer into the target allocation. lldb::addr_t alloc_data = *alloc->data_ptr.get(); Error error; size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); if (!error.Success() || bytes_written != length) { strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); strm.EOL(); return false; } strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id); strm.EOL(); return true; } // Function takes as parameters a byte buffer, which will eventually be written // to file as the element header, // an offset into that buffer, and an Element that will be saved into the buffer // at the parametrised offset. // Return value is the new offset after writing the element into the buffer. // Elements are saved to the file as the ElementHeader struct followed by // offsets to the structs of all the element's // children. size_t RenderScriptRuntime::PopulateElementHeaders( const std::shared_ptr header_buffer, size_t offset, const Element &elem) { // File struct for an element header with all the relevant details copied from // elem. // We assume members are valid already. AllocationDetails::ElementHeader elem_header; elem_header.type = *elem.type.get(); elem_header.kind = *elem.type_kind.get(); elem_header.element_size = *elem.datum_size.get(); elem_header.vector_size = *elem.type_vec_size.get(); elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); // Copy struct into buffer and advance offset // We assume that header_buffer has been checked for nullptr before this // method is called memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); offset += elem_header_size; // Starting offset of child ElementHeader struct size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); for (const RenderScriptRuntime::Element &child : elem.children) { // Recursively populate the buffer with the element header structs of // children. // Then save the offsets where they were set after the parent element // header. memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); offset += sizeof(uint32_t); child_offset = PopulateElementHeaders(header_buffer, child_offset, child); } // Zero indicates no more children memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); return child_offset; } // Given an Element object this function returns the total size needed in the // file header to store the element's // details. // Taking into account the size of the element header struct, plus the offsets // to all the element's children. // Function is recursive so that the size of all ancestors is taken into // account. size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator size += sizeof(AllocationDetails::ElementHeader); // Size of header struct // with type details // Calculate recursively for all descendants for (const Element &child : elem.children) size += CalculateElementHeaderSize(child); return size; } // Function copies allocation contents into a binary file. // This file can then be loaded later into a different allocation. // There is a header, FileHeader, before the allocation data containing // meta-data. bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // Find allocation with the given id AllocationDetails *alloc = FindAllocByID(strm, alloc_id); if (!alloc) return false; if (log) log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get()); // JIT all the allocation details if (alloc->shouldRefresh()) { if (log) log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); if (!RefreshAllocation(alloc, frame_ptr)) { if (log) log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); return false; } } assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && "Allocation information not available"); // Check we can create writable file FileSpec file_spec(filename, true); File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); if (!file) { strm.Printf("Error: Failed to open '%s' for writing", filename); strm.EOL(); return false; } // Read allocation into buffer of heap memory const std::shared_ptr buffer = GetAllocationData(alloc, frame_ptr); if (!buffer) { strm.Printf("Error: Couldn't read allocation data into buffer"); strm.EOL(); return false; } // Create the file header AllocationDetails::FileHeader head; memcpy(head.ident, "RSAD", 4); head.dims[0] = static_cast(alloc->dimension.get()->dim_1); head.dims[1] = static_cast(alloc->dimension.get()->dim_2); head.dims[2] = static_cast(alloc->dimension.get()->dim_3); const size_t element_header_size = CalculateElementHeaderSize(alloc->element); assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); head.hdr_size = static_cast(sizeof(AllocationDetails::FileHeader) + element_header_size); // Write the file header size_t num_bytes = sizeof(AllocationDetails::FileHeader); if (log) log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); Error err = file.Write(&head, num_bytes); if (!err.Success()) { strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); strm.EOL(); return false; } // Create the headers describing the element type of the allocation. std::shared_ptr element_header_buffer( new uint8_t[element_header_size]); if (element_header_buffer == nullptr) { strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size); strm.EOL(); return false; } PopulateElementHeaders(element_header_buffer, 0, alloc->element); // Write headers for allocation element type to file num_bytes = element_header_size; if (log) log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes); err = file.Write(element_header_buffer.get(), num_bytes); if (!err.Success()) { strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); strm.EOL(); return false; } // Write allocation data to file num_bytes = static_cast(*alloc->size.get()); if (log) log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); err = file.Write(buffer.get(), num_bytes); if (!err.Success()) { strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); strm.EOL(); return false; } strm.Printf("Allocation written to file '%s'", filename); strm.EOL(); return true; } bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (module_sp) { for (const auto &rs_module : m_rsmodules) { if (rs_module->m_module == module_sp) { // Check if the user has enabled automatically breaking on // all RS kernels. if (m_breakAllKernels) BreakOnModuleKernels(rs_module); return false; } } bool module_loaded = false; switch (GetModuleKind(module_sp)) { case eModuleKindKernelObj: { RSModuleDescriptorSP module_desc; module_desc.reset(new RSModuleDescriptor(module_sp)); if (module_desc->ParseRSInfo()) { m_rsmodules.push_back(module_desc); module_loaded = true; } if (module_loaded) { FixupScriptDetails(module_desc); } break; } case eModuleKindDriver: { if (!m_libRSDriver) { m_libRSDriver = module_sp; LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); } break; } case eModuleKindImpl: { m_libRSCpuRef = module_sp; break; } case eModuleKindLibRS: { if (!m_libRS) { m_libRS = module_sp; static ConstString gDbgPresentStr("gDebuggerPresent"); const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( gDbgPresentStr, eSymbolTypeData); if (debug_present) { Error error; uint32_t flag = 0x00000001U; Target &target = GetProcess()->GetTarget(); addr_t addr = debug_present->GetLoadAddress(&target); GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); if (error.Success()) { if (log) log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__); m_debuggerPresentFlagged = true; } else if (log) { log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__, error.AsCString()); } } else if (log) { log->Printf( "%s - error writing debugger present flags - symbol not found", __FUNCTION__); } } break; } default: break; } if (module_loaded) Update(); return module_loaded; } return false; } void RenderScriptRuntime::Update() { if (m_rsmodules.size() > 0) { if (!m_initiated) { Initiate(); } } } // The maximum line length of an .rs.info packet #define MAXLINE 500 #define STRINGIFY(x) #x #define MAXLINESTR_(x) "%" STRINGIFY(x) "s" #define MAXLINESTR MAXLINESTR_(MAXLINE) // The .rs.info symbol in renderscript modules contains a string which needs to // be parsed. // The string is basic and is parsed on a line by line basis. bool RSModuleDescriptor::ParseRSInfo() { assert(m_module); const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( ConstString(".rs.info"), eSymbolTypeData); if (!info_sym) return false; const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); if (addr == LLDB_INVALID_ADDRESS) return false; const addr_t size = info_sym->GetByteSize(); const FileSpec fs = m_module->GetFileSpec(); const DataBufferSP buffer = fs.ReadFileContents(addr, size); if (!buffer) return false; // split rs.info. contents into lines std::vector info_lines; { const std::string info((const char *)buffer->GetBytes()); for (size_t tail = 0; tail < info.size();) { // find next new line or end of string size_t head = info.find('\n', tail); head = (head == std::string::npos) ? info.size() : head; std::string line = info.substr(tail, head - tail); // add to line list info_lines.push_back(line); tail = head + 1; } } std::array name{{'\0'}}; std::array value{{'\0'}}; // parse all text lines of .rs.info for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { uint32_t numDefns = 0; if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) { while (numDefns--) m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str())); } else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1) { while (numDefns--) { uint32_t slot = 0; name[0] = '\0'; static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR; if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2) { if (name[0] != '\0') m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot)); } } } else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1) { while (numDefns--) { name[0] = value[0] = '\0'; static const char *fmt_s = MAXLINESTR " - " MAXLINESTR; if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0) { if (name[0] != '\0') m_pragmas[std::string(name.data())] = value.data(); } } } else { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (log) { log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str()); } } } // 'root' kernel should always be present return m_kernels.size() > 0; } void RenderScriptRuntime::Status(Stream &strm) const { if (m_libRS) { strm.Printf("Runtime Library discovered."); strm.EOL(); } if (m_libRSDriver) { strm.Printf("Runtime Driver discovered."); strm.EOL(); } if (m_libRSCpuRef) { strm.Printf("CPU Reference Implementation discovered."); strm.EOL(); } if (m_runtimeHooks.size()) { strm.Printf("Runtime functions hooked:"); strm.EOL(); for (auto b : m_runtimeHooks) { strm.Indent(b.second->defn->name); strm.EOL(); } } else { strm.Printf("Runtime is not hooked."); strm.EOL(); } } void RenderScriptRuntime::DumpContexts(Stream &strm) const { strm.Printf("Inferred RenderScript Contexts:"); strm.EOL(); strm.IndentMore(); std::map contextReferences; // Iterate over all of the currently discovered scripts. // Note: We cant push or pop from m_scripts inside this loop or it may // invalidate script. for (const auto &script : m_scripts) { if (!script->context.isValid()) continue; lldb::addr_t context = *script->context; if (contextReferences.find(context) != contextReferences.end()) { contextReferences[context]++; } else { contextReferences[context] = 1; } } for (const auto &cRef : contextReferences) { strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); strm.EOL(); } strm.IndentLess(); } void RenderScriptRuntime::DumpKernels(Stream &strm) const { strm.Printf("RenderScript Kernels:"); strm.EOL(); strm.IndentMore(); for (const auto &module : m_rsmodules) { strm.Printf("Resource '%s':", module->m_resname.c_str()); strm.EOL(); for (const auto &kernel : module->m_kernels) { strm.Indent(kernel.m_name.AsCString()); strm.EOL(); } } strm.IndentLess(); } RenderScriptRuntime::AllocationDetails * RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { AllocationDetails *alloc = nullptr; // See if we can find allocation using id as an index; if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id) { alloc = m_allocations[alloc_id - 1].get(); return alloc; } // Fallback to searching for (const auto &a : m_allocations) { if (a->id == alloc_id) { alloc = a.get(); break; } } if (alloc == nullptr) { strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id); strm.EOL(); } return alloc; } // Prints the contents of an allocation to the output stream, which may be a // file bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // Check we can find the desired allocation AllocationDetails *alloc = FindAllocByID(strm, id); if (!alloc) return false; // FindAllocByID() will print error message for us here if (log) log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); // Check we have information about the allocation, if not calculate it if (alloc->shouldRefresh()) { if (log) log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); // JIT all the allocation information if (!RefreshAllocation(alloc, frame_ptr)) { strm.Printf("Error: Couldn't JIT allocation details"); strm.EOL(); return false; } } // Establish format and size of each data element const uint32_t vec_size = *alloc->element.type_vec_size.get(); const Element::DataType type = *alloc->element.type.get(); assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); lldb::Format format; if (type >= Element::RS_TYPE_ELEMENT) format = eFormatHex; else format = vec_size == 1 ? static_cast( AllocationDetails::RSTypeToFormat[type][eFormatSingle]) : static_cast( AllocationDetails::RSTypeToFormat[type][eFormatVector]); const uint32_t data_size = *alloc->element.datum_size.get(); if (log) log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size); // Allocate a buffer to copy data into std::shared_ptr buffer = GetAllocationData(alloc, frame_ptr); if (!buffer) { strm.Printf("Error: Couldn't read allocation data"); strm.EOL(); return false; } // Calculate stride between rows as there may be padding at end of rows since // allocated memory is 16-byte aligned if (!alloc->stride.isValid()) { if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension alloc->stride = 0; else if (!JITAllocationStride(alloc, frame_ptr)) { strm.Printf("Error: Couldn't calculate allocation row stride"); strm.EOL(); return false; } } const uint32_t stride = *alloc->stride.get(); const uint32_t size = *alloc->size.get(); // Size of whole allocation const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; if (log) log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32, __FUNCTION__, stride, size, padding); // Find dimensions used to index loops, so need to be non-zero uint32_t dim_x = alloc->dimension.get()->dim_1; dim_x = dim_x == 0 ? 1 : dim_x; uint32_t dim_y = alloc->dimension.get()->dim_2; dim_y = dim_y == 0 ? 1 : dim_y; uint32_t dim_z = alloc->dimension.get()->dim_3; dim_z = dim_z == 0 ? 1 : dim_z; // Use data extractor to format output const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); uint32_t offset = 0; // Offset in buffer to next element to be printed uint32_t prev_row = 0; // Offset to the start of the previous row // Iterate over allocation dimensions, printing results to user strm.Printf("Data (X, Y, Z):"); for (uint32_t z = 0; z < dim_z; ++z) { for (uint32_t y = 0; y < dim_y; ++y) { // Use stride to index start of next row. if (!(y == 0 && z == 0)) offset = prev_row + stride; prev_row = offset; // Print each element in the row individually for (uint32_t x = 0; x < dim_x; ++x) { strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && (alloc->element.type_name != Element::GetFallbackStructName())) { // Here we are dumping an Element of struct type. // This is done using expression evaluation with the name of the // struct type and pointer to element. // Don't print the name of the resulting expression, since this will // be '$[0-9]+' DumpValueObjectOptions expr_options; expr_options.SetHideName(true); // Setup expression as derefrencing a pointer cast to element address. char expr_char_buffer[jit_max_expr_size]; int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); if (chars_written < 0 || chars_written >= jit_max_expr_size) { if (log) log->Printf("%s - error in snprintf().", __FUNCTION__); continue; } // Evaluate expression ValueObjectSP expr_result; GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); // Print the results to our stream. expr_result->Dump(strm, expr_options); } else { alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); } offset += data_size; } } } strm.EOL(); return true; } // Function recalculates all our cached information about allocations by jitting // the // RS runtime regarding each allocation we know about. // Returns true if all allocations could be recomputed, false otherwise. bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr) { bool success = true; for (auto &alloc : m_allocations) { // JIT current allocation information if (!RefreshAllocation(alloc.get(), frame_ptr)) { strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id); success = false; } } if (success) strm.Printf("All allocations successfully recomputed"); strm.EOL(); return success; } // Prints information regarding currently loaded allocations. // These details are gathered by jitting the runtime, which has as latency. // Index parameter specifies a single allocation ID to print, or a zero value to // print them all void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index) { strm.Printf("RenderScript Allocations:"); strm.EOL(); strm.IndentMore(); for (auto &alloc : m_allocations) { // index will only be zero if we want to print all allocations if (index != 0 && index != alloc->id) continue; // JIT current allocation information if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id); strm.EOL(); continue; } strm.Printf("%" PRIu32 ":", alloc->id); strm.EOL(); strm.IndentMore(); strm.Indent("Context: "); if (!alloc->context.isValid()) strm.Printf("unknown\n"); else strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); strm.Indent("Address: "); if (!alloc->address.isValid()) strm.Printf("unknown\n"); else strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); strm.Indent("Data pointer: "); if (!alloc->data_ptr.isValid()) strm.Printf("unknown\n"); else strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); strm.Indent("Dimensions: "); if (!alloc->dimension.isValid()) strm.Printf("unknown\n"); else strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); strm.Indent("Data Type: "); if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) strm.Printf("unknown\n"); else { const int vector_size = *alloc->element.type_vec_size.get(); Element::DataType type = *alloc->element.type.get(); if (!alloc->element.type_name.IsEmpty()) strm.Printf("%s\n", alloc->element.type_name.AsCString()); else { // Enum value isn't monotonous, so doesn't always index // RsDataTypeToString array if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) type = static_cast((type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1); if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / sizeof(AllocationDetails::RsDataTypeToString[0])) || vector_size > 4 || vector_size < 1) strm.Printf("invalid type\n"); else strm.Printf( "%s\n", AllocationDetails::RsDataTypeToString[static_cast(type)] [vector_size - 1]); } } strm.Indent("Data Kind: "); if (!alloc->element.type_kind.isValid()) strm.Printf("unknown\n"); else { const Element::DataKind kind = *alloc->element.type_kind.get(); if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) strm.Printf("invalid kind\n"); else strm.Printf( "%s\n", AllocationDetails::RsDataKindToString[static_cast(kind)]); } strm.EOL(); strm.IndentLess(); } strm.IndentLess(); } // Set breakpoints on every kernel found in RS module void RenderScriptRuntime::BreakOnModuleKernels( const RSModuleDescriptorSP rsmodule_sp) { for (const auto &kernel : rsmodule_sp->m_kernels) { // Don't set breakpoint on 'root' kernel if (strcmp(kernel.m_name.AsCString(), "root") == 0) continue; CreateKernelBreakpoint(kernel.m_name); } } // Method is internally called by the 'kernel breakpoint all' command to // enable or disable breaking on all kernels. // // When do_break is true we want to enable this functionality. // When do_break is false we want to disable it. void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { Log *log( GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); InitSearchFilter(target); // Set breakpoints on all the kernels if (do_break && !m_breakAllKernels) { m_breakAllKernels = true; for (const auto &module : m_rsmodules) BreakOnModuleKernels(module); if (log) log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__); } else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. { m_breakAllKernels = false; if (log) log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__); } } // Given the name of a kernel this function creates a breakpoint using our // own breakpoint resolver, and returns the Breakpoint shared pointer. BreakpointSP RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { Log *log( GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); if (!m_filtersp) { if (log) log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); return nullptr; } BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( m_filtersp, resolver_sp, false, false, false); // Give RS breakpoints a specific name, so the user can manipulate them as a // group. Error err; if (!bp->AddName("RenderScriptKernel", err) && log) log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString()); return bp; } // Given an expression for a variable this function tries to calculate the // variable's value. // If this is possible it returns true and sets the uint64_t parameter to the // variables unsigned value. // Otherwise function returns false. bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); Error error; VariableSP var_sp; // Find variable in stack frame ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( var_name, eNoDynamicValues, StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, var_sp, error)); if (!error.Success()) { if (log) log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name); return false; } // Find the uint32_t value for the variable bool success = false; val = value_sp->GetValueAsUnsigned(0, &success); if (!success) { if (log) log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name); return false; } return true; } // Function attempts to find the current coordinate of a kernel invocation by // investigating the // values of frame variables in the .expand function. These coordinates are // returned via the coord // array reference parameter. Returns true if the coordinates could be found, // and false otherwise. bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr) { static const std::string s_runtimeExpandSuffix(".expand"); static const std::array s_runtimeCoordVars{ {"rsIndex", "p->current.y", "p->current.z"}}; Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!thread_ptr) { if (log) log->Printf("%s - Error, No thread pointer", __FUNCTION__); return false; } // Walk the call stack looking for a function whose name has the suffix // '.expand' // and contains the variables we're looking for. for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { if (!thread_ptr->SetSelectedFrameByIndex(i)) continue; StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); if (!frame_sp) continue; // Find the function name const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString(); if (!func_name_cstr) continue; if (log) log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr); // Check if function name has .expand suffix std::string func_name(func_name_cstr); const int length_difference = func_name.length() - s_runtimeExpandSuffix.length(); if (length_difference <= 0) continue; const int32_t has_expand_suffix = func_name.compare(length_difference, s_runtimeExpandSuffix.length(), s_runtimeExpandSuffix); if (has_expand_suffix != 0) continue; if (log) log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr); // Get values for variables in .expand frame that tell us the current kernel // invocation bool found_coord_variables = true; assert(s_runtimeCoordVars.size() == coord.size()); for (uint32_t i = 0; i < coord.size(); ++i) { uint64_t value = 0; if (!GetFrameVarAsUnsigned(frame_sp, s_runtimeCoordVars[i], value)) { found_coord_variables = false; break; } coord[i] = value; } if (found_coord_variables) return true; } return false; } // Callback when a kernel breakpoint hits and we're looking for a specific // coordinate. // Baton parameter contains a pointer to the target coordinate we want to break // on. // Function then checks the .expand frame for the current coordinate and breaks // to user if it matches. // Parameter 'break_id' is the id of the Breakpoint which made the callback. // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, // a single logical breakpoint can have multiple addresses. bool RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, user_id_t break_loc_id) { Log *log( GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); assert(baton && "Error: null baton in conditional kernel breakpoint callback"); // Coordinate we want to stop on const uint32_t *target_coord = static_cast(baton); if (log) log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id, target_coord[0], target_coord[1], target_coord[2]); // Select current thread ExecutionContext context(ctx->exe_ctx_ref); Thread *thread_ptr = context.GetThreadPtr(); assert(thread_ptr && "Null thread pointer"); // Find current kernel invocation from .expand frame variables RSCoordinate current_coord{}; // Zero initialise array if (!GetKernelCoordinate(current_coord, thread_ptr)) { if (log) log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__); return false; } if (log) log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], current_coord[2]); // Check if the current kernel invocation coordinate matches our target // coordinate if (current_coord[0] == target_coord[0] && current_coord[1] == target_coord[1] && current_coord[2] == target_coord[2]) { if (log) log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], current_coord[2]); BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint // should only be hit once. return true; } // No match on coordinate return false; } // Tries to set a breakpoint on the start of a kernel, resolved using the kernel // name. // Argument 'coords', represents a three dimensional coordinate which can be // used to specify // a single kernel instance to break on. If this is set then we add a callback // to the breakpoint. void RenderScriptRuntime::PlaceBreakpointOnKernel( Stream &strm, const char *name, const std::array coords, Error &error, TargetSP target) { if (!name) { error.SetErrorString("invalid kernel name"); return; } InitSearchFilter(target); ConstString kernel_name(name); BreakpointSP bp = CreateKernelBreakpoint(kernel_name); // We have a conditional breakpoint on a specific coordinate if (coords[0] != -1) { strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32, coords[0], coords[1], coords[2]); strm.EOL(); // Allocate memory for the baton, and copy over coordinate uint32_t *baton = new uint32_t[coords.size()]; baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; // Create a callback that will be invoked every time the breakpoint is hit. // The baton object passed to the handler is the target coordinate we want // to break on. bp->SetCallback(KernelBreakpointHit, baton, true); // Store a shared pointer to the baton, so the memory will eventually be // cleaned up after destruction m_conditional_breaks[bp->GetID()] = std::shared_ptr(baton); } if (bp) bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); } void RenderScriptRuntime::DumpModules(Stream &strm) const { strm.Printf("RenderScript Modules:"); strm.EOL(); strm.IndentMore(); for (const auto &module : m_rsmodules) { module->Dump(strm); } strm.IndentLess(); } RenderScriptRuntime::ScriptDetails * RenderScriptRuntime::LookUpScript(addr_t address, bool create) { for (const auto &s : m_scripts) { if (s->script.isValid()) if (*s->script == address) return s.get(); } if (create) { std::unique_ptr s(new ScriptDetails); s->script = address; m_scripts.push_back(std::move(s)); return m_scripts.back().get(); } return nullptr; } RenderScriptRuntime::AllocationDetails * RenderScriptRuntime::LookUpAllocation(addr_t address) { for (const auto &a : m_allocations) { if (a->address.isValid()) if (*a->address == address) return a.get(); } return nullptr; } RenderScriptRuntime::AllocationDetails * RenderScriptRuntime::CreateAllocation(addr_t address) { Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); // Remove any previous allocation which contains the same address auto it = m_allocations.begin(); while (it != m_allocations.end()) { if (*((*it)->address) == address) { if (log) log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, __FUNCTION__, (*it)->id, address); it = m_allocations.erase(it); } else { it++; } } std::unique_ptr a(new AllocationDetails); a->address = address; m_allocations.push_back(std::move(a)); return m_allocations.back().get(); } void RSModuleDescriptor::Dump(Stream &strm) const { strm.Indent(); m_module->GetFileSpec().Dump(&strm); if (m_module->GetNumCompileUnits()) { strm.Indent("Debug info loaded."); } else { strm.Indent("Debug info does not exist."); } strm.EOL(); strm.IndentMore(); strm.Indent(); strm.Printf("Globals: %" PRIu64, static_cast(m_globals.size())); strm.EOL(); strm.IndentMore(); for (const auto &global : m_globals) { global.Dump(strm); } strm.IndentLess(); strm.Indent(); strm.Printf("Kernels: %" PRIu64, static_cast(m_kernels.size())); strm.EOL(); strm.IndentMore(); for (const auto &kernel : m_kernels) { kernel.Dump(strm); } strm.Printf("Pragmas: %" PRIu64, static_cast(m_pragmas.size())); strm.EOL(); strm.IndentMore(); for (const auto &key_val : m_pragmas) { strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); strm.EOL(); } strm.IndentLess(4); } void RSGlobalDescriptor::Dump(Stream &strm) const { strm.Indent(m_name.AsCString()); VariableList var_list; m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); if (var_list.GetSize() == 1) { auto var = var_list.GetVariableAtIndex(0); auto type = var->GetType(); if (type) { strm.Printf(" - "); type->DumpTypeName(&strm); } else { strm.Printf(" - Unknown Type"); } } else { strm.Printf(" - variable identified, but not found in binary"); const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( m_name, eSymbolTypeData); if (s) { strm.Printf(" (symbol exists) "); } } strm.EOL(); } void RSKernelDescriptor::Dump(Stream &strm) const { strm.Indent(m_name.AsCString()); strm.EOL(); } class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "renderscript module dump", "Dumps renderscript specific information for all modules.", "renderscript module dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} ~CommandObjectRenderScriptRuntimeModuleDump() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript); runtime->DumpModules(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with RenderScript modules.", nullptr) { LoadSubCommand( "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( interpreter))); } ~CommandObjectRenderScriptRuntimeModule() override = default; }; class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "renderscript kernel list", "Lists renderscript kernel names and associated script resources.", "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} ~CommandObjectRenderScriptRuntimeKernelList() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript); runtime->DumpKernels(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeKernelBreakpointSet( CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "renderscript kernel breakpoint set", "Sets a breakpoint on a renderscript kernel.", "renderscript kernel breakpoint set [-c x,y,z]", eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), m_options() {} ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; Options *GetOptions() override { return &m_options; } class CommandOptions : public Options { public: CommandOptions() : Options() {} ~CommandOptions() override = default; Error SetOptionValue(uint32_t option_idx, const char *option_arg, ExecutionContext *execution_context) override { Error error; const int short_option = m_getopt_table[option_idx].val; switch (short_option) { case 'c': if (!ParseCoordinate(option_arg)) error.SetErrorStringWithFormat( "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", option_arg); break; default: error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); break; } return error; } // -c takes an argument of the form 'num[,num][,num]'. // Where 'id_cstr' is this argument with the whitespace trimmed. // Missing coordinates are defaulted to zero. bool ParseCoordinate(const char *id_cstr) { RegularExpression regex; RegularExpression::Match regex_match(3); bool matched = false; if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) matched = true; else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) matched = true; else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) matched = true; for (uint32_t i = 0; i < 3; i++) { std::string group; if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0); else m_coord[i] = 0; } return matched; } void OptionParsingStarting(ExecutionContext *execution_context) override { // -1 means the -c option hasn't been set m_coord[0] = -1; m_coord[1] = -1; m_coord[2] = -1; } const OptionDefinition *GetDefinitions() override { return g_option_table; } static OptionDefinition g_option_table[]; std::array m_coord; }; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc < 1) { result.AppendErrorWithFormat( "'%s' takes 1 argument of kernel name, and an optional coordinate.", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript); Error error; runtime->PlaceBreakpointOnKernel( result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, error, m_exe_ctx.GetTargetSP()); if (error.Success()) { result.AppendMessage("Breakpoint(s) created"); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } result.SetStatus(eReturnStatusFailed); result.AppendErrorWithFormat("Error: %s", error.AsCString()); return false; } private: CommandOptions m_options; }; OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet:: CommandOptions::g_option_table[] = { {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, "Set a breakpoint on a single invocation of the kernel with specified " "coordinate.\n" "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " "integers representing kernel dimensions. " "Any unset dimensions will be defaulted to zero."}, {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeKernelBreakpointAll( CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "renderscript kernel breakpoint all", "Automatically sets a breakpoint on all renderscript kernels that " "are or will be loaded.