//===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/DataEncoder.h" #include "lldb/Core/Log.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Expression/ClangExpressionDeclMap.h" #include "lldb/Expression/ClangExpressionVariable.h" #include "lldb/Expression/IRForTarget.h" #include "lldb/Expression/IRInterpreter.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Support/raw_ostream.h" #include "llvm/DataLayout.h" #include using namespace llvm; IRInterpreter::IRInterpreter(lldb_private::ClangExpressionDeclMap &decl_map, lldb_private::Stream *error_stream) : m_decl_map(decl_map), m_error_stream(error_stream) { } IRInterpreter::~IRInterpreter() { } static std::string PrintValue(const Value *value, bool truncate = false) { std::string s; raw_string_ostream rso(s); value->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); size_t offset; while ((offset = s.find('\n')) != s.npos) s.erase(offset, 1); while (s[0] == ' ' || s[0] == '\t') s.erase(0, 1); return s; } static std::string PrintType(const Type *type, bool truncate = false) { std::string s; raw_string_ostream rso(s); type->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); return s; } typedef STD_SHARED_PTR(lldb_private::DataEncoder) DataEncoderSP; typedef STD_SHARED_PTR(lldb_private::DataExtractor) DataExtractorSP; class Memory { public: typedef uint32_t index_t; struct Allocation { // m_virtual_address is always the address of the variable in the virtual memory // space provided by Memory. // // m_origin is always non-NULL and describes the source of the data (possibly // m_data if this allocation is the authoritative source). // // Possible value configurations: // // Allocation type getValueType() getContextType() m_origin->GetScalar() m_data // ========================================================================================================================= // FileAddress eValueTypeFileAddress eContextTypeInvalid A location in a binary NULL // image // // LoadAddress eValueTypeLoadAddress eContextTypeInvalid A location in the target's NULL // virtual memory // // Alloca eValueTypeHostAddress eContextTypeInvalid == m_data->GetBytes() Deleted at end of // execution // // PersistentVar eValueTypeHostAddress eContextTypeClangType A persistent variable's NULL // location in LLDB's memory // // Register [ignored] eContextTypeRegister [ignored] Flushed to the register // at the end of execution lldb::addr_t m_virtual_address; size_t m_extent; lldb_private::Value m_origin; lldb::DataBufferSP m_data; Allocation (lldb::addr_t virtual_address, size_t extent, lldb::DataBufferSP data) : m_virtual_address(virtual_address), m_extent(extent), m_data(data) { } Allocation (const Allocation &allocation) : m_virtual_address(allocation.m_virtual_address), m_extent(allocation.m_extent), m_origin(allocation.m_origin), m_data(allocation.m_data) { } }; typedef STD_SHARED_PTR(Allocation) AllocationSP; struct Region { AllocationSP m_allocation; uint64_t m_base; uint64_t m_extent; Region () : m_allocation(), m_base(0), m_extent(0) { } Region (AllocationSP allocation, uint64_t base, uint64_t extent) : m_allocation(allocation), m_base(base), m_extent(extent) { } Region (const Region ®ion) : m_allocation(region.m_allocation), m_base(region.m_base), m_extent(region.m_extent) { } bool IsValid () { return (bool) m_allocation; } bool IsInvalid () { return !m_allocation; } }; typedef std::vector MemoryMap; private: lldb::addr_t m_addr_base; lldb::addr_t m_addr_max; MemoryMap m_memory; lldb::ByteOrder m_byte_order; lldb::addr_t m_addr_byte_size; DataLayout &m_target_data; lldb_private::ClangExpressionDeclMap &m_decl_map; MemoryMap::iterator LookupInternal (lldb::addr_t addr) { for (MemoryMap::iterator i = m_memory.begin(), e = m_memory.end(); i != e; ++i) { if ((*i)->m_virtual_address <= addr && (*i)->m_virtual_address + (*i)->m_extent > addr) return i; } return m_memory.end(); } public: Memory (DataLayout &target_data, lldb_private::ClangExpressionDeclMap &decl_map, lldb::addr_t alloc_start, lldb::addr_t alloc_max) : m_addr_base(alloc_start), m_addr_max(alloc_max), m_target_data(target_data), m_decl_map(decl_map) { m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); m_addr_byte_size = (target_data.getPointerSize(0)); } Region Malloc (size_t size, size_t align) { lldb::DataBufferSP data(new lldb_private::DataBufferHeap(size, 0)); if (data) { index_t index = m_memory.size(); const size_t mask = (align - 1); m_addr_base += mask; m_addr_base &= ~mask; if (m_addr_base + size < m_addr_base || m_addr_base + size > m_addr_max) return Region(); uint64_t base = m_addr_base; m_memory.push_back(AllocationSP(new Allocation(base, size, data))); m_addr_base += size; AllocationSP alloc = m_memory[index]; alloc->m_origin.GetScalar() = (unsigned long long)data->GetBytes(); alloc->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); alloc->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); return Region(alloc, base, size); } return Region(); } Region Malloc (Type *type) { return Malloc (m_target_data.getTypeAllocSize(type), m_target_data.getPrefTypeAlignment(type)); } Region Place (Type *type, lldb::addr_t base, lldb_private::Value &value) { index_t index = m_memory.size(); size_t size = m_target_data.getTypeAllocSize(type); m_memory.push_back(AllocationSP(new Allocation(base, size, lldb::DataBufferSP()))); AllocationSP alloc = m_memory[index]; alloc->m_origin = value; return Region(alloc, base, size); } void Free (lldb::addr_t addr) { MemoryMap::iterator i = LookupInternal (addr); if (i != m_memory.end()) m_memory.erase(i); } Region Lookup (lldb::addr_t addr, Type *type) { MemoryMap::iterator i = LookupInternal(addr); if (i == m_memory.end() || !type->isSized()) return Region(); size_t size = m_target_data.getTypeStoreSize(type); return Region(*i, addr, size); } DataEncoderSP GetEncoder (Region region) { if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) return DataEncoderSP(); lldb::DataBufferSP buffer = region.m_allocation->m_data; if (!buffer) return DataEncoderSP(); size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); return DataEncoderSP(new lldb_private::DataEncoder(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); } DataExtractorSP GetExtractor (Region region) { if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) return DataExtractorSP(); lldb::DataBufferSP buffer = region.m_allocation->m_data; size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); if (buffer) return DataExtractorSP(new lldb_private::DataExtractor(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); else return DataExtractorSP(new lldb_private::DataExtractor((uint8_t*)region.m_allocation->m_origin.GetScalar().ULongLong() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); } lldb_private::Value GetAccessTarget(lldb::addr_t addr) { MemoryMap::iterator i = LookupInternal(addr); if (i == m_memory.end()) return lldb_private::Value(); lldb_private::Value target = (*i)->m_origin; if (target.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) { target.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); target.SetValueType(lldb_private::Value::eValueTypeHostAddress); target.GetScalar() = (unsigned long long)(*i)->m_data->GetBytes(); } target.GetScalar() += (addr - (*i)->m_virtual_address); return target; } bool Write (lldb::addr_t addr, const uint8_t *data, size_t length) { lldb_private::Value target = GetAccessTarget(addr); return m_decl_map.WriteTarget(target, data, length); } bool Read (uint8_t *data, lldb::addr_t addr, size_t length) { lldb_private::Value source = GetAccessTarget(addr); return m_decl_map.ReadTarget(data, source, length); } bool WriteToRawPtr (lldb::addr_t addr, const uint8_t *data, size_t length) { lldb_private::Value target = m_decl_map.WrapBareAddress(addr); return m_decl_map.WriteTarget(target, data, length); } bool ReadFromRawPtr (uint8_t *data, lldb::addr_t addr, size_t length) { lldb_private::Value source = m_decl_map.WrapBareAddress(addr); return m_decl_map.ReadTarget(data, source, length); } std::string PrintData (lldb::addr_t addr, size_t length) { lldb_private::Value target = GetAccessTarget(addr); lldb_private::DataBufferHeap buf(length, 0); if (!m_decl_map.ReadTarget(buf.GetBytes(), target, length)) return std::string(""); lldb_private::StreamString ss; for (size_t i = 0; i < length; i++) { if ((!