//===-- IRForTarget.cpp -------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Expression/IRForTarget.h" #include "llvm/Support/raw_ostream.h" #include "llvm/InstrTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Module.h" #include "llvm/Target/TargetData.h" #include "llvm/ValueSymbolTable.h" #include "clang/AST/ASTContext.h" #include "lldb/Core/ConstString.h" #include "lldb/Core/dwarf.h" #include "lldb/Core/Log.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/StreamString.h" #include "lldb/Expression/ClangExpressionDeclMap.h" #include using namespace llvm; static char ID; IRForTarget::IRForTarget(lldb_private::ClangExpressionDeclMap *decl_map, bool resolve_vars, const char *func_name) : ModulePass(ID), m_decl_map(decl_map), m_sel_registerName(NULL), m_func_name(func_name), m_resolve_vars(resolve_vars) { } /* Handy utility functions used at several places in the code */ static std::string PrintValue(const Value *V, bool truncate = false) { std::string s; raw_string_ostream rso(s); V->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); return s; } static std::string PrintType(const Type *T, bool truncate = false) { std::string s; raw_string_ostream rso(s); T->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); return s; } IRForTarget::~IRForTarget() { } bool IRForTarget::createResultVariable (llvm::Module &llvm_module, llvm::Function &llvm_function) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); if (!m_resolve_vars) return true; // Find the result variable. If it doesn't exist, we can give up right here. ValueSymbolTable& value_symbol_table = llvm_module.getValueSymbolTable(); const char *result_name = NULL; for (ValueSymbolTable::iterator vi = value_symbol_table.begin(), ve = value_symbol_table.end(); vi != ve; ++vi) { if (strstr(vi->first(), "$__lldb_expr_result") && !strstr(vi->first(), "GV")) { result_name = vi->first(); break; } } if (!result_name) { if (log) log->PutCString("Couldn't find result variable"); return true; } if (log) log->Printf("Result name: %s", result_name); Value *result_value = llvm_module.getNamedValue(result_name); if (!result_value) { if (log) log->PutCString("Result variable had no data"); return false; } if (log) log->Printf("Found result in the IR: %s", PrintValue(result_value, false).c_str()); GlobalVariable *result_global = dyn_cast(result_value); if (!result_global) { if (log) log->PutCString("Result variable isn't a GlobalVariable"); return false; } // Find the metadata and follow it to the VarDecl NamedMDNode *named_metadata = llvm_module.getNamedMetadata("clang.global.decl.ptrs"); if (!named_metadata) { if (log) log->PutCString("No global metadata"); return false; } unsigned num_nodes = named_metadata->getNumOperands(); unsigned node_index; MDNode *metadata_node = NULL; for (node_index = 0; node_index < num_nodes; ++node_index) { metadata_node = named_metadata->getOperand(node_index); if (metadata_node->getNumOperands() != 2) continue; if (metadata_node->getOperand(0) == result_global) break; } if (!metadata_node) { if (log) log->PutCString("Couldn't find result metadata"); return false; } ConstantInt *constant_int = dyn_cast(metadata_node->getOperand(1)); uint64_t result_decl_intptr = constant_int->getZExtValue(); clang::VarDecl *result_decl = reinterpret_cast(result_decl_intptr); // Get the next available result name from m_decl_map and create the persistent // variable for it lldb_private::TypeFromParser result_decl_type (result_decl->getType().getAsOpaquePtr(), &result_decl->getASTContext()); lldb_private::ConstString new_result_name (m_decl_map->GetPersistentResultName()); m_decl_map->AddPersistentVariable(result_decl, new_result_name, result_decl_type); if (log) log->Printf("Creating a new result global: %s", new_result_name.GetCString()); // Construct a new result global and set up its metadata GlobalVariable *new_result_global = new GlobalVariable(llvm_module, result_global->getType()->getElementType(), false, /* not constant */ GlobalValue::ExternalLinkage, NULL, /* no initializer */ new_result_name.GetCString ()); // It's too late in compilation to create a new VarDecl for this, but we don't // need to. We point the metadata at the old VarDecl. This creates an odd // anomaly: a variable with a Value whose name is something like $0 and a // Decl whose name is $__lldb_expr_result. This condition is handled in // ClangExpressionDeclMap::DoMaterialize, and the name of the variable is // fixed up. ConstantInt *new_constant_int = ConstantInt::get(constant_int->getType(), result_decl_intptr, false); llvm::Value* values[2]; values[0] = new_result_global; values[1] = new_constant_int; MDNode *persistent_global_md = MDNode::get(llvm_module.getContext(), values, 2); named_metadata->addOperand(persistent_global_md); if (log) log->Printf("Replacing %s with %s", PrintValue(result_global).c_str(), PrintValue(new_result_global).c_str()); if (result_global->hasNUses(0)) { // We need to synthesize a store for this variable, because otherwise // there's nothing to put into its equivalent persistent variable. BasicBlock &entry_block(llvm_function.getEntryBlock()); Instruction *first_entry_instruction(entry_block.getFirstNonPHIOrDbg()); if (!first_entry_instruction) return false; if (!result_global->hasInitializer()) { if (log) log->Printf("Couldn't find initializer for unused variable"); return false; } Constant *initializer = result_global->getInitializer(); StoreInst *synthesized_store = new StoreInst::StoreInst(initializer, new_result_global, first_entry_instruction); if (log) log->Printf("Synthesized result store %s\n", PrintValue(synthesized_store).c_str()); } else { result_global->replaceAllUsesWith(new_result_global); } result_global->eraseFromParent(); return true; } static bool isObjCSelectorRef(Value *V) { GlobalVariable *GV = dyn_cast(V); if (!GV || !GV->hasName() || !GV->getName().startswith("\01L_OBJC_SELECTOR_REFERENCES_")) return false; return true; } bool IRForTarget::RewriteObjCSelector(Instruction* selector_load, Module &M) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); LoadInst *load = dyn_cast(selector_load); if (!load) return false; // Unpack the message name from the selector. In LLVM IR, an objc_msgSend gets represented as // // %tmp = load i8** @"\01L_OBJC_SELECTOR_REFERENCES_" ; // %call = call i8* (i8*, i8*, ...)* @objc_msgSend(i8* %obj, i8* %tmp, ...) ; // // where %obj is the object pointer and %tmp is the selector. // // @"\01L_OBJC_SELECTOR_REFERENCES_" is a pointer to a character array called @"\01L_OBJC_METH_VAR_NAME_". // @"\01L_OBJC_METH_VAR_NAME_" contains the string. // Find the pointer's initializer (a ConstantExpr with opcode GetElementPtr) and get the string from its target GlobalVariable *_objc_selector_references_ = dyn_cast(load->getPointerOperand()); if (!_objc_selector_references_ || !_objc_selector_references_->hasInitializer()) return false; Constant *osr_initializer = _objc_selector_references_->getInitializer(); ConstantExpr *osr_initializer_expr = dyn_cast(osr_initializer); if (!osr_initializer_expr || osr_initializer_expr->getOpcode() != Instruction::GetElementPtr) return false; Value *osr_initializer_base = osr_initializer_expr->getOperand(0); if (!osr_initializer_base) return false; // Find the string's initializer (a ConstantArray) and get the string from it GlobalVariable *_objc_meth_var_name_ = dyn_cast(osr_initializer_base); if (!_objc_meth_var_name_ || !