\n" "Disabling option means breakpoints will no longer be set on any " "kernels loaded in the future, " "but does not remove currently set breakpoints.", "renderscript kernel breakpoint all ", eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) {} ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc != 1) { result.AppendErrorWithFormat( "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast( m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript)); bool do_break = false; const char *argument = command.GetArgumentAtIndex(0); if (strcmp(argument, "enable") == 0) { do_break = true; result.AppendMessage("Breakpoints will be set on all kernels."); } else if (strcmp(argument, "disable") == 0) { do_break = false; result.AppendMessage("Breakpoints will not be set on any new kernels."); } else { result.AppendErrorWithFormat( "Argument must be either 'enable' or 'disable'"); result.SetStatus(eReturnStatusFailed); return false; } runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeKernelCoordinate( CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "renderscript kernel coordinate", "Shows the (x,y,z) coordinate of the current kernel invocation.", "renderscript kernel coordinate", eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) {} ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RSCoordinate coord{}; // Zero initialize array bool success = RenderScriptRuntime::GetKernelCoordinate( coord, m_exe_ctx.GetThreadPtr()); Stream &stream = result.GetOutputStream(); if (success) { stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]); stream.EOL(); result.SetStatus(eReturnStatusSuccessFinishResult); } else { stream.Printf("Error: Coordinate could not be found."); stream.EOL(); result.SetStatus(eReturnStatusFailed); } return true; } }; class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeKernelBreakpoint( CommandInterpreter &interpreter) : CommandObjectMultiword( interpreter, "renderscript kernel", "Commands that generate breakpoints on renderscript kernels.", nullptr) { LoadSubCommand( "set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( interpreter))); LoadSubCommand( "all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( interpreter))); } ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; }; class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with RenderScript kernels.", nullptr) { LoadSubCommand( "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( interpreter))); LoadSubCommand( "coordinate", CommandObjectSP( new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); LoadSubCommand( "breakpoint", CommandObjectSP( new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); } ~CommandObjectRenderScriptRuntimeKernel() override = default; }; class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} ~CommandObjectRenderScriptRuntimeContextDump() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript); runtime->DumpContexts(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with RenderScript contexts.", nullptr) { LoadSubCommand( "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( interpreter))); } ~CommandObjectRenderScriptRuntimeContext() override = default; }; class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationDump( CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript allocation dump", "Displays the contents of a particular allocation", "renderscript allocation dump ", eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options() {} ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; Options *GetOptions() override { return &m_options; } class CommandOptions : public Options { public: CommandOptions() : Options() {} ~CommandOptions() override = default; Error SetOptionValue(uint32_t option_idx, const char *option_arg, ExecutionContext *execution_context) override { Error error; const int short_option = m_getopt_table[option_idx].val; switch (short_option) { case 'f': m_outfile.SetFile(option_arg, true); if (m_outfile.Exists()) { m_outfile.Clear(); error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); } break; default: error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); break; } return error; } void OptionParsingStarting(ExecutionContext *execution_context) override { m_outfile.Clear(); } const OptionDefinition *GetDefinitions() override { return g_option_table; } static OptionDefinition g_option_table[]; FileSpec m_outfile; }; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc < 1) { result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " "As well as an optional -f argument", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast( m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript)); const char *id_cstr = command.GetArgumentAtIndex(0); bool convert_complete = false; const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); if (!convert_complete) { result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); result.SetStatus(eReturnStatusFailed); return false; } Stream *output_strm = nullptr; StreamFile outfile_stream; const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead if (outfile_spec) { // Open output file char path[256]; outfile_spec.GetPath(path, sizeof(path)); if (outfile_stream.GetFile() .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) .Success()) { output_strm = &outfile_stream; result.GetOutputStream().Printf("Results written to '%s'", path); result.GetOutputStream().EOL(); } else { result.AppendErrorWithFormat("Couldn't open file '%s'", path); result.SetStatus(eReturnStatusFailed); return false; } } else output_strm = &result.GetOutputStream(); assert(output_strm != nullptr); bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); if (success) result.SetStatus(eReturnStatusSuccessFinishResult); else result.SetStatus(eReturnStatusFailed); return true; } private: CommandOptions m_options; }; OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump:: CommandOptions::g_option_table[] = { {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Print results to specified file instead of command line."