(i & 0xf)) && i) ss.Printf("%02hhx - ", buf.GetBytes()[i]); else ss.Printf("%02hhx ", buf.GetBytes()[i]); } return ss.GetString(); } std::string SummarizeRegion (Region ®ion) { lldb_private::StreamString ss; lldb_private::Value base = GetAccessTarget(region.m_base); ss.Printf("%llx [%s - %s %llx]", region.m_base, lldb_private::Value::GetValueTypeAsCString(base.GetValueType()), lldb_private::Value::GetContextTypeAsCString(base.GetContextType()), base.GetScalar().ULongLong()); ss.Printf(" %s", PrintData(region.m_base, region.m_extent).c_str()); return ss.GetString(); } }; class InterpreterStackFrame { public: typedef std::map ValueMap; ValueMap m_values; Memory &m_memory; DataLayout &m_target_data; lldb_private::ClangExpressionDeclMap &m_decl_map; const BasicBlock *m_bb; BasicBlock::const_iterator m_ii; BasicBlock::const_iterator m_ie; lldb::ByteOrder m_byte_order; size_t m_addr_byte_size; InterpreterStackFrame (DataLayout &target_data, Memory &memory, lldb_private::ClangExpressionDeclMap &decl_map) : m_memory (memory), m_target_data (target_data), m_decl_map (decl_map) { m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); m_addr_byte_size = (target_data.getPointerSize(0)); } void Jump (const BasicBlock *bb) { m_bb = bb; m_ii = m_bb->begin(); m_ie = m_bb->end(); } bool Cache (Memory::AllocationSP allocation, Type *type) { if (allocation->m_origin.GetContextType() != lldb_private::Value::eContextTypeRegisterInfo) return false; return m_decl_map.ReadTarget(allocation->m_data->GetBytes(), allocation->m_origin, allocation->m_data->GetByteSize()); } std::string SummarizeValue (const Value *value) { lldb_private::StreamString ss; ss.Printf("%s", PrintValue(value).c_str()); ValueMap::iterator i = m_values.find(value); if (i != m_values.end()) { Memory::Region region = i->second; ss.Printf(" %s", m_memory.SummarizeRegion(region).c_str()); } return ss.GetString(); } bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type) { size_t type_size = m_target_data.getTypeStoreSize(type); switch (type_size) { case 1: scalar = (uint8_t)u64value; break; case 2: scalar = (uint16_t)u64value; break; case 4: scalar = (uint32_t)u64value; break; case 8: scalar = (uint64_t)u64value; break; default: return false; } return true; } bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module) { const Constant *constant = dyn_cast(value); if (constant) { if (const ConstantInt *constant_int = dyn_cast(constant)) { return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType()); } } else { Memory::Region region = ResolveValue(value, module); DataExtractorSP value_extractor = m_memory.GetExtractor(region); if (!value_extractor) return false; size_t value_size = m_target_data.getTypeStoreSize(value->getType()); uint32_t offset = 0; uint64_t u64value = value_extractor->GetMaxU64(&offset, value_size); return AssignToMatchType(scalar, u64value, value->getType()); } return false; } bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module) { Memory::Region region = ResolveValue (value, module); lldb_private::Scalar cast_scalar; if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType())) return false; lldb_private::DataBufferHeap buf(cast_scalar.GetByteSize(), 0); lldb_private::Error err; if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, err)) return false; DataEncoderSP region_encoder = m_memory.GetEncoder(region); memcpy(region_encoder->GetDataStart(), buf.GetBytes(), buf.GetByteSize()); return true; } bool ResolveConstantValue (APInt &value, const Constant *constant) { if (const ConstantInt *constant_int = dyn_cast(constant)) { value = constant_int->getValue(); return true; } else if (const ConstantFP *constant_fp = dyn_cast(constant)) { value = constant_fp->getValueAPF().bitcastToAPInt(); return true; } else if (const ConstantExpr *constant_expr = dyn_cast(constant)) { switch (constant_expr->getOpcode()) { default: return false; case Instruction::IntToPtr: case Instruction::BitCast: return ResolveConstantValue(value, constant_expr->getOperand(0)); case Instruction::GetElementPtr: { ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin(); ConstantExpr::const_op_iterator op_end = constant_expr->op_end(); Constant *base = dyn_cast(*op_cursor); if (!base) return false; if (!ResolveConstantValue(value, base)) return false; op_cursor++; if (op_cursor == op_end) return true; // no offset to apply! SmallVector indices (op_cursor, op_end); uint64_t offset = m_target_data.getIndexedOffset(base->getType(), indices); const bool is_signed = true; value += APInt(value.getBitWidth(), offset, is_signed); return true; } } } return false; } bool ResolveConstant (Memory::Region ®ion, const Constant *constant) { APInt resolved_value; if (!ResolveConstantValue(resolved_value, constant)) return false; const uint64_t *raw_data = resolved_value.getRawData(); size_t constant_size = m_target_data.getTypeStoreSize(constant->getType()); return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); } Memory::Region ResolveValue (const Value *value, Module &module) { ValueMap::iterator i = m_values.find(value); if (i != m_values.end()) return