_objc_meth_var_name_->hasInitializer()) return false; Constant *omvn_initializer = _objc_meth_var_name_->getInitializer(); ConstantArray *omvn_initializer_array = dyn_cast(omvn_initializer); if (!omvn_initializer_array->isString()) return false; std::string omvn_initializer_string = omvn_initializer_array->getAsString(); if (log) log->Printf("Found Objective-C selector reference %s", omvn_initializer_string.c_str()); // Construct a call to sel_registerName if (!m_sel_registerName) { uint64_t srN_addr; static lldb_private::ConstString g_sel_registerName_str ("sel_registerName"); if (!m_decl_map->GetFunctionAddress (g_sel_registerName_str, srN_addr)) return false; if (log) log->Printf("Found sel_registerName at 0x%llx", srN_addr); // Build the function type: struct objc_selector *sel_registerName(uint8_t*) // The below code would be "more correct," but in actuality what's required is uint8_t* //Type *sel_type = StructType::get(M.getContext()); //Type *sel_ptr_type = PointerType::getUnqual(sel_type); const Type *sel_ptr_type = Type::getInt8PtrTy(M.getContext()); std::vector srN_arg_types; srN_arg_types.push_back(Type::getInt8PtrTy(M.getContext())); llvm::Type *srN_type = FunctionType::get(sel_ptr_type, srN_arg_types, false); // Build the constant containing the pointer to the function const IntegerType *intptr_ty = Type::getIntNTy(M.getContext(), (M.getPointerSize() == Module::Pointer64) ? 64 : 32); PointerType *srN_ptr_ty = PointerType::getUnqual(srN_type); Constant *srN_addr_int = ConstantInt::get(intptr_ty, srN_addr, false); m_sel_registerName = ConstantExpr::getIntToPtr(srN_addr_int, srN_ptr_ty); } SmallVector srN_arguments; Constant *omvn_pointer = ConstantExpr::getBitCast(_objc_meth_var_name_, Type::getInt8PtrTy(M.getContext())); srN_arguments.push_back(omvn_pointer); CallInst *srN_call = CallInst::Create(m_sel_registerName, srN_arguments.begin(), srN_arguments.end(), "srN", selector_load); // Replace the load with the call in all users selector_load->replaceAllUsesWith(srN_call); selector_load->eraseFromParent(); return true; } bool IRForTarget::rewriteObjCSelectors(Module &M, BasicBlock &BB) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); BasicBlock::iterator ii; typedef SmallVector InstrList; typedef InstrList::iterator InstrIterator; InstrList selector_loads; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (LoadInst *load = dyn_cast(&inst)) if (isObjCSelectorRef(load->getPointerOperand())) selector_loads.push_back(&inst); } InstrIterator iter; for (iter = selector_loads.begin(); iter != selector_loads.end(); ++iter) { if (!RewriteObjCSelector(*iter, M)) { if(log) log->PutCString("Couldn't rewrite a reference to an Objective-C selector"); return false; } } return true; } bool IRForTarget::RewritePersistentAlloc(llvm::Instruction *persistent_alloc, llvm::Module &llvm_module) { AllocaInst *alloc = dyn_cast(persistent_alloc); MDNode *alloc_md = alloc->getMetadata("clang.decl.ptr"); if (!alloc_md || !alloc_md->getNumOperands()) return false; ConstantInt *constant_int = dyn_cast(alloc_md->getOperand(0)); if (!constant_int) return false; // We attempt to register this as a new persistent variable with the DeclMap. uintptr_t ptr = constant_int->getZExtValue(); clang::VarDecl *decl = reinterpret_cast(ptr); lldb_private::TypeFromParser result_decl_type (decl->getType().getAsOpaquePtr(), &decl->getASTContext()); StringRef decl_name (decl->getName()); lldb_private::ConstString persistent_variable_name (decl_name.data(), decl_name.size()); if (!m_decl_map->AddPersistentVariable(decl, persistent_variable_name, result_decl_type)) return false; GlobalVariable *persistent_global = new GlobalVariable(llvm_module, alloc->getType()->getElementType(), false, /* not constant */ GlobalValue::ExternalLinkage, NULL, /* no initializer */ alloc->getName().str().c_str()); // What we're going to do here is make believe