}, {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationList( CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "renderscript allocation list", "List renderscript allocations and their information.", "renderscript allocation list", eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options() {} ~CommandObjectRenderScriptRuntimeAllocationList() override = default; Options *GetOptions() override { return &m_options; } class CommandOptions : public Options { public: CommandOptions() : Options(), m_id(0) {} ~CommandOptions() override = default; Error SetOptionValue(uint32_t option_idx, const char *option_arg, ExecutionContext *execution_context) override { Error error; const int short_option = m_getopt_table[option_idx].val; switch (short_option) { case 'i': bool success; m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); if (!success) error.SetErrorStringWithFormat( "invalid integer value for option '%c'", short_option); break; default: error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); break; } return error; } void OptionParsingStarting(ExecutionContext *execution_context) override { m_id = 0; } const OptionDefinition *GetDefinitions() override { return g_option_table; } static OptionDefinition g_option_table[]; uint32_t m_id; }; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = static_cast( m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript)); runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } private: CommandOptions m_options; }; OptionDefinition CommandObjectRenderScriptRuntimeAllocationList:: CommandOptions::g_option_table[] = { {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, "Only show details of a single allocation with specified id."}, {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationLoad( CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", "renderscript allocation load ", eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc != 2) { result.AppendErrorWithFormat( "'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast( m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript)); const char *id_cstr = command.GetArgumentAtIndex(0); bool convert_complete = false; const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); if (!convert_complete) { result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); result.SetStatus(eReturnStatusFailed); return false; } const char *filename = command.GetArgumentAtIndex(1); bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); if (success) result.SetStatus(eReturnStatusSuccessFinishResult); else result.SetStatus(eReturnStatusFailed); return true; } }; class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationSave( CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", "renderscript allocation save ", eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc != 2) { result.AppendErrorWithFormat( "'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast( m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript)); const char *id_cstr = command.GetArgumentAtIndex(0); bool convert_complete = false; const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); if (!convert_complete) { result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); result.SetStatus(eReturnStatusFailed); return false; } const char *filename = command.GetArgumentAtIndex(1); bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); if (success) result.SetStatus(eReturnStatusSuccessFinishResult); else result.SetStatus(eReturnStatusFailed); return true; } }; class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationRefresh( CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript allocation refresh", "Recomputes the details of all allocations.", "renderscript allocation refresh", eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = static_cast( m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript)); bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr()); if (success) { result.SetStatus(eReturnStatusSuccessFinishResult); return true; } else { result.SetStatus(eReturnStatusFailed); return false; } } }; class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) : CommandObjectMultiword( interpreter, "renderscript allocation", "Commands that deal with RenderScript allocations.", nullptr) { LoadSubCommand( "list", CommandObjectSP( new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); LoadSubCommand( "dump", CommandObjectSP( new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); LoadSubCommand( "save", CommandObjectSP( new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); LoadSubCommand( "load", CommandObjectSP( new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); LoadSubCommand( "refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( interpreter))); } ~CommandObjectRenderScriptRuntimeAllocation() override = default; }; class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript status", "Displays current RenderScript runtime status.", "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} ~CommandObjectRenderScriptRuntimeStatus() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( eLanguageTypeExtRenderScript); runtime->Status(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) : CommandObjectMultiword( interpreter, "renderscript", "Commands for operating on the RenderScript runtime.", "renderscript []") { LoadSubCommand( "module", CommandObjectSP( new CommandObjectRenderScriptRuntimeModule(interpreter))); LoadSubCommand( "status", CommandObjectSP( new CommandObjectRenderScriptRuntimeStatus(interpreter))); LoadSubCommand( "kernel", CommandObjectSP( new CommandObjectRenderScriptRuntimeKernel(interpreter))); LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( interpreter))); LoadSubCommand( "allocation", CommandObjectSP( new CommandObjectRenderScriptRuntimeAllocation(interpreter))); } ~CommandObjectRenderScriptRuntime() override = default; }; void RenderScriptRuntime::Initiate() { assert(!m_initiated); } RenderScriptRuntime::RenderScriptRuntime(Process *process) : lldb_private::CPPLanguageRuntime(process), m_initiated(false), m_debuggerPresentFlagged(false), m_breakAllKernels(false), m_ir_passes(nullptr) { ModulesDidLoad(process->GetTarget().GetImages()); } lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( lldb_private::CommandInterpreter &interpreter) { return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); } RenderScriptRuntime::~RenderScriptRuntime() = default;