i->second; const GlobalValue *global_value = dyn_cast(value); // If the variable is indirected through the argument // array then we need to build an extra level of indirection // for it. This is the default; only magic arguments like // "this", "self", and "_cmd" are direct. bool indirect_variable = true; // Attempt to resolve the value using the program's data. // If it is, the values to be created are: // // data_region - a region of memory in which the variable's data resides. // ref_region - a region of memory in which its address (i.e., &var) resides. // In the JIT case, this region would be a member of the struct passed in. // pointer_region - a region of memory in which the address of the pointer // resides. This is an IR-level variable. do { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); lldb_private::Value resolved_value; lldb_private::ClangExpressionVariable::FlagType flags = 0; if (global_value) { clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module); if (!decl) break; if (isa(decl)) { if (log) log->Printf("The interpreter does not handle function pointers at the moment"); return Memory::Region(); } resolved_value = m_decl_map.LookupDecl(decl, flags); } else { // Special-case "this", "self", and "_cmd" std::string name_str = value->getName().str(); if (name_str == "this" || name_str == "self" || name_str == "_cmd") resolved_value = m_decl_map.GetSpecialValue(lldb_private::ConstString(name_str.c_str())); indirect_variable = false; } if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void) { if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) { bool bare_register = (flags & lldb_private::ClangExpressionVariable::EVBareRegister); if (bare_register) indirect_variable = false; Memory::Region data_region = m_memory.Malloc(value->getType()); data_region.m_allocation->m_origin = resolved_value; Memory::Region ref_region = m_memory.Malloc(value->getType()); Memory::Region pointer_region; if (indirect_variable) pointer_region = m_memory.Malloc(value->getType()); if (!Cache(data_region.m_allocation, value->getType())) return Memory::Region(); if (ref_region.IsInvalid()) return Memory::Region(); if (pointer_region.IsInvalid() && indirect_variable) return Memory::Region(); DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) return Memory::Region(); if (log) { log->Printf("Made an allocation for register variable %s", PrintValue(value).c_str()); log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); if (indirect_variable) log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); } if (indirect_variable) { DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) return Memory::Region(); m_values[value] = pointer_region; return pointer_region; } else { m_values[value] = ref_region; return ref_region; } } else { Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value); Memory::Region ref_region = m_memory.Malloc(value->getType()); Memory::Region pointer_region; if (indirect_variable) pointer_region = m_memory.Malloc(value->getType()); if (ref_region.IsInvalid()) return Memory::Region(); if (pointer_region.IsInvalid() && indirect_variable) return Memory::Region(); DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) return Memory::Region(); if (indirect_variable) { DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) return Memory::Region(); m_values[value] = pointer_region; } if (log) { log->Printf("Made an allocation for %s", PrintValue(value).c_str()); log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); if (indirect_variable) log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); } if (indirect_variable) return pointer_region; else return ref_region; } } } while(0); // Fall back and allocate space [allocation type Alloca] Type *type = value->getType(); lldb::ValueSP backing_value(new lldb_private::Value); Memory::Region data_region = m_memory.Malloc(type); data_region.m_allocation->m_origin.GetScalar() = (unsigned long long)data_region.m_allocation->m_data->GetBytes(); data_region.m_allocation->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); data_region.m_allocation->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); const Constant *constant = dyn_cast(value); do { if (!constant) break; if (!ResolveConstant (data_region, constant)) return Memory::Region(); } while(0); m_values[value] = data_region; return data_region; } bool ConstructResult (lldb::ClangExpressionVariableSP &result, const GlobalValue *result_value, const lldb_private::ConstString &result_name, lldb_private::TypeFromParser result_type, Module &module) { // The result_value resolves to P, a pointer to a region R containing the result data. // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process. if (!result_value) return true; // There was no slot for a result – the expression doesn't return one. ValueMap::iterator i = m_values.find(result_value); if (i == m_values.end()) return false; // There was a slot for the result, but we didn't write into it. Memory::Region P = i->second; DataExtractorSP P_extractor = m_memory.GetExtractor(P); if (!P_extractor) return false; Type *pointer_ty = result_value->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) return false; Type *R_ty = pointer_ptr_ty->getElementType(); uint32_t offset = 0; lldb::addr_t pointer = P_extractor->GetAddress(&offset); Memory::Region R = m_memory.Lookup(pointer, R_ty); if (R.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress || !R.m_allocation->m_data) return false; lldb_private::Value base; bool transient = false; bool maybe_make_load = false; if (m_decl_map.ResultIsReference(result_name)) { PointerType *R_ptr_ty = dyn_cast(R_ty); if (!R_ptr_ty) return false; Type *R_final_ty = R_ptr_ty->getElementType(); DataExtractorSP R_extractor = m_memory.GetExtractor(R); if (!R_extractor) return false; offset = 0; lldb::addr_t R_pointer = R_extractor->GetAddress(&offset); Memory::Region R_final = m_memory.Lookup(R_pointer, R_final_ty); if (R_final.m_allocation) { if (R_final.m_allocation->m_data) transient = true; // this is a stack allocation base = R_final.m_allocation->m_origin; base.GetScalar() += (R_final.m_base - R_final.m_allocation->m_virtual_address); } else { // We got a bare pointer. We are going to treat it as a load address // or a file address, letting decl_map make the choice based on whether // or not a process exists. base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); base.SetValueType(lldb_private::Value::eValueTypeFileAddress); base.GetScalar() = (unsigned long long)R_pointer; maybe_make_load = true; } } else { base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); base.SetValueType(lldb_private::Value::eValueTypeHostAddress); base.GetScalar() = (unsigned long long)R.m_allocation->m_data->GetBytes() + (R.m_base - R.m_allocation->m_virtual_address); } return m_decl_map.CompleteResultVariable (result, base, result_name, result_type, transient, maybe_make_load); } }; bool IRInterpreter::maybeRunOnFunction (lldb::ClangExpressionVariableSP &result, const lldb_private::ConstString &result_name, lldb_private::TypeFromParser result_type, Function &llvm_function, Module &llvm_module, lldb_private::Error &err) { if (supportsFunction (llvm_function, err)) return runOnFunction(result, result_name, result_type, llvm_function, llvm_module, err); else return false; } static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes"; static const char *interpreter_initialization_error = "Interpreter couldn't be initialized"; static const char *interpreter_internal_error = "Interpreter encountered an internal error"; static const char *bad_value_error = "Interpreter couldn't resolve a value during execution"; static const char *memory_allocation_error = "Interpreter couldn't allocate memory"; static const char *memory_write_error = "Interpreter couldn't write to memory"; static const char *memory_read_error = "Interpreter couldn't read from memory"; static const char *infinite_loop_error = "Interpreter ran for too many cycles"; static const char *bad_result_error = "Result of expression is in bad memory"; bool IRInterpreter::supportsFunction (Function &llvm_function, lldb_private::Error &err) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end(); bbi != bbe; ++bbi) { for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end(); ii != ie; ++ii) { switch (ii->getOpcode()) { default: { if (log) log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str()); err.SetErrorToGenericError(); err.SetErrorString(unsupported_opcode_error); return false; } case Instruction::Add: case Instruction::Alloca: case Instruction::BitCast: case Instruction::Br: case Instruction::GetElementPtr: break; case Instruction::ICmp: { ICmpInst *icmp_inst = dyn_cast(ii); if (!icmp_inst) { err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } switch (icmp_inst->getPredicate()) { default: { if (log) log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str()); err.SetErrorToGenericError(); err.SetErrorString(unsupported_opcode_error); return false; } case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: break; } } break; case Instruction::IntToPtr: case Instruction::Load: case Instruction::Mul: case Instruction::Ret: case Instruction::SDiv: case Instruction::Store: case Instruction::Sub: case Instruction::UDiv: case Instruction::ZExt: break; } } } return true; } bool IRInterpreter::runOnFunction (lldb::ClangExpressionVariableSP &result, const lldb_private::ConstString &result_name, lldb_private::TypeFromParser result_type, Function &llvm_function, Module &llvm_module, lldb_private::Error &err) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); lldb_private::ClangExpressionDeclMap::TargetInfo target_info = m_decl_map.GetTargetInfo(); if (!target_info.IsValid()) { err.SetErrorToGenericError(); err.SetErrorString(interpreter_initialization_error); return false; } lldb::addr_t alloc_min; lldb::addr_t alloc_max; switch (target_info.address_byte_size) { default: err.SetErrorToGenericError(); err.SetErrorString(interpreter_initialization_error); return false; case 4: alloc_min = 0x00001000llu; alloc_max = 0x0000ffffllu; break; case 8: alloc_min = 0x0000000000001000llu; alloc_max = 0x000000000000ffffllu; break; } DataLayout target_data(&llvm_module); if (target_data.getPointerSize(0) != target_info.address_byte_size) { err.SetErrorToGenericError(); err.SetErrorString(interpreter_initialization_error); return false; } if (target_data.isLittleEndian() != (target_info.byte_order == lldb::eByteOrderLittle)) { err.SetErrorToGenericError(); err.SetErrorString(interpreter_initialization_error); return false; } Memory memory(target_data, m_decl_map, alloc_min, alloc_max); InterpreterStackFrame frame(target_data, memory, m_decl_map); uint32_t num_insts = 0; frame.Jump(llvm_function.begin()); while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) { const Instruction *inst = frame.m_ii; if (log) log->Printf("Interpreting %s", PrintValue(inst).c_str()); switch (inst->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::UDiv: { const BinaryOperator *bin_op = dyn_cast(inst); if (!bin_op) { if (log) log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Value *lhs = inst->getOperand(0); Value *rhs = inst->getOperand(1); lldb_private::Scalar L; lldb_private::Scalar R; if (!frame.EvaluateValue(L, lhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (!frame.EvaluateValue(R, rhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } lldb_private::Scalar result; switch (inst->getOpcode()) { default: break; case Instruction::Add: result = L + R; break; case Instruction::Mul: result = L * R; break; case Instruction::Sub: result = L - R; break; case Instruction::SDiv: result = L / R; break; case Instruction::UDiv: result = L.GetRawBits64(0) / R.GetRawBits64(1); break; } frame.AssignValue(inst, result, llvm_module); if (log) { log->Printf("Interpreted a %s", inst->getOpcodeName()); log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::Alloca: { const AllocaInst *alloca_inst = dyn_cast(inst); if (!alloca_inst) { if (log) log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } if (alloca_inst->isArrayAllocation()) { if (log) log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); err.SetErrorToGenericError(); err.SetErrorString(unsupported_opcode_error); return false; } // The semantics of Alloca are: // Create a region R of virtual memory of type T, backed by a data buffer // Create a region P of virtual memory of type T*, backed by a data buffer // Write the virtual address of R into P Type *T = alloca_inst->getAllocatedType(); Type *Tptr = alloca_inst->getType(); Memory::Region R = memory.Malloc(T); if (R.IsInvalid()) { if (log) log->Printf("Couldn't allocate memory for an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_allocation_error); return false; } Memory::Region P = memory.Malloc(Tptr); if (P.IsInvalid()) { if (log) log->Printf("Couldn't allocate the result pointer for an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_allocation_error); return false; } DataEncoderSP P_encoder = memory.GetEncoder(P); if (P_encoder->PutAddress(0, R.m_base) == UINT32_MAX) { if (log) log->Printf("Couldn't write the result pointer for an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_write_error); return false; } frame.m_values[alloca_inst] = P; if (log) { log->Printf("Interpreted an AllocaInst"); log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); log->Printf(" P : %s", frame.SummarizeValue(alloca_inst).c_str()); } } break; case Instruction::BitCast: case Instruction::ZExt: { const CastInst *cast_inst = dyn_cast(inst); if (!cast_inst) { if (log) log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName()); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Value *source = cast_inst->getOperand(0); lldb_private::Scalar S; if (!frame.EvaluateValue(S, source, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, S, llvm_module); } break; case Instruction::Br: { const BranchInst *br_inst = dyn_cast(inst); if (!br_inst) { if (log) log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } if (br_inst->isConditional()) { Value *condition = br_inst->getCondition(); lldb_private::Scalar C; if (!frame.EvaluateValue(C, condition, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (C.GetRawBits64(0)) frame.Jump(br_inst->getSuccessor(0)); else frame.Jump(br_inst->getSuccessor(1)); if (log) { log->Printf("Interpreted a BrInst with a condition"); log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); } } else { frame.Jump(br_inst->getSuccessor(0)); if (log) { log->Printf("Interpreted a BrInst with no condition"); } } } continue; case Instruction::GetElementPtr: { const GetElementPtrInst *gep_inst = dyn_cast(inst); if (!gep_inst) { if (log) log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } const Value *pointer_operand = gep_inst->getPointerOperand(); Type *pointer_type = pointer_operand->getType(); lldb_private::Scalar P; if (!frame.EvaluateValue(P, pointer_operand, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } typedef SmallVector IndexVector; typedef IndexVector::iterator IndexIterator; SmallVector indices (gep_inst->idx_begin(), gep_inst->idx_end()); SmallVector const_indices; for (IndexIterator ii = indices.begin(), ie = indices.end(); ii != ie; ++ii) { ConstantInt *constant_index = dyn_cast(*ii); if (!constant_index) { lldb_private::Scalar I; if (!frame.EvaluateValue(I, *ii, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (log) log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS)); constant_index = cast(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS))); } const_indices.push_back(constant_index); } uint64_t offset = target_data.getIndexedOffset(pointer_type, const_indices); lldb_private::Scalar Poffset = P + offset; frame.AssignValue(inst, Poffset, llvm_module); if (log) { log->Printf("Interpreted a GetElementPtrInst"); log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::ICmp: { const ICmpInst *icmp_inst = dyn_cast(inst); if (!icmp_inst) { if (log) log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } CmpInst::Predicate predicate = icmp_inst->getPredicate(); Value *lhs = inst->getOperand(0); Value *rhs = inst->getOperand(1); lldb_private::Scalar L; lldb_private::Scalar R; if (!frame.EvaluateValue(L, lhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (!frame.EvaluateValue(R, rhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } lldb_private::Scalar result; switch (predicate) { default: return false; case CmpInst::ICMP_EQ: result = (L == R); break; case CmpInst::ICMP_NE: result = (L != R); break; case CmpInst::ICMP_UGT: result = (L.GetRawBits64(0) > R.GetRawBits64(0)); break; case CmpInst::ICMP_UGE: result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); break; case CmpInst::ICMP_ULT: result = (L.GetRawBits64(0) < R.GetRawBits64(0)); break; case CmpInst::ICMP_ULE: result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); break; case CmpInst::ICMP_SGT: result = (L > R); break; case CmpInst::ICMP_SGE: result = (L >= R); break; case CmpInst::ICMP_SLT: result = (L < R); break; case CmpInst::ICMP_SLE: result = (L <= R); break; } frame.AssignValue(inst, result, llvm_module); if (log) { log->Printf("Interpreted an ICmpInst"); log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::IntToPtr: { const IntToPtrInst *int_to_ptr_inst = dyn_cast(inst); if (!int_to_ptr_inst) { if (log) log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Value *src_operand = int_to_ptr_inst->getOperand(0); lldb_private::Scalar I; if (!frame.EvaluateValue(I, src_operand, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, I, llvm_module); if (log) { log->Printf("Interpreted an IntToPtr"); log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::Load: { const LoadInst *load_inst = dyn_cast(inst); if (!load_inst) { if (log) log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } // The semantics of Load are: // Create a region D that will