this was a regular old external // variable. That means we need to make the metadata valid. NamedMDNode *named_metadata = llvm_module.getNamedMetadata("clang.global.decl.ptrs"); llvm::Value* values[2]; values[0] = persistent_global; values[1] = constant_int; MDNode *persistent_global_md = MDNode::get(llvm_module.getContext(), values, 2); named_metadata->addOperand(persistent_global_md); alloc->replaceAllUsesWith(persistent_global); alloc->eraseFromParent(); return true; } bool IRForTarget::rewritePersistentAllocs(llvm::Module &M, llvm::BasicBlock &BB) { if (!m_resolve_vars) return true; lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); BasicBlock::iterator ii; typedef SmallVector InstrList; typedef InstrList::iterator InstrIterator; InstrList pvar_allocs; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (AllocaInst *alloc = dyn_cast(&inst)) if (alloc->getName().startswith("$") && !alloc->getName().startswith("$__lldb")) pvar_allocs.push_back(alloc); } InstrIterator iter; for (iter = pvar_allocs.begin(); iter != pvar_allocs.end(); ++iter) { if (!RewritePersistentAlloc(*iter, M)) { if(log) log->PutCString("Couldn't rewrite the creation of a persistent variable"); return false; } } return true; } static clang::NamedDecl * DeclForGlobalValue(Module &module, GlobalValue *global_value) { NamedMDNode *named_metadata = module.getNamedMetadata("clang.global.decl.ptrs"); if (!named_metadata) return NULL; unsigned num_nodes = named_metadata->getNumOperands(); unsigned node_index; for (node_index = 0; node_index < num_nodes; ++node_index) { MDNode *metadata_node = named_metadata->getOperand(node_index); if (!metadata_node) return NULL; if (metadata_node->getNumOperands() != 2) continue; if (metadata_node->getOperand(0) != global_value) continue; ConstantInt *constant_int = dyn_cast(metadata_node->getOperand(1)); if (!constant_int) return NULL; uintptr_t ptr = constant_int->getZExtValue(); return reinterpret_cast(ptr); } return NULL; } bool IRForTarget::MaybeHandleVariable ( Module &llvm_module, Value *llvm_value_ptr, bool Store ) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); if (ConstantExpr *constant_expr = dyn_cast(llvm_value_ptr)) { switch (constant_expr->getOpcode()) { default: break; case Instruction::GetElementPtr: case Instruction::BitCast: Value *s = constant_expr->getOperand(0); MaybeHandleVariable(llvm_module, s, Store); } } if (GlobalVariable *global_variable = dyn_cast(llvm_value_ptr)) { clang::NamedDecl *named_decl = DeclForGlobalValue(llvm_module, global_variable); if (!named_decl) { if (isObjCSelectorRef(llvm_value_ptr)) return true; if (log) log->Printf("Found global variable %s without metadata", global_variable->getName().str().c_str()); return false; } std::string name (named_decl->getName().str()); void *opaque_type = NULL; clang::ASTContext *ast_context = NULL; if (clang::ValueDecl *value_decl = dyn_cast(named_decl)) { opaque_type = value_decl->getType().getAsOpaquePtr(); ast_context = &value_decl->getASTContext(); } else { return false; } clang::QualType qual_type(clang::QualType::getFromOpaquePtr(opaque_type)); const Type *value_type = global_variable->getType(); size_t value_size = (ast_context->getTypeSize(qual_type) + 7) / 8; off_t value_alignment = (ast_context->getTypeAlign(qual_type) + 7) / 8; if (log) log->Printf("Type of %s is [clang %s, lldb %s] [size %d, align %d]", name.c_str(), qual_type.getAsString().c_str(), PrintType(value_type).c_str(), value_size, value_alignment); if (named_decl && !m_decl_map->AddValueToStruct(named_decl, lldb_private::ConstString (name.c_str()), llvm_value_ptr, value_size, value_alignment)) return false; } return true; } bool IRForTarget::MaybeHandleCallArguments(Module &M, CallInst *C) { // lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); for (unsigned op_index = 0, num_ops = C->getNumArgOperands(); op_index < num_ops; ++op_index) if (!MaybeHandleVariable(M, C->getArgOperand(op_index), true)) // conservatively believe that this is a store return false; return true; } bool IRForTarget::MaybeHandleCall(Module &llvm_module, CallInst *llvm_call_inst) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); Function *fun = llvm_call_inst->getCalledFunction(); if (fun == NULL) { Value *val = llvm_call_inst->getCalledValue(); ConstantExpr *const_expr = dyn_cast(val); if (const_expr && const_expr->getOpcode() == Instruction::BitCast) { fun = dyn_cast(const_expr->getOperand(0)); if (!fun) return true; } else { return true; } } lldb_private::ConstString str; if (fun->isIntrinsic()) { Intrinsic::ID intrinsic_id = (Intrinsic::ID)fun->getIntrinsicID(); switch (intrinsic_id) { default: if (log) log->Printf("Unresolved intrinsic %s", Intrinsic::getName(intrinsic_id).c_str()); return false; case Intrinsic::memcpy: { static lldb_private::ConstString g_memcpy_str ("memcpy"); str = g_memcpy_str; } break; } if (log && str) log->Printf("Resolved intrinsic name %s", str.GetCString()); } else { str.SetCStringWithLength (fun->getName().data(), fun->getName().size()); } clang::NamedDecl *fun_decl = DeclForGlobalValue (llvm_module, fun); uint64_t fun_addr; Value **fun_value_ptr = NULL; if (fun_decl) { if (!m_decl_map->GetFunctionInfo (fun_decl, fun_value_ptr, fun_addr)) { fun_value_ptr = NULL; if (!m_decl_map->GetFunctionAddress (str, fun_addr)) { if (log) log->Printf("Function %s had no address", str.GetCString()); return false; } } } else { if (!m_decl_map->GetFunctionAddress (str, fun_addr)) { if (log) log->Printf ("Metadataless function %s had no address", str.GetCString()); } } if (log) log->Printf("Found %s at %llx", str.GetCString(), fun_addr); Value *fun_addr_ptr; if (!fun_value_ptr || !*fun_value_ptr) { const IntegerType *intptr_ty = Type::getIntNTy(llvm_module.getContext(), (llvm_module.getPointerSize() == Module::Pointer64) ? 64 : 32); const FunctionType *fun_ty = fun->getFunctionType(); PointerType *fun_ptr_ty = PointerType::getUnqual(fun_ty); Constant *fun_addr_int = ConstantInt::get(intptr_ty, fun_addr, false); fun_addr_ptr = ConstantExpr::getIntToPtr(fun_addr_int, fun_ptr_ty); if (fun_value_ptr) *fun_value_ptr = fun_addr_ptr; } if (fun_value_ptr) fun_addr_ptr = *fun_value_ptr; llvm_call_inst->setCalledFunction(fun_addr_ptr); ConstantArray *func_name = (ConstantArray*)ConstantArray::get(llvm_module.getContext(), str.GetCString()); Value *values[1]; values[0] = func_name; MDNode *func_metadata = MDNode::get(llvm_module.getContext(), values, 1); llvm_call_inst->setMetadata("lldb.call.realName", func_metadata); if (log) log->Printf("Set metadata for %p [%d, %s]", llvm_call_inst, func_name->isString(), func_name->getAsString().c_str()); return true; } bool IRForTarget::resolveExternals(Module &M, BasicBlock &BB) { ///////////////////////////////////////////////////////////////////////// // Prepare the current basic block for execution in the remote process // BasicBlock::iterator ii; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (m_resolve_vars) { if (LoadInst *load = dyn_cast(&inst)) if (!MaybeHandleVariable(M, load->getPointerOperand(), false)) return false; if (StoreInst *store = dyn_cast(&inst)) if (!MaybeHandleVariable(M, store->getValueOperand(), true) || !MaybeHandleVariable(M, store->getPointerOperand(), true)) return false; } if (CallInst *call = dyn_cast(&inst)) { if (!MaybeHandleCallArguments(M, call)) return false; if (!MaybeHandleCall(M, call)) return false; } } return true; } static bool isGuardVariableRef(Value *V) { Constant *C; if (!(C = dyn_cast(V))) return false; ConstantExpr *CE; if ((CE = dyn_cast(V))) { if (CE->getOpcode() != Instruction::BitCast) return false; C = CE->getOperand(0); } GlobalVariable *GV = dyn_cast(C); if (!GV || !GV->hasName() || !GV->getName().startswith("_ZGV")) return false; return true; } static void TurnGuardLoadIntoZero(Instruction* guard_load, Module &M) { Constant* zero(ConstantInt::get(Type::getInt8Ty(M.getContext()), 0, true)); Value::use_iterator ui; for (ui = guard_load->use_begin(); ui != guard_load->use_end(); ++ui) { if (isa(*ui)) { // do nothing for the moment } else { ui->replaceUsesOfWith(guard_load, zero); } } guard_load->eraseFromParent(); } static void ExciseGuardStore(Instruction* guard_store) { guard_store->eraseFromParent(); } bool IRForTarget::removeGuards(Module &M, BasicBlock &BB) { /////////////////////////////////////////////////////// // Eliminate any reference to guard variables found. // BasicBlock::iterator ii; typedef SmallVector InstrList; typedef InstrList::iterator InstrIterator; InstrList guard_loads; InstrList guard_stores; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (LoadInst *load = dyn_cast(&inst)) if (isGuardVariableRef(load->getPointerOperand())) guard_loads.push_back(&inst); if (StoreInst *store = dyn_cast(&inst)) if (isGuardVariableRef(store->getPointerOperand())) guard_stores.push_back(&inst); } InstrIterator iter; for (iter = guard_loads.begin(); iter != guard_loads.end(); ++iter) TurnGuardLoadIntoZero(*iter, M); for (iter = guard_stores.begin(); iter != guard_stores.end(); ++iter) ExciseGuardStore(*iter); return true; } // UnfoldConstant operates on a constant [C] which has just been replaced with a value // [new_value]. We assume that new_value has been properly placed early in the function, // most likely somewhere in front of the first instruction in the entry basic block // [first_entry_instruction]. // // UnfoldConstant reads through the uses of C and replaces C in those uses with new_value. // Where those uses are constants, the function generates new instructions to compute the // result of the new, non-constant expression and places them before first_entry_instruction. // These instructions replace the constant uses, so UnfoldConstant calls itself recursively // for those. static bool UnfoldConstant(Constant *C, Value *new_value, Instruction *first_entry_instruction) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); Value::use_iterator ui; SmallVector users; // We do this because the use list might change, invalidating our iterator. // Much better to keep a work list ourselves. for (ui = C->use_begin(); ui != C->use_end(); ++ui) users.push_back(*ui); for (int i = 0; i < users.size(); ++i) { User *user = users[i]; if (Constant *constant = dyn_cast(user)) { // synthesize a new non-constant equivalent of the constant if (ConstantExpr *constant_expr = dyn_cast(constant)) { switch (constant_expr->getOpcode()) { default: if (log) log->Printf("Unhandled constant expression type: %s", PrintValue(constant_expr).c_str()); return false; case Instruction::BitCast: { // UnaryExpr // OperandList[0] is value Value *s = constant_expr->getOperand(0); if (s == C) s = new_value; BitCastInst *bit_cast(new BitCastInst(s, C->getType(), "", first_entry_instruction)); UnfoldConstant(constant_expr, bit_cast, first_entry_instruction); } break; case Instruction::GetElementPtr: { // GetElementPtrConstantExpr // OperandList[0] is base // OperandList[1]... are indices Value *ptr = constant_expr->getOperand(0); if (ptr == C) ptr = new_value; SmallVector indices; unsigned operand_index; unsigned num_operands = constant_expr->getNumOperands(); for (operand_index = 1; operand_index < num_operands; ++operand_index) { Value *operand = constant_expr->getOperand(operand_index); if (operand == C) operand = new_value; indices.push_back(operand); } GetElementPtrInst *get_element_ptr(GetElementPtrInst::Create(ptr, indices.begin(), indices.end(), "", first_entry_instruction)); UnfoldConstant(constant_expr, get_element_ptr, first_entry_instruction); } break; } } else { if (log) log->Printf("Unhandled constant type: %s", PrintValue(constant).c_str()); return false; } } else { // simple fall-through case for non-constants user->replaceUsesOfWith(C, new_value); } } return true; } bool IRForTarget::replaceVariables(Module &M, Function &F) { if (!m_resolve_vars) return true; lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); m_decl_map->DoStructLayout(); if (log) log->Printf("Element arrangement:"); uint32_t num_elements; uint32_t element_index; size_t size; off_t alignment; if (!m_decl_map->GetStructInfo (num_elements, size, alignment)) return false; Function::arg_iterator iter(F.getArgumentList().begin()); if (iter == F.getArgumentList().end()) return false; Argument *argument = iter; if (argument->getName().equals("this")) { ++iter; if (iter == F.getArgumentList().end()) return false; argument = iter; } if (!argument->getName().equals("$__lldb_arg")) return false; if (log) log->Printf("Arg: %s", PrintValue(argument).c_str()); BasicBlock &entry_block(F.getEntryBlock()); Instruction *first_entry_instruction(entry_block.getFirstNonPHIOrDbg()); if (!first_entry_instruction) return false; LLVMContext &context(M.getContext()); const IntegerType *offset_type(Type::getInt32Ty(context)); if (!offset_type) return false; for (element_index = 0; element_index < num_elements; ++element_index) { const clang::NamedDecl *decl; Value *value; off_t offset; lldb_private::ConstString name; if (!m_decl_map->GetStructElement (decl, value, offset, name, element_index)) return false; if (log) log->Printf(" %s [%s] (%s) placed at %d", value->getName().str().c_str(), name.GetCString(), PrintValue(value, true).c_str(), offset); ConstantInt *offset_int(ConstantInt::getSigned(offset_type, offset)); GetElementPtrInst *get_element_ptr = GetElementPtrInst::Create(argument, offset_int, "", first_entry_instruction); BitCastInst *bit_cast = new BitCastInst(get_element_ptr, value->getType(), "", first_entry_instruction); if (Constant *constant = dyn_cast(value)) UnfoldConstant(constant, bit_cast, first_entry_instruction); else value->replaceAllUsesWith(bit_cast); if (GlobalVariable *var = dyn_cast(value)) var->eraseFromParent(); } if (log) log->Printf("Total structure [align %d, size %d]", alignment, size); return true; } bool IRForTarget::runOnModule(Module &M) { lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); Function* function = M.getFunction(StringRef(m_func_name.c_str())); if (!function) { if (log) log->Printf("Couldn't find %s() in the module", m_func_name.c_str()); return false; } Function::iterator bbi; //////////////////////////////////////////////////////////// // Replace $__lldb_expr_result with a persistent variable // if (!createResultVariable(M, *function)) return false; ////////////////////////////////// // Run basic-block level passes // for (bbi = function->begin(); bbi != function->end(); ++bbi) { if (!removeGuards(M, *bbi)) return false; if (!rewritePersistentAllocs(M, *bbi)) return false; if (!rewriteObjCSelectors(M, *bbi)) return false; if (!resolveExternals(M, *bbi)) return false; } /////////////////////////////// // Run function-level passes // if (!replaceVariables(M, *function)) return false; if (log) { std::string s; raw_string_ostream oss(s); M.print(oss, NULL); oss.flush(); log->Printf("Module after preparing for execution: \n%s", s.c_str()); } return true; } void IRForTarget::assignPassManager(PMStack &PMS, PassManagerType T) { } PassManagerType IRForTarget::getPotentialPassManagerType() const { return PMT_ModulePassManager; }