contain the loaded data // Resolve the region P containing a pointer // Dereference P to get the region R that the data should be loaded from // Transfer a unit of type type(D) from R to D const Value *pointer_operand = load_inst->getPointerOperand(); Type *pointer_ty = pointer_operand->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) { if (log) log->Printf("getPointerOperand()->getType() is not a PointerType"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Type *target_ty = pointer_ptr_ty->getElementType(); Memory::Region D = frame.ResolveValue(load_inst, llvm_module); Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); if (D.IsInvalid()) { if (log) log->Printf("LoadInst's value doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (P.IsInvalid()) { if (log) log->Printf("LoadInst's pointer doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } DataExtractorSP P_extractor(memory.GetExtractor(P)); DataEncoderSP D_encoder(memory.GetEncoder(D)); uint32_t offset = 0; lldb::addr_t pointer = P_extractor->GetAddress(&offset); Memory::Region R = memory.Lookup(pointer, target_ty); if (R.IsValid()) { if (!memory.Read(D_encoder->GetDataStart(), R.m_base, target_data.getTypeStoreSize(target_ty))) { if (log) log->Printf("Couldn't read from a region on behalf of a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } } else { if (!memory.ReadFromRawPtr(D_encoder->GetDataStart(), pointer, target_data.getTypeStoreSize(target_ty))) { if (log) log->Printf("Couldn't read from a raw pointer on behalf of a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } } if (log) { log->Printf("Interpreted a LoadInst"); log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); if (R.IsValid()) log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); else log->Printf(" R : raw pointer 0x%llx", (unsigned long long)pointer); log->Printf(" D : %s", frame.SummarizeValue(load_inst).c_str()); } } break; case Instruction::Ret: { if (result_name.IsEmpty()) return true; GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString()); if (!frame.ConstructResult(result, result_value, result_name, result_type, llvm_module)) { if (log) log->Printf("Couldn't construct the expression's result"); err.SetErrorToGenericError(); err.SetErrorString(bad_result_error); return false; } return true; } case Instruction::Store: { const StoreInst *store_inst = dyn_cast(inst); if (!store_inst) { if (log) log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } // The semantics of Store are: // Resolve the region D containing the data to be stored // Resolve the region P containing a pointer // Dereference P to get the region R that the data should be stored in // Transfer a unit of type type(D) from D to R const Value *value_operand = store_inst->getValueOperand(); const Value *pointer_operand = store_inst->getPointerOperand(); Type *pointer_ty = pointer_operand->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) return false; Type *target_ty = pointer_ptr_ty->getElementType(); Memory::Region D = frame.ResolveValue(value_operand, llvm_module); Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); if (D.IsInvalid()) { if (log) log->Printf("StoreInst's value doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (P.IsInvalid()) { if (log) log->Printf("StoreInst's pointer doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } DataExtractorSP P_extractor(memory.GetExtractor(P)); DataExtractorSP D_extractor(memory.GetExtractor(D)); if (!P_extractor || !D_extractor) return false; uint32_t offset = 0; lldb::addr_t pointer = P_extractor->GetAddress(&offset); Memory::Region R = memory.Lookup(pointer, target_ty); if (R.IsValid()) { if (!memory.Write(R.m_base, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) { if (log) log->Printf("Couldn't write to a region on behalf of a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_write_error); return false; } } else { if (!memory.WriteToRawPtr(pointer, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) { if (log) log->Printf("Couldn't write to a raw pointer on behalf of a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_write_error); return false; } } if (log) { log->Printf("Interpreted a StoreInst"); log->Printf(" D : %s", frame.SummarizeValue(value_operand).c_str()); log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); } } break; } ++frame.m_ii; } if (num_insts >= 4096) { err.SetErrorToGenericError(); err.SetErrorString(infinite_loop_error); return